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Abstract

Understanding the flow of information in Deep Neural Networks (DNNs) is a
challenging problem that has gain increasing attention over the last few years.
While several methods have been proposed to explain network predictions, only
a few attempts to analyze them from a theoretical perspective have been made in
the past. In this work, we analyze various state-of-the-art attribution methods and
prove unexplored connections between them. We also show how some methods
can be reformulated and more conveniently implemented. Finally, we perform
an empirical evaluation with six attribution methods on a variety of tasks and
architectures and discuss their strengths and limitations.

1 Introduction and Motivation

While DNNs have had a large impact on several different tasks [8, 7, 11, 19, 25], explaining their
predictions is still a challenge and a limitation for those scenarios where predictability is crucial. In
this work, we study the problem of assigning an attribution value, sometimes also called "relevance"
or "contribution", to each input feature of a network. More formally, consider a DNN that takes an
input x = [x1, ..., xN ] ∈ RN and produces an output S(x) = [S1(x), ..., SC(x)], where C is the
total number of output neurons. Given a specific target neuron c, the goal of an attribution method is
to determine the attribution Rc = [Rc1, ..., R

c
N ] ∈ RN of each input feature xi to the output Sc. For a

classification task, the target neuron of interest is usually the output neuron associated with the correct
class for a given sample. Attributions are often visualized as heatmaps, called attribution maps, where
red and blue colors indicate respectively features that contribute positively to the activation of the
target output and features having a suppressing effect on it (Figures 1-2).

The problem of attribution for deep networks has been tackled in several previous works
[20, 27, 22, 3, 17, 23, 12, 28]. Unfortunately, due to slightly different problem formulations, lack of
compatibility with all different existing DNN architectures and no common benchmark, a compre-
hensive comparison is not available. In this work we prove that ε-LRP [3] and DeepLIFT (Rescale)
[17] can be reformulated as computing backpropagation for a modified gradient function (Section 3).
This allows the construction of a unified framework that comprises several gradient-based attribution
methods and facilitates their implementation. In the last section, we empirically compare several
attribution methods and discuss practical directions for their application.
∗The author contributed to this work while employed at ETH Zurich
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2 Overview over existing attribution methods

2.1 Perturbation-based methods

Perturbation-based methods directly compute the attribution of an input feature (or set of features)
by removing, masking or altering them, and running a forward pass on the new input, measuring
the difference with the original output. This technique has been applied to Convolutional Neural
Networks (CNNs) in the domain of image classification, visualizing the probability of the correct
class as a function of the position of a grey patch occluding part of the image [27]. While perturbation-
based methods allow a direct estimation of the marginal effect of a feature, they tend to be very slow
as the number of features to test grows (ie. up to hours for a single image [28]). What is more, given
the nonlinear nature of DNNs, the result is strongly influenced by the number of features that are
removed altogether at each iteration (Figure 1).

In the remainder of the paper, we will consider the occluding method by [27] as a comparison
benchmark for perturbation-based methods. We will use this method, referred to as Occlusion-1,
replacing one feature xi at the time with a zero baseline and measuring the effect of this perturbation
on the target output, ie. Sc(x) − Sc(x[xi=0]) where we use x[xi=v] to indicate a sample x ∈ RN
whose i-th component has been replaced with v.

Original (label: "garter snake") Occlusion-1 Occlusion-5x5 Occlusion-10x10 Occlusion-15x15

Figure 1: Attributions generated by occluding portions of the input image with squared grey patches
of different sizes. Notice how the size of the patches influence the result, with focus on the main
subject only when using bigger patches. Best seen in electronic form.

2.2 Backpropagation-based methods

Backpropagation-based methods compute the attributions for all input features in a single forward
and backward pass through the network 2. While these methods are generally faster then perturbation-
based methods, their outcome can hardly be related directly to a variation of the output. Except where
explicitly reported, the mathematical formulation of the method below is reported in Table 1.

