Authoring Motion Cycles

Loic Ciccone
ETH Zurich

Maurizio Nitti
Disney Research Zurich

Martin Guay
Disney Research Zurich

Robert W. Sumner
ETH Zurich, Disney Research Zurich

Figure 1: Left: To specify a motion cycle, the user acts out several loops of the motion using a variety of capture devices. Middle:
A looping motion cycle is automatically extracted from the noisy performance. Right: A custom motion representation tool,
called MoCurves, allows controlling and coordinating spatial and temporal transformations from a single viewport.

ABSTRACT

Motion cycles play an important role in animation production
and game development. However, creating motion cycles relies
on general-purpose animation packages with complex interfaces
that require expert training. Our work explores the specific chal-
lenges of motion cycle authoring and provides a system simple
enough for novice animators while maintaining the flexibility of
control demanded by experts. Due to their cyclic nature, we show
that performance animation provides a natural interface for mo-
tion cycle specification. Our system allows the user to act several
loops of motion using a variety of capture devices and automat-
ically extracts a looping cycle from this potentially noisy input.
Motion cycles for different character components can be authored
in a layered fashion, or our method supports cycle extraction from
higher-dimensional data for capture devices that deliver many de-
grees of freedom. After capture, a custom curve representation and
manipulation tool allows the user to coordinate and control spa-
tial and temporal transformations from a single viewport. Ground
and other planar contacts are specified with a single sketched line
that adjusts a curve’s position and timing to establish non-slipping

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SCA °17, Los Angeles, CA, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5091-4/17/07...$15.00

DOI: 10.1145/3099564.3099570

contact. We evaluate the effectiveness of our work through tests
with both novice and expert users and show a variety of animated
motion cycles created with our system.

CCS CONCEPTS

« Computing methodologies — Animation; Graphics systems
and interfaces;

KEYWORDS

Motion cycles, Animation interface, Performance, Motion curves

ACM Reference format:

Loic Ciccone, Martin Guay, Maurizio Nitti, and Robert W. Sumner. 2017.
Authoring Motion Cycles. In Proceedings of SCA ’17, Los Angeles, CA, USA,
FJuly 28-30, 2017, 9 pages.

DOI: 10.1145/3099564.3099570

1 INTRODUCTION

Motion cycles play an important role in animation and games. In
animated films and visual effects, artists use walk cycles and other
looping animations during character development to explore a char-
acter’s particular movement style. During production, these cycles
aide the animation workflow by providing a starting point for walk-
ing, running, and other cyclic movements. In games, motion cycles
play an even more prominent role. Motion cycles for locomotion
allow characters to move arbitrarily under the player’s direction.
Punching, kicking, flipping, and countless other cycles are created
to enable game combat. Even idle game characters are animated
with motion cycles for breathing and other subtle movements that
give them life. In fact, motion cycles play such an important role that

SCA’17, July 28-30, 2017, Los Angeles, CA, USA

game engines have specialized animation components designed to
play back and seamlessly blend between different motion cycles.

Although specialized components for using motion cycles are
commonplace, little work has explored the specific challenges of
authoring them. Instead, the authoring process relies on general-
purpose animation packages such as Autodesk Maya, 3ds Max, or
Blender. These packages, by design, accommodate a broad spec-
trum of animation tasks with support for features and workflows
used in animated films, visual effects, and games. This generality
comes at a tremendous cost. The learning curve for any commercial
animation package is steep, and the animation process relies on
complex mechanisms that require expert knowledge to master. As
a consequence, although a motion cycle may only be a few frames
of repeated animation, creating those frames with general-purpose
animation software is difficult, time consuming, and restricted to
expert users.

Our work explores the challenge of motion cycle authoring and
provides a system simple enough for novice animators while main-
taining the flexibility of control demanded by experts. Our method
relies on the core observation that the cyclic nature of motion cycles
makes them especially appropriate for performance animation. Our
system allows the user to act several loops of motion using a vari-
ety of capture devices ranging from the computer mouse to a full
body motion-capture suit. Since these acted cycles will inevitably
contain imprecisions, we propose an optimization algorithm to
analyze and automatically extract a looping cycle from this poten-
tially noisy input. By supporting multidimensional input, cycles
can accommodate an arbitrary number of animation variables. We
then introduce MoCurves, a representation and manipulation tool
for motion cycles that encompasses translation, rotation, scale and
time. MoCurves allow the user to control and coordinate spatial and
temporal transformations from a single viewport. Motion cycles for
different character components can be authored independently in
a layered fashion and synchronized in time using an optimization-
based time-warping function built into the MoCurve interface. Fi-
nally, since contact with the ground or other surfaces is pervasive in
motion cycles yet difficult to precisely control with a performance-
based interface, we support a sketch based contact specification
in which a single sketched contact line induces a spatio-temporal
transformation that respects planar contacts without sliding.

