
A unified view of gradient-based attribution methods
for Deep Neural Networks

Marco Ancona
Department of Computer Science

ETH Zurich, Switzerland
anconam@inf.ethz.ch

Enea Ceolini
Institute of Neuroinformatics

University Zürich and ETH Zürich
enea.ceolini@ini.uzh.ch

Cengiz Öztireli∗
ETH Zurich and

Disney Research Zurich
cengizo@inf.ethz.ch

Markus Gross
Department of Computer Science

ETH Zurich, Switzerland
grossm@inf.ethz.ch

Abstract

Understanding the flow of information in Deep Neural Networks (DNNs) is a
challenging problem that has gain increasing attention over the last few years.
While several methods have been proposed to explain network predictions, only
a few attempts to analyze them from a theoretical perspective have been made in
the past. In this work, we analyze various state-of-the-art attribution methods and
prove unexplored connections between them. We also show how some methods
can be reformulated and more conveniently implemented. Finally, we perform
an empirical evaluation with six attribution methods on a variety of tasks and
architectures and discuss their strengths and limitations.

1 Introduction and Motivation

While DNNs have had a large impact on several different tasks [8, 7, 11, 19, 25], explaining their
predictions is still a challenge and a limitation for those scenarios where predictability is crucial. In
this work, we study the problem of assigning an attribution value, sometimes also called "relevance"
or "contribution", to each input feature of a network. More formally, consider a DNN that takes an
input x = [x1, ..., xN] ∈ RN and produces an output S(x) = [S1(x), ..., SC(x)], where C is the
total number of output neurons. Given a specific target neuron c, the goal of an attribution method is
to determine the attribution Rc = [Rc1, ..., R

c
N] ∈ RN of each input feature xi to the output Sc. For a

classification task, the target neuron of interest is usually the output neuron associated with the correct
class for a given sample. Attributions are often visualized as heatmaps, called attribution maps, where
red and blue colors indicate respectively features that contribute positively to the activation of the
target output and features having a suppressing effect on it (Figures 1-2).

The problem of attribution for deep networks has been tackled in several previous works
[20, 27, 22, 3, 17, 23, 12, 28]. Unfortunately, due to slightly different problem formulations, lack of
compatibility with all different existing DNN architectures and no common benchmark, a compre-
hensive comparison is not available. In this work we prove that ε-LRP [3] and DeepLIFT (Rescale)
[17] can be reformulated as computing backpropagation for a modified gradient function (Section 3).
This allows the construction of a unified framework that comprises several gradient-based attribution
methods and facilitates their implementation. In the last section, we empirically compare several
attribution methods and discuss practical directions for their application.
∗The author contributed to this work while employed at ETH Zurich

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

2 Overview over existing attribution methods

2.1 Perturbation-based methods

Perturbation-based methods directly compute the attribution of an input feature (or set of features)
by removing, masking or altering them, and running a forward pass on the new input, measuring
the difference with the original output. This technique has been applied to Convolutional Neural
Networks (CNNs) in the domain of image classification, visualizing the probability of the correct
class as a function of the position of a grey patch occluding part of the image [27]. While perturbation-
based methods allow a direct estimation of the marginal effect of a feature, they tend to be very slow
as the number of features to test grows (ie. up to hours for a single image [28]). What is more, given
the nonlinear nature of DNNs, the result is strongly influenced by the number of features that are
removed altogether at each iteration (Figure 1).

In the remainder of the paper, we will consider the occluding method by [27] as a comparison
benchmark for perturbation-based methods. We will use this method, referred to as Occlusion-1,
replacing one feature xi at the time with a zero baseline and measuring the effect of this perturbation
on the target output, ie. Sc(x) − Sc(x[xi=0]) where we use x[xi=v] to indicate a sample x ∈ RN
whose i-th component has been replaced with v.

Original (label: "garter snake") Occlusion-1 Occlusion-5x5 Occlusion-10x10 Occlusion-15x15

Figure 1: Attributions generated by occluding portions of the input image with squared grey patches
of different sizes. Notice how the size of the patches influence the result, with focus on the main
subject only when using bigger patches. Best seen in electronic form.

2.2 Backpropagation-based methods

Backpropagation-based methods compute the attributions for all input features in a single forward
and backward pass through the network 2. While these methods are generally faster then perturbation-
based methods, their outcome can hardly be related directly to a variation of the output. Except where
explicitly reported, the mathematical formulation of the method below is reported in Table 1.