Saliency Maps [20] constructs attributions by taking the absolute value of the partial derivative
of the target output Sc with respect to the input features xi. Intuitively, the absolute value of the
gradient indicates those input features (pixels, for image classification) that can be perturbed the least
in order for the target output to change the most, with no regards for the direction of this change.
Nevertheless, Saliency Maps are usually rather noisy [15, 12, 21] and taking the absolute value
prevents the detection of positive and negative evidence that might be present in the input.

Gradient * Input [18] was at first proposed as a technique to improve the sharpness of attribution
maps. The attribution is computed taking the (signed) partial derivatives of the output with respect to
the input and multiplying them feature-wise with the input itself.

Integrated Gradients [23], similarly to Gradient * Input, computes the partial derivatives of the
output with respect to each input feature. However, instead of evaluating the partial derivative at the
provided input x only, it computes its average value while the input varies along a linear path from a
baseline x̄ to x. The baseline is defined by the user and often chosen to be zero.

Layer-wise Relevance Propagation (LRP) [3] is computed with a backward pass on the network.
Let us consider a quantity r(l)

i , called "relevance" of unit i of layer l. The algorithm starts at the output
layer L, assigning the relevance of the target neuron c equal to the activation of the neuron itself, and

2Sometimes several of these steps are necessary, but the number does not depend on the number of input
feature and generally much smaller than for perturbation-based methods
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the relevance of all other neurons to zero (Equation 1). Then it proceeds layer by layer, redistributing
the prediction score Si until the input layer is reached. One recursive rule for the redistribution of
a layer’s relevance to the following layer is the ε-rule described in Equation 2, where we defined
zij = x

(l)
i w

(l,l+1)
ij to be the weighted activation of a neuron i onto neuron j in the next layer and

bj the additive bias of unit j. A small quantity ε is added to the denominator to avoid numerical
instabilities. Once reached the input layer, the final attributions are defined as Rci (x) = r

(1)
i .

r
(L)
i =

{
Si(x) if unit i is the target unit of interest
0 otherwise

(1)

r
(l)
i =

∑
j

zij∑
i′(zi′j + bj) + ε · sign(

∑
i′(zi′j + bj))

r
(l+1)
j (2)

LRP together with the propagation rule described in Equation 2 is called ε-LRP, analyzed in the
remainder of this paper. Alternative stabilizing methods exists [3, 12] but are not considered here.
Additionally, we assume a small and fixed ε, with the only purpose of avoiding divisions by zero.

DeepLIFT [17] proceeds in a backward fashion, similarly to LRP. Each unit i is assigned an
attribution that represents the relative effect of the unit activated at the original network input x
compared to the activation at some reference input x̄ (Equation 3). Reference values z̄ij for all hidden
units are determined running a forward pass through the network, using the baseline x̄ as input, and
recording the activation of each unit. The baseline is a user-defined parameter often chosen to be
zero. Equation 4 describes the relevance propagation rule.

r
(L)
i =

{
Si(x)− Si(x̄) if unit i is the target unit of interest
0 otherwise

(3)

r
(l)
i =

∑
j

zij − z̄ij∑
i′ zij −

∑
i′ z̄ij

r
(l+1)
j (4)

In Equation 4, z̄ij = x̄
(l)
i w

(l,l+1)
ij is weighted activation of a neuron i onto neuron j when the baseline

x̄ is fed into the network. The attributions at the input layer are defined as Rci (x) = r
(1)
i . The rule

here described ("Rescale rule") is used in the original formulation of the method and it is the one we
will analyze in the remainder of the paper. The "Reveal-Cancel" rule [17] is not considered here.

Original (label: "garter snake") Saliency maps Grad * Input Integrated Gradients DeepLIFT (Rescale) -LRP

Figure 2: Backpropagation-based attribution methods applied to an Inception V3 network for natural
image classification [24]. All signed methods produce attributions affected by higher local variance
compared to perturbation-based methods (Figure 1). Best seen in electronic form.