Our work introduces an effective system tailored to motion cy-
cles authoring. Our core technical contributions include a generic
motion cycle extraction algorithm, the MoCurve representation
with support for coordinated spatial and temporal editing, and a
contact specification method that uses a single sketched line to es-
tablish non-slipping planar contacts. We implemented our approach
as an Autodesk Maya plugin that permits motion cycle authoring
independent of Maya’s more complex animation features. We eval-
uated the effectiveness of our work through tests with both novice
and expert users and showed motion cycles created with perfor-
mance input from the mouse, Wacom Cintiq tablet, Leap Motion
hand tracker, HTC Vive, as well as full-body motion capture. All
these elements show that the creation process can be dramatically
simplified using our software, allowing novice animators to author
quality animations in minutes.

L. Ciccone et al.

2 RELATED WORK

Keyframing. consists of specifying poses at specific moments
in time, and manipulating temporal curves that interpolate differ-
ent rig parameters. Despite being the most common approach for
authoring motions, keyframing is challenging as it requires contin-
uously switching between three different interfaces: the viewport
for character posing, the timeline for timing and the graph editor
for manipulating curves. In contrast, our approach merges the dif-
ferent controls into a single curve interface (we call MoCurves) that
allows one to synergistically control both space and time while
remaining in the comfort of a single viewport.

To Pose or to Time? Many works specifically aim to ease the
posing process using 2D stick figures [Choi et al. 2012; Lin et al.
2010; Wei and Chai 2011], lines of action [Guay et al. 2013; Oztireli
et al. 2013] or other sketch-based abstractions [Ciccone et al. 2016;
Hahn et al. 2015] and others focused specifically on improving the
timing process through time warping [Coleman et al. 2008; Hsu
et al. 2007; Witkin and Popovic 1995]. These methods, however,
are only focused on either spatial or temporal editing, and do not
help the coordination process. One way to improve coordination
is through visualization of the motion. Recently, the de facto time-
line visualization has been questioned and enhanced with editable
pose-icons representing the motion over the timeline [Mukai and
Kuriyama 2009] and deformable spatial planes rendered directly
onto the viewport [Yoo et al. 2015]. In our work, the MoCurves
interface allows the visualization of several aspects of the motion
as well as their coordinate manipulation.

Performance animation. As humans have an instinctive sense of
movement and timing, performance animation has been used as a
natural way of specifying motions, either for the full character [Chai
and Hodgins 2005; Igarashi et al. 2005; Kim et al. 2013; Tautges et al.
2011], or through a layered performance type of approach [Choi
et al. 2008; Dontcheva et al. 2003; Jin et al. 2015; Martin and Neff
2012; Neff et al. 2007], with a few works focused on retiming existing
motions using gestures [Terra and Metoyer 2007; Walther-Franks
et al. 2012]. One problem with performance animation is that when
gesturing cyclic motions, users are not accurate enough to perfectly
close the loop. Instead, they must rely on manual tools to extract a
clean loop. In our work, we make the important observation that
performance animation for motion cycles is most natural when the
motion is repeated several times. We then propose an algorithm to
deliver a single closed loop from a sequence of loops performed by
the user.

Cyclification. One core contribution of our work is the auto-
matic cyclification of an acted motion. While some existing re-
search [Ahmed et al. 2003; Mukai 2011; Rose et al. 1996] explores
cyclification, these methods operate under the single-cycle assump-
tion and cannot accommodate cyclification of repeated motions.
They focus on matching boundaries of a single cycle and do not
allow identifying a period in a longer sequence of an imprecisely
repeated motion. In Rose et al. [1996], the user is even asked to man-
ually specify the start and end points of a cycle. In our case, taking
multiple loops as input is a technical challenge as it requires identi-
fying a recurrent pattern over imprecise loops in space and time.
The method in [Silva et al. 1999] can take as input multiple loops,

Authoring Motion Cycles

but can only process 1-dimensional curves. In contrast, we solve
for N dimensions, which allows us to find the best period for the
N-dimensional signal directly. Moreover, similar to their approach,
we experimented with frequency domain decomposition and found
that, for performance animation, the input is considerably noisy in
the temporal dimension (i.e. all acted cycles do not have the same
duration), which prevents us from using frequency analysis such
as Fast Fourier Transform, and led to our feature-based solution.