Saliency Maps [20] constructs attributions by taking the absolute value of the partial derivative
of the target output Sc with respect to the input features xi. Intuitively, the absolute value of the
gradient indicates those input features (pixels, for image classification) that can be perturbed the least
in order for the target output to change the most, with no regards for the direction of this change.
Nevertheless, Saliency Maps are usually rather noisy [15, 12, 21] and taking the absolute value
prevents the detection of positive and negative evidence that might be present in the input.

Gradient * Input [18] was at first proposed as a technique to improve the sharpness of attribution
maps. The attribution is computed taking the (signed) partial derivatives of the output with respect to
the input and multiplying them feature-wise with the input itself.

Integrated Gradients [23], similarly to Gradient * Input, computes the partial derivatives of the
output with respect to each input feature. However, instead of evaluating the partial derivative at the
provided input x only, it computes its average value while the input varies along a linear path from a
baseline x̄ to x. The baseline is defined by the user and often chosen to be zero.

Layer-wise Relevance Propagation (LRP) [3] is computed with a backward pass on the network.
Let us consider a quantity r(l)

i , called "relevance" of unit i of layer l. The algorithm starts at the output
layer L, assigning the relevance of the target neuron c equal to the activation of the neuron itself, and

2Sometimes several of these steps are necessary, but the number does not depend on the number of input
feature and generally much smaller than for perturbation-based methods

2

the relevance of all other neurons to zero (Equation 1). Then it proceeds layer by layer, redistributing
the prediction scoreSi until the input layer is reached. One recursive rule for the redistribution of
a layer's relevance to the following layer is the� -rule described in Equation 2, where we de�ned
zij = x (l)

i w(l;l +1)
ij to be the weighted activation of a neuroni onto neuronj in the next layer and

bj the additive bias of unitj . A small quantity� is added to the denominator to avoid numerical
instabilities. Once reached the input layer, the �nal attributions are de�ned asRc

i (x) = r (1)
i .

r (L)
i =

�
Si (x) if unit i is the target unit of interest
0 otherwise

(1)

r (l)
i =

X

j

zijP
i 0(zi 0j + bj) + � � sign(

P
i 0(zi 0j + bj))

r (l +1)
j (2)

LRP together with the propagation rule described in Equation 2 is called� -LRP, analyzed in the
remainder of this paper. Alternative stabilizing methods exists [3, 12] but are not considered here.
Additionally, we assume a small and �xed� , with the only purpose of avoiding divisions by zero.

DeepLIFT [17] proceeds in a backward fashion, similarly to LRP. Each uniti is assigned an
attribution that represents the relative effect of the unit activated at the original network inputx
compared to the activation at some reference input�x (Equation 3). Reference values�zij for all hidden
units are determined running a forward pass through the network, using the baseline�x as input, and
recording the activation of each unit. The baseline is a user-de�ned parameter often chosen to be
zero. Equation 4 describes the relevance propagation rule.

r (L)
i =

�
Si (x) � Si (�x) if unit i is the target unit of interest
0 otherwise

(3)

r (l)
i =

X

j

zij � �zijP
i 0 zij �

P
i 0 �zij

r (l +1)
j (4)

In Equation 4,�zij = �x (l)
i w(l;l +1)

ij is weighted activation of a neuroni onto neuronj when the baseline

�x is fed into the network. The attributions at the input layer are de�ned asRc
i (x) = r (1)

i . The rule
here described ("Rescale rule") is used in the original formulation of the method and it is the one we
will analyze in the remainder of the paper. The "Reveal-Cancel" rule [17] is not considered here.

Figure 2: Backpropagation-based attribution methods applied to an Inception V3 network for natural
image classi�cation [24]. All signed methods produce attributions affected by higher local variance
compared to perturbation-based methods (Figure 1). Best seen in electronic form.

Other methods that are designed only for speci�c architectures (ie.Grad-CAM [16] for CNNs)
or activation functions (ie.Deconvolutional Network [27] andGuided Backpropagation[22] for
Recti�ed Linear Units (ReLUs)) are out of the scope of this analysis.

3 A gradient-centric formulation

Saliency Maps, Gradient * Input and Integrated Gradients are, by de�nition, computed as a function
of the partial derivatives of the target output with respect to all input features. In this section, we will
show that� -LRP and DeepLIFT can also be computed by applying the chain rule for gradients, if the
instant gradient at each nonlinearity is replaced with a function that depends on the method.

3

	Introduction and Motivation
	Overview over existing attribution methods
	Perturbation-based methods
	Backpropagation-based methods

	A gradient-centric formulation
	Empirical comparison
	Conclusions
	Experiments setup
	MNIST
	CIFAR-10
	Inception V3
	IMDB