Other methods that are designed only for specific architectures (ie. Grad-CAM [16] for CNNs)
or activation functions (ie. Deconvolutional Network [27] and Guided Backpropagation [22] for
Rectified Linear Units (ReLUs)) are out of the scope of this analysis.

3 A gradient-centric formulation

Saliency Maps, Gradient * Input and Integrated Gradients are, by definition, computed as a function
of the partial derivatives of the target output with respect to all input features. In this section, we will
show that ε-LRP and DeepLIFT can also be computed by applying the chain rule for gradients, if the
instant gradient at each nonlinearity is replaced with a function that depends on the method.
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In a DNN where each layer performs a linear transformation of the input zj =
∑
i xiwij + bj

followed by a nonlinear mapping xj = f(zj), a path connecting any two units consists of a sequence
of such operations. As a consequence, the chain rule along a single path is the product of the
partial derivatives of all linear and nonlinear transformations along the path. For two units i and
j in subsequent layers we have ∂xj/∂xi = wij · f ′(zj), whereas for any two generic units i and
c connected by a set of paths Pic the partial derivative is sum of the product of all weights and all
derivatives of the nonlinearities that are found along the each path. We introduce a notation to indicate
a modified chain-rule, where the derivative of the nonlinearities f ′() is replaced by a function g():

∂gxc
∂xi

=
∑
Pic

(∏
wyj

∏
g(zj)

)
(5)

When g() = f ′() this is the definition of partial derivative of the output of unit c with respect to unit i,
computed as the sum of contributions over all paths connecting the two units. Given that a zero weight
can be used for non-existing path this is valid for any architecture that involves fully-connected,
convolutional or recurrent layers without multiplicative units, as well as for pooling operations. Table
1 reports the definition of the six attribution methods discussed in Section 2, using Definition 5 to
reformulate LRP and DeepLIFT. These formulations are based on the following propositions.

Method Attribution Rci (x) Example of attributions on MNIST
ReLU Tanh Sigmoid Softplus

Saliency
Maps

∣∣∣∣∂Sc(x)

∂xi

∣∣∣∣
Gradient *

Input xi ·
∂Sc(x)

∂xi

ε-LRP xi ·
∂gSc(x)

∂xi
, g =

f(z)

z

DeepLIFT (xi − x̄i) ·
∂gSc(x)

∂xi
, g =

f(z)− f(z̄)

z − z̄

Integrated
Gradient (xi − x̄i) ·

∫ 1

α=0

∂Sc(x̃)

∂(x̃i)

∣∣∣∣
x̃=x̄+α(x−x̄)

dα

Occlusion-1 xi ·
∫ 1

α=0

∂Sc(x̃)

∂(x̃i)

∣∣∣∣
x̃=x[xi=α·xi]

dα

Table 1: Definition of several attribution methods. Underlined methods have been reformulated to
highlight the connection to the gradient chain-rule. On the right, examples of attributions on a sample
from the MNIST dataset [9]. Details about the network architectures can be found in Appendix A.

It has been previously proven that, in the case of ReLUs, ε-LRP is equivalent to Gradient * Input
[18, 4]. The connection of ε-LRP to the gradient chain-rule can be generalized to any activation
functions as follows.
Proposition 1. ε-LRP is equivalent the feature-wise product of the input and the modified partial
derivative ∂gSc(x)/∂xi, with g = gLRP = fi(zi)/zi, i.e. the ratio between the output and the input
at each nonlinearity.