Gesturing space-time curves. Close to our work is the concept
of gesturing space-time curves for authoring [Guay et al. 2015]
or editing existing motions [Choi et al. 2016]. Guay et al. [2015]
are able to create a full character motion using a single stroke
and refine it using additional types of stroke edits. Unfortunately,
their strokes are designed around specific types of motions such as
bouncing, rolling and waving, and their work only demonstrates
a few simple characters (e.g. no bipeds nor quadrupeds). Choi et
al. [2016] allow editing a wide range of motions using sketches, but
their work is restricted to editing and cannot author new motions.
Using screen-space strokes to define 3D deformations, these two
papers end up with an underconstrained problem and thus need to
make assumptions about the user’s intentions. Our work strives to
give the artist freedom over the animation process with minimal
restrictions. We moreover retain a high degree of genericity so that
motion cycles can be applied to any animation control, such as IK
handles, bone transformations, or even vertices.

Animation tools for casual users. Many works seek to generate
animations through simple interfaces. Motion data can be used to
solve for underconstrained interfaces, such as abstract motion doo-
dles [Thorne et al. 2004] or point trajectories [Jeon et al. 2010; Min
et al. 2009; Yoo et al. 2014]. Another idea is to use simulated mechan-
ics and to parameterize controllers w.r.t. to a direction [Coros et al.
2010; Hodgins et al. 1995; Laszlo et al. 2000; Yin et al. 2007]. By con-
struction, these methods restrict the scope of possible movements
with the range of preexisting motions (often humanoid motion-
capture) or to specific motions such as biped and quadruped loco-
motion. In contrast, our approach provides fine-scale control of the
animation, making it possible to create arbitrary movements for
any type of character.

3 OVERVIEW AND WORKFLOW

Our system is designed to create, represent and manipulate cyclic
animations in a natural way. To create a motion cycle, the user
performs the motion using any capture device, such as a mouse,
Leap Motion, HTC Vive or full body motion capture suit (as shown
in our Results Section 6). Depending on the device being used,
the user may choose to perform the whole character motion or
to animate parts of the character in a layered fashion. Also, since
synchronizing several motions is a crucial element of animation,
we play the animation of all previously created motions while the
user performs for other items (or other transformations of the same
items). For example, one would be able to act out the rotation of a
foot while watching its displacement.

Because users like to author cycles by performing them several
times — each time refining the motion — we begin by extracting

SCA’17, July 28-30, 2017, Los Angeles, CA, USA

a single cyclic curve from the multiple performed cycles. Our so-
lution is formulated as an optimization problem which takes a
repetitive and nearly cyclic motion as input, and outputs a single
clean cyclic motion (Section 4). This optimization is performed in
the N-dimensional space, where N is the number of dimensions
being captured — as shown in our examples, N can vary from 1
or 2 (mouse input, Fig. 8) to a few thousands (physical simulation,
Fig. 10). The cycle extraction may be applied to any degree of free-
dom parameterizing the character’s pose, such as rig controllers,
skeletons, vertices, and any transformation such as translations,
rotations, scales.

To allow the user to directly edit and refine the cyclic motion
from a single viewport, we introduce in Section 5 MoCurves, a
curve editor that combines translations, rotations, scalings and
timing into a single unified geometric interface. We then describe
in Section 5.3 an additional edit to our curves that allows specifying
planar contacts and solving sliding effects with a single stroke.