Proof. For the following proof we refer to the ε propagation rule defined as in Equation 56 of [3],
according to which the bias terms can be assigned part of the relevance. We also assume the stabilizer
term ε · sign(

∑
i′(zi′j + bj)) at the denominator of Equation 2 is small enough to be neglected.
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We proceed by induction. By definition, the ε-LRP relevance of the target neuron c on the top layer L
is defined to be equal to the output of the neuron itself, Sc:

r(L)
c = Sc(x) = f

∑
j

w
(L,L−1)
cj x

(L−1)
j + bc

 (6)

The relevance of the parent layer is:

r
(L−1)
j = rLc

w
(L,L−1)
cj x

(L−1)
j∑

j′ w
(L,L−1)
cj′ x

(L−1)
j′ + bc

I LRP prop. rule (Eq. 2)

= f

∑
j′

w
(L,L−1)
cj′ x

(L−1)
j′ + bc

 w
(L,L−1)
cj x

(L−1)
j∑

j′ w
(L,L−1)
cj′ x

(L−1)
j′ + bc

I replacing Eq. 6

= gLRP

∑
j′

w
(L,L−1)
cj′ x

(L−1)
j′ + bc

w
(L,L−1)
cj x

(L−1)
j I by definition of gLRP

=
∂g

LRP

Sc(x)

∂x
(L−1)
j

x
(L−1)
j I by definition of ∂g (Eq. 5)

For the inductive step, we start from the hypothesis that on a generic layer l the LRP explanation is:

r
(l)
i =

∂g
LRP

Sc(x)

∂x
(l)
i

x
(l)
i (7)

then for layer l − 1 it holds:

r
(l−1)
j =

∑
i

r
(l)
i

w
(l,l−1)
ij x

(l−1)
j∑

j′ w
(l,l−1)
ij′ x

(l−1)
j′ + bi

I LRP propagation rule (Eq. 2)

=
∑
i

∂g
LRP

Sc(x)

∂x
(l)
i

x
(l)
i∑

j′ w
(l,l−1)
ij′ x

(l−1)
j′ + bi

w
(l,l−1)
ij x

(l−1)
j I replacing Eq. 7

=
∑
i

∂g
LRP

Sc(x)

∂x
(l)
i

gLRPi w
(l,l−1)
ij x

(l−1)
j I by definition of gLRP

=
∂g

LRP

Sc(x)

∂x
(l−1)
j

x
(l−1)
j I by definition of ∂g (Eq. 5)

Proposition 2. DeepLIFT (Rescale) is equivalent to the feature-wise product of the x− x̄ and the
modified partial derivative ∂gSc(x)/∂xi, with g = gDL = (fi(zi) − fi(z̄i))/(zi − z̄i), i.e. the
ratio between the difference in output and the difference in input at each nonlinearity, for a network
provided with some input x and some baseline input x̄ defined by the user.

Proof. Similarly to how a chain rule for gradients is constructed, DeepLIFT computes a multiplicative
term, called "multiplier", for each operation in the network. These terms are chained to compute a
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global multiplier between two given units by summing up all possible paths connecting them. The
chaining rule, called by the authors "chain rule for multipliers" (Eq. 3 in [17]) is identical to the chain
rule for gradients, therefore we only need to prove that the multipliers are equivalent to the terms
used in the computation of our modified backpropagation.

Linear operations. For Linear and Convolutional layers implementing operations of the form
zj =

∑
i(wij · xi) + bj , the DeepLIFT multiplier is defined to be m = wij (Sec. 3.5.1 in [17]). In

our formulation the gradient of linear operations is not modified, hence it is ∂zi/∂xi = wij , equal to
the original DeepLIFT multiplier.

Nonlinear operations. For a nonlinear operation with a single input of the form xi = f(zi) (i.e. any
nonlinear activation function), the DeepLIFT multiplier (Sec. 3.5.2 in Shrikumar et al. [17]) is:

m =
∆x

∆z
=
f(zi)− f(z̄i)

zi − z̄i
= gDL (8)

Nonlinear operations with multiple inputs (eg. 2D pooling) are not address in [17]. For these, we
keep the original operations’ gradient unmodified as in the DeepLIFT public implementation. 3

This formulation has an important practical advantage. Since all modern frameworks for graph
computation, like TensorFlow [1], implement backpropagation for efficient computation of the chain
rule, it is possible to implement all methods above by just overriding the gradient of the graph
nonlinearities, with no need to implement custom layers or operations. Moreover, thanks to automatic
differentiation, all methods can be applied to any architecture trainable via backpropagation.