4 CYCLE SPECIFICATION

In this section we describe how we automatically extract a single
closed cycle from multiple nearly cyclic repetitions. The performed
trajectory is a discrete function p which associates times t; to a
vector of values 0; = (Qil, Biz, QIN). These values can represent
any type of transformation (positions, orientations, scales, a mix of
them, etc.). The performed trajectory p is supposed to be a periodic
movement, but is imperfect in both space — noisy 8; — and time —
noisy t;. Hence our goal is to identify points p; in the nearly cyclic
motion that are geometrically similar across periods. We start by
defining a curve descriptor that allows us to estimate the most
probable value for the period T. We then extract a set of nearly
cyclic curves that we average in order to obtain the shape of the
final signal. We finally stitch the extremities together in order to

obtain a perfectly looping cycle.

L.

b) c) d)

Figure 2: Steps of the cycle extraction algorithm illustrated
on a simple example — only one attribute 6 is animated, so p
is of dimension 2. a) Points with a similar neighboring shape
are identified (red circles) using a new curve descriptor. This
allows to compute the average period of the motion, and to
partition p into several cycles. b) Correspondences between
cycles are computed. c) Each curve is non-uniformly scaled
in order to align the corresponding points. d) These curves
are averaged to form the final cycle.

Curve descriptor. The function p represents an N + 1-dimensional
curve, in which we seek to identify repetitive patterns. To measure

SCA’17, July 28-30, 2017, Los Angeles, CA, USA

the similarity between points in a curve, we devised a descriptor
that characterizes the neighboring shape of a point on a curve.
Our descriptor is similar to the one used by Mori et al. [Mori et al.
2005], which we extend to the n-dimensional case and make variant
to rotations. Hence, we compute two descriptors h; and g; that
respectively measure shape and velocity variations:

207
i ~k / ’ 0 1_9'—1
h;=|...| where h; = Z Gj and Gj = =
Pl li~jl<k EASRNA
L' 1 |
[A07 , ,
9gi 0. -0
A~ 1/ 4 +1 _1
gi=|...| where gf = Z 6; and 0; = t]—tj
g% | li~jl<k T

where we used k = 5, and we then define the similarity between
two points as:

dp(i.j) = ||k = hyll, - lgi - g5, -

Period evaluation. Considering the i-th point of the curve, p;, we
define J; as the set of all indices j that are a local minima of dp (i,),
while remaining under a threshold 7. By construction, J; contains
points that are similar in shape and speed to p;. By conservatively
choosing d}} high enough — thus favoring to select too many rather
than too few points — we ensure that all the points corresponding
to p; in other cycles are present in the set J;. Then, we eliminate
the outliers in J; and divide the period T by computing the minimal
period that satisfies:

. \/ke{[“_ﬂ,...,[t"_t"J},
T=minT st T T

TeN Jj € Jist|tj - (ti + kT)| < mr
Here, the threshold m7 depicts the variation in time of the cycles
in p; we used mr = [T/8], which we found reasonable in prac-
tice for cyclic motions performed by humans. In some particular
cases, often when two parts of the motion are very similar in shape
and velocity, the point i can be badly chosen resulting in an in-
correct period. To eliminate this undesirable case, we perform this
computation for ten random points and select the median period.

Average cycle. Given the set of indices J; cleaned from outliers (i.e.
Ji only contains points corresponding to p; in other cycles), we cut
the curve p at the corresponding points and extract a set of cycles
€1,C25 -5 Cp (Fig. 2a). Similarly to the construction of J;, we measure
the similarity dp over evenly spaced points to find correspondences
between the cycles (Fig. 2b): cl(t{‘) o cz(té‘) oo cp(t;f). We
then non-uniformly scale the cycles such that tf = tj’.< Vi, j, k and
the temporal length of each cycle is T (Fig. 2c). We finally compute
the average cycle ¢ (Fig. 2d) yielding:

P
e(t) = %Zci(t), vt € [0...T]

i=1
The curve ¢ we averaged may contain a discontinuity at its
extremities, i.e. d¢x = ¢(0) — ¢(T) may not be 0. In order to make it
perfectly cyclic, we stitch the curve c as follows:

o(t) = e(t) + (% - %)dex, vt € [0...7]

L. Ciccone et al.

Spline fitting. In order to have a smoother representation of the
motion, as well as a simpler editing, we fit a cubic Bezier curve to
each component of the cycle ¢ — i.e. one for the translations (yp),
one for the rotations (yr) and one for the scales (ys) of each moving
item. Many B-Spline fitting methods already exist; we chose to use
the one implemented in the Autodesk Maya APL

5 MOCURVES

To edit motion cycles in an intuitive manner, we combine spatial and
temporal controls into a single geometric representation that allows
the user to edit both aspects in a single viewport. This is particularly
challenging for time as the user needs to precisely and intuitively
edit temporal constraints using 3D spatial manipulations.

For this purpose, we introduce MoCurves. For each animated
item (i.e. object, rig controller, bone, etc.), we define one MoCurve
that represents its spatial (i.e. translation, rotation and scale) and
temporal transformations. The following subsections describe how
MoCurves allow the visualization and manipulation of diverse as-
pects of the motion, as well as permit the simple editing of planar
contacts and automatic solving of sliding effects. Note that to am-
plify the intuition of movement and timing, we provide the ability to
make all manipulations in real-time, while the animation is played;
a benefit of working with motion cycles is that they seamlessly
loop, so this does not create a visual discomfort.

5.1 Spatial manipulations

As described in Section 4, an item’s position, rotation and scale
over time are described by cubic Bezier splines yp, yr and ys. There
is a direct correspondence between the parametrization of these
curves and the time of the animation (e.g. at time t*, the item is
at position yp(s}’;)). We note ¢p, gg and ¢s the bijective functions
giving t from the parametrization of each curve —i.e. t* = ¢p(sp) =
@R(sy) = @s(sg). This provides a unified correspondence between
all aspects of the motion.

Figure 3: MoCurves allow three types of spatial edition. A 3D
spline with editable control points represents the trajectory
over time (a). Arrows at every time frame represent both the
orientation (b) and scale (c) over time; they are directly ma-
nipulable in the viewport. In red are the regions affected by
the manipulations.

The curve yp is displayed in the viewport in order to represent
the displacement (i.e. translations) over time. The user can directly
edit the trajectory by manipulating control points of yp (Fig. 3a). We
represent the orientation (i.e. rotations) at each time frame by two
orthogonal arrows centered at the corresponding position (Fig. 3b),
and the scaling by the geometry of these same arrows (Fig. 3c).

Authoring Motion Cycles

Thus, by looking at a MoCurve, a user has a clear overview of the
item’s movement.

The orientation and scale of arrows can directly be manipulated
in order to modify the rotations and scales of the curve over time.
The modification of one frame also modifies neighboring ones in
order to smooth the motion, just like the editing of a curve’s control
point affects a certain fraction of the curve. The range 7 of affected
frames (red arrows in Fig. 3) is set by the user. When an attribute
of arrow i is deformed by d0;, we propagate the deformation on
arrows j using a Gaussian radial basis function:

0 = do; - e U Vje{i-ri+r}

5.2 Temporal manipulations

Animators often draw time bars at a constant temporal interval to
convey the timing of a hand-drawn motion. Inspired by this repre-
sentation, we render on top of the Mocurve yp keypoints at each
time frame of the animation. A keypoint can either be represented
by a point or by arrows that also give information about orientation
and scale (see Subsection 5.1). Hence, if keypoints are close to each
other it means that the motion is slow, while if they are very distant
it means that the motion is very fast.

Once again, the visual representation also serves as a manipula-
tion tool: the user can directly edit the position of keypoints in order
to edit the timing of the cycle, as shown in Fig. 4. We formulate the
deformation as shape preserving deformation, similarly to [Kim
et al. 2009], but here applied to the case of periodic curves.

O~ A O=O=Op,

/ ~\ 7
/ \1 / \

/

Figure 4: Two keypoints are moved upwards on the curve,
setting new timing constraints (red points). A smooth time
warping is applied, resulting in a motion that is slower at
the top. Note that the motion is consequently faster on the
rest of the curve in order to conserve the cycle period.

By moving keypoints, the user defines a set of spatial constraints:
yp(s)) = yp(sf), Vi € C. We thus seek a new distribution of key-
points along the curve s* = (sg, ..., s;,;) satisfying s7 = s¢,Vi €
C. This is equivalent to computing a new temporal distribution
£ = (t], ..., ty) satisfying 7 = ¢p(s?), Vi € C. To do so, we solve a
quadratic optimization problem containing four energy terms.

Constraints Ec(t*). We penalize the distance between the con-
strained points and their desired position:

2
Ec(t') =) (tf - op(s?)
ieC
Period ET(t*). A crucial constraint is that cycles must conserve
the period:
Er(t") = (t, — 15 = T)?