This formulation also enables a direct comparison between methods. We have already mentioned that
ε-LRP is equivalent to Gradient * Input if only ReLUs are used as nonlinearities [18, 4]. We can also
easily see that ε-LRP is equivalent to DeepLIFT computed with a zero baseline, if applied to a network
with no additive biases and with nonlinearities f such that f(0) = 0 (eg. ReLU or Tanh). The proof
comes directly from the observation that, in a network satisfying these conditions, the propagation
of the baseline produces a zero reference value for all hidden units (ie. ∀i : z̄i = f(z̄i) = 0). Then
gLRP = gDL. Notice that gLRP (z) = (f(z)− 0)/(z − 0) which, in the case of ReLU and Tanh, is
the average gradient of the nonlinearity in [0, z]. It also easy to see that limz→0 g

LRP (z) = f ′(0),
which explain why g can not assume arbitrarily large values as z → 0, even without stabilizers. On
the contrary, if the discussed condition on the nonlinearity is not satisfied, for example with Sigmoid
or Softplus, we found empirically that ε-LRP fails to produce meaningful results (see Section 4). We
speculate this is due to the fact gLRP (z) can become extremely large for small values of z, being its
upper-bound only limited by the stabilizer. This causes attribution values to concentrate on a few
features as shown in Table 1. Notice also that the interpretation of gLRP as average gradient of the
nonlinearity does not hold in this case, which explains why ε-LRP diverges from other methods 4.

DeepLIFT and Integrated Gradients are related as well. While Integrated Gradients computes
the average partial derivative of each feature as the input varies from a baseline to its final value,
DeepLIFT approximates this quantity in a single step by replacing the gradient at each nonlinearity
with its average gradient. Although the chain rule does not hold in general for average gradients, we
show empirically in Section 4 that DeepLIFT is often a good approximation of Integrated Gradients.

4 Empirical comparison

As pointed out by others [23, 15], attributions methods are hard to evaluate empirically because it is
difficult to distinguish errors of the model from errors of the attribution method explaining the model.
For this reason, the final evaluation is often qualitative, based on the inspection of the produced

3DeepLIFT public code: https://github.com/kundajelab/deeplift. Retrieved on 25 Sept. 2017
4We are not claiming any general superiority of gradient-based methods but rather observing that ε-LRP can

only be considered gradient-based for precise choices of the nonlinearities. In fact, there are backpropagation-
based attribution methods, not directly interpretable as gradient methods, that exhibit other desirable properties.
For a discussion about advantages and drawbacks of gradient-based methods we refer the reader to [17, 13, 23].
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attribution maps. We argue, however, that this introduces a strong bias in the evaluation: as humans,
one would judge more favorably methods that produce explanations closer to his own expectations, at
the cost of penalizing those methods that might more closely reflect the network behavior. Instead,
we perform a quantitative evaluation using a variation of the perturbation method by [15]. This
method starts from the assumption that a good attribution method should identify features that are
more relevant for the activation of the target neuron. As such, these relevant features should produce
a sensible variation on the target value when removed or altered.

Our evaluation procedure is the following. We sort the input features according to their attributions
and, based on this ranking, we proceed iteratively, altering one feature at each iteration and replacing
it with a zero baseline until the input is left with none of the original features. At each iteration we
run a forward pass with the modified input and measure the target output. The only exception to this
procedure is on Inception V3, where we remove 100 features at each step to keep the evaluation time
reasonable. Our method differs from [15] by two aspects: 1) we always remove features based on
their ranking and we do not assume our inputs are natural images, where local pixel coherence can be
exploited to alter local patches; 2) while [15] performs this test removing most relevant features first
(MoRF), we also test the inverse ranking, removing least relevant features first (LeRF), as done by
[2] in the context of text classification. This allows us to test whether the sign information provided
by some attribution method is meaningful. We expect removing features with positive (negative)
attribution to cause a drop (rise) in the target output. The resulting perturbation curves are evaluated
with two criteria: firstly, the initial steepness of the curve is expected to be stronger for methods that
better capture the true underlying attributions. Secondly, better methods are expected to produce a
larger variation in the target output when several features are removed. Results are compared towards
a baseline constructed by removing features in random order.