SCA’17, July 28-30, 2017, Los Angeles, CA, USA

Velocity Ey (t*). We regularize velocities by penalizing deviations
from the ones on the original curve. In other words, the temporal
spacing between consecutive ¢ should be stable:

m—1

2

Ey(t) = Z ((treq = 1) = (tiy1 = 1))
i=0

Speed variation Eg(t*). The time warping must not introduce
points where the motion is accelerated or decelerated abruptly. That
means that two consecutive segments have to stay close in size:

(t; - t?—l))z

The new time distribution is thus obtained by minimizing the
total energy, while ensuring that ¢* increases:

m-1

Es(t)=) (i —1]) -

i=0

min WlEc(t*) + WZE’[(t*) + W3Ev(t*) + W4E5(t*)
subjectto (t],; —t;) >0, Vie {0,...,m—1}

We solve this constrained quadratic programming problem using
a qp solver, where we choose the weights w; and wy to be 10*
times bigger than w3 and w4 because they act as strong constraints.
Finally, we recover the positions, orientations and scales at each

time step using yp(¢p' (7)), yr(¢g' (t})) and ys(p3' ().

5.3 Contacts

While contacts are present in most cyclic character motions such as
locomotion, they can hardly be acted out accurately as they involve
sharp corners in the trajectory. To edit a MoCurve as to exhibit
sharp corners and straight lines, we introduce a stroke-based editor
that cuts the curve with a straight line. This line, extruded along
the viewing direction, defines a plane on which all points from a
section of the curve are projected (Fig. 5).

i 1 o

Figure 5: The user can draw a line (here in purple) to specify
ground contacts. Portions of the trajectories are then pro-
jected on the contact plane, as shown on the right.

This solves contacts in terms of space, but not in terms of time.
Indeed, two points simultaneously touching the ground can intro-
duce a sliding effect if they are not coordinated. In other words,
we need to ensure that at every frame of the animation, two items
being in contact with the ground have the same velocity — note that
velocities are expressed with respect to the character’s root. The
earlier projection step gives us information about which items are
in contact and at which time. This allows us to construct a graph
of the velocities of items in contact over time, as shown in Fig. 6.
We fit a spline A minimizing the distance to these curves, using a
method similar to Section 4. A defines the desired velocity of all
items in contact with the ground over time.

We now spatially modify the curve yp of each colliding item in
order to satisfy the contact velocity A. First, we transform the part
of yp being in contact, which we define as yg C yp, such that:

s (e Mt +dt) = y5 (7 (1) + A(t) - dt, Vt

SCA’17, July 28-30, 2017, Los Angeles, CA, USA

T

Figure 6: This graph represents the velocity over time of four
items touching the ground (one per color). To unify them,
we fit a spline A (red dashed curve) that averages the contacts
velocity. Note that here we illustrate for only one dimension,
but the velocity is usually 3D.

This may change the length of yg by a scale factor s;. In order
to keep a smooth connection between yg and the rest of the curve,
we also scale yp \ yg by s; in the direction of the contact. Finally, in
order to ensure consistent contacts — i.e. contact points are fixed in
world space — we move the root of the character with the velocity
-A(t) in world space coordinates. This way, by simply specifying a
contact surface, the user is able to make a character move inside
the environment in a consistent way, without sliding effect.

6 RESULTS

We apply our system to four different characters with diverse shapes
and rig complexities. In this section, we present a number of com-
pelling motion cycles that both novice and expert users were able to
author using a variety of input devices. Table 1 gives statistics about
the number of elements and transformations that were animated
in each case — note that diverse full-body motion capture suits
were used for the Mocap motions of Fig. 9, which is why the num-
bers vary at the bottom of the table. All the resulting animations,
as well as some steps of the authoring process, are shown in the
accompanying video.

Motion cycle Figure Anim. elem. | Anim. transf.
Dinosaur walk | 7 (a) 13 39
Human punch | 7 (b) 5 8
Robot swim 7 (c) 8 23
Human dance 7 (d) 12 33
Dinosaur dance | 7 (e) 18 49
Dragon eat 8 (left) 10 29
Dragon fly 8 (middle) 35 51
Human juggle | 8 (right) 16 52
Dinosaur leap 9 (left) 11 21
Human kick 9 (middle) 11 30
Mocap punch 9 (right) 21 126
Mocap walk 9 (right) 60 253
Mocap samba 9 (right) 52 159

Table 1: For each motion cycle presented in the Results sec-
tion, this table gives the number of elements (i.e. rig con-
trollers or skeleton joints) and the number of transforma-
tions (i.e. translations, rotations, scales) that were animated.

To evaluate the accessibility of our system, we invited five novice
users, who never animated any character before, and gave them a
limit of one hour to author a motion cycle using our tool. The result-
ing animations, presented in Fig. 7 and in the accompanying video,

L. Ciccone et al.

are particularly convincing considering the inexperience of the cre-
ators. This study was also a social success as users were enchanted
to be able to animate a character, several of them concluding: “this
was the most enjoyable user study of my life”. For comparison, we
also asked two of these novice users to create a similar motion
cycle using Autodesk Maya, without our plugin. After one hour of
struggle (which was their time limit), no exploitable content was
created. This result confirms our belief that general purpose ani-
mation packages such as Maya require significant training before
even simple animations can be created.

Additionally, our tool was used by a professional artist in order to
evaluate how well our system is integrable into an expert’s pipeline.
The artist used a Wacom pen and tablet and authored the three
motion cycles presented in Fig. 8: the eating dragon was animated
in approximately 20 minutes, the flying dragon in approximately 15
minutes and the juggling human in approximately 35 minutes. The
last example exhibits how much our system enables a fine control
over the spatial and temporal aspects of the motion, allowing the
composition of complex synchronizations. As a feedback, the artist
shared how delighted he was to be able to directly perform the
motion he had in mind without having to be super precise, and how
important the MoCurves were in order to maintain a full control
over the final result. He claimed that this is a tool he would like to
use regularly for the motion cycles he needs to create.

A large variety of devices can be used to practice performance
animation: these range from a computer mouse to full body motion-
capture suits and include Leap Motion, Kinect [Wang et al. 2012],
tactile surfaces [Chung et al. 2015; Lockwood and Singh 2012]
and other dedicated devices [Glauser et al. 2016; Oore et al. 2002;
Shiratori et al. 2013; Slyper and Hodgins 2008]. Our method is
generic enough to work with any type and dimensionality of data
as input. Most of our results were generated using the most familiar
devices — a mouse or a digital pen — but we also demonstrate in
Fig. 9 and in the accompanying video proper functioning with Leap
Motion, HTC Vive and full body motion-capture suits.

In terms of performances, the system is responsive enough to per-
mit an interactive utilization. The cycle extraction algorithm takes
less than one second to be executed, even in high-dimensional cases
(such as motion-capture, Fig. 9) where the curve being analyzed
can have several hundreds of dimensions. As for the MoCurves ma-
nipulations, as specified in Section 5, they are executed in real-time,
while the animation is being played.

7 LIMITATIONS AND FUTURE WORK

When extracting a cycle from a performed motion, our algorithm
requires rough consistency in the input cycles, both in shape (same
overall displacement) and timing (cycles of similar duration). If the
recorded performance cycles vary widely, the algorithm will fail to
find a period or the extracted loop will be of poor quality. However,
in our experiments, even inexperienced users were able to perform
loops consistent enough to deliver quality results.

MoCurves allow the visualization and editing of the most widely
used attributes in animation. However, artists sometimes customize
their rigs with additional attributes, such as roll and lean for a foot.
In our results, we supplanted them with the translation or rotation
of additional rig elements, but it would be interesting to explore

Authoring Motion Cycles SCA’17, July 28-30, 2017, Los Angeles, CA, USA

N
)\

¥

Figure 7: Five novice users, who never created a character animation before, used our system. In less than one hour, they were
respectively able to create these motion cycles. From left to right: a walk, a punch, a swim and two dance cycles.

E il)

Figure 8: A professional artist used our system to author these three motion cycles. From left to right: a dragon eating, a dragon
flying and a human juggling a ball. They were respectively created in about 20 minutes, 15 minutes and 35 minutes.

Figure 9: Our system supports a variety of performance capture devices. Here we show a jump cycle created using the Leap Mo-
tion hand tracker (left), a kick cycle created using the HTC Vive (middle), and a punch, a walk and a samba cycles created using
a full body motion-capture suit (right). In these last examples, the overlapped blue and yellow mannequins show the spatial
difference of cycles