Figure 3 shows the results for all methods of Table 1. We use the well-known MNIST dataset [9] to
test how the methods behave with two different architectures (a Multilayer Perceptron (MLP) and a
CNN) and four different activation functions. We also test a simple CNN for image classification on
CIFAR10 [6] and the more complex Inception V3 architecture [24] on ImageNet-like [14] samples.
Finally, we test a model for sentiment classification from text data. For this task we use the IMDB
dataset [10], applying both a shallow MLP and a LSTM model. Details about the architectures can be
found in Appendix A. Notice that it was not our goal, nor a requirement, to reach the state-of-the-art
in these tasks since attribution methods should be applicable to any model that produces some
meaningful prediction. From the results we can formulate a few considerations:

• Sign matters. In most of our tests, the perturbation of features with negative attribution causes
the target output to increase. This suggests that input samples can contain negative evidence and
that these can be detected by signed attribution methods. On the other hand, on complex models
like Inception V3, all gradient-based methods show low accuracy in predicting the attribution sign,
leading to heatmaps affected by high-frequency noise (Figure 2) and poor performance in the LeRF
test. The importance of sign information is particularly evident on simple models (eg. IMDB-MLP).

• Saliency Maps detect neutral regions. While Saliency Maps (MoRF) performs poorly compared
to other methods (likely because sign information is discarded) the LeRF test shows that features
with lowest (absolute) attribution are in fact neutral to the output. On some models, like MNIST w/
Relu, Saliency Maps identifies large portions of the image that can be removed without significantly
affecting the target output. On Inception V3, Saliency Maps gains in performance since other methods
fail to correctly identify sign information.

• Occlusion-1 better identifies the few most important features. This is a natural consequence
of the fact that attributions for this methods are computed using the same procedure used for testing.
Notice, however, that some other methods perform better when a relevant percentage of features
has been removed, leading to a larger maximum variation of the output. This suggests that methods
like Integrated Gradient, DeepLIFT and LRP are able to capture cross-interactions between different
features that Occlusion-1, by considering a single feature at the time, cannot capture.

• Integrated Gradients and DeepLIFT have very high correlation, suggesting that the latter is a
good (and faster) approximation of the former in practice. This does not hold with multiplicative
interactions between features (eg. IMDB (LSTM)), where DeepLIFT performs sensibly worse.

• ε-LRP is equivalent to Gradient * Input when all nonlinearities are ReLUs, while it fails
when these are Sigmoid or Softplus. When the nonlinearities are such that f(0) 6= 0, ε-LRP
diverges from other methods, cannot be seen as a discrete gradient approximator and may lead to
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Figure 3: Results of the perturbation test for several attribution methods on various datasets and
architectures. The variation of the target activation with respect to the original input is reported
against the number of features removed. Best seen in electronic form.

numerical instabilities for small values of the stabilizer (Section 3). It has been shown, however,
that adjusting the propagation rule for multiplicative interactions and avoiding critical nonlinearities,
ε-LRP can be applied to LSTM networks, obtaining interesting results [2]. Unfortunately, these
changes obstacle the formulation as modified chain-rule and make ad-hoc implementation necessary.

• All methods are equivalent when the model behaves linearly. On IMDB (MLP), where we
used a very shallow network, all signed attribution methods perform equally well. It is easy to show
that all signed methods in Table 1 produce the exact same attributions if applied to a linear model.
While the opposite implication does not hold in general, we believe it is unlikely to observe this
behavior with a highly nonlinear model.

5 Conclusions

We strongly believe a better understanding of existing attribution methods is necessary to highlight
research direction for DNN interpretability. In this work, we have shown that Saliency Maps,
Gradient * Input, ε-LRP, Integrated Gradients and DeepLIFT (Rescale) are strongly related under
a unified framework for gradient-based attribution methods. We have also shown that ε-LRP and
DeepLIFT, in their most simple formulation, can be easily implemented by overriding some operations
of the gradient chain-rule, which is particularly convenient with modern libraries for automatic
differentiation. We have proven some theoretical conditions of equivalence or approximation between
these methods and conducted a quantitative evaluation to highlight their strengths and limitations.

Source code and acknowledgments A framework including the analyzed methods can be down-
loaded at https://goo.gl/2R5YGS. This work was partially funded by the Swiss Commission for
Technology and Innovation (CTI, Grant No. 19005.1 PFES-ES).
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A Experiments setup

A.1 MNIST

The MNIST dataset [9] was pre-processed to normalize the input images between -1 (background) and 1 (digit
stroke). We trained both a DNN and a CNN, using four activation functions in order to test how attribution
methods generalize to different architectures. The layers of the two architectures are listed below. The activations
functions are defined asReLU(x) = max(0, x), Tanh(x) = sinh(x)/cosh(x), Sigmoid(x) = 1/(1+e−x)
and Softplus(x) = ln(1 + ex) and have been applied to the output of the layers marked with † in the tables
below. The networks were trained using Adadelta [26] and early stopping. We also report the final test accuracy.

MNIST MLP
Dense† (512)
Dense† (512)
Dense (10)

MNIST CNN
Conv 2D† (3x3, 32 kernels)
Conv 2D† (3x3, 64 kernels)

Max-pooling (2x2)
Dense† (128)
Dense (10)

Test set accuracy (%)
MLP CNN

ReLU 97.9 99.1
Tanh 98.1 98.8

Sigmoid 98.1 98.6
Softplus 98.1 98.8

A.2 CIFAR-10

The CIFAR-10 dataset [6] was pre-processed to normalized the input images in range [-1; 1]. As for MNIST,
we trained a CNN architecture using Adadelta and early stopping. For this dataset we only used the ReLU
nonlinearity, reaching a final test accuracy of 80.5%. For gradient-based methods, the attribution of each pixel
was computed summing up the attribution of the 3 color channels and Occlusion-1 was performed setting all
color channels at zero at the same time for each pixel being tested. Similarly, for the final evaluation, each pixel
was considered an atomic feature and all color channels replaced at the same time.

CIFAR-10 CNN
Conv 2D† (3x3, 32 kernels)
Conv 2D† (3x3, 32 kernels)

Max-pooling (2x2)
Dropout (0.25)

Conv 2D† (3x3, 64 kernels)
Conv 2D† (3x3, 64 kernels)

Max-pooling (2x2)
Dropout (0.25)
Dense† (256)
Dropout (0.5)

Dense (10)
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A.3 Inception V3

We used a pre-trained Inception V3 network. The details of this architecture can be found in [24]. We used a test
dataset of 1000 ImageNet-like images, normalized in [-1; 1] that was classified with 95.9% accuracy. When
computing attributions, the color channels were handled as for CIFAR-10.

A.4 IMDB

We trained both a shallow MLP and a LSTM network on the IMDB dataset [10] for sentiment analysis. For both
architectures we trained a small embedding layer considering only the 5000 most frequent words in the dataset.
We also limited the maximum length of each review to 500 words, padding shorter ones when necessary. We
used ReLU nonlinearities for the hidden layers and trained using Adam [5] and early stopping. The final test
accuracy is 87.3% on both architectures. For gradient-based methods, the attribution of each word was computed
summing up the attributions over the embedding vector components corresponding to the word. Similarly,
Occlusion-1 and the final evaluation were performed setting all components of the embedding vector at zero for
each word to be tested.

IMDB MLP
Embedding (5000x32)

Dense (250)
Dense (1)

IMDB LSTM
Embedding (5000x32)

LSTM (64)
Dense (1)
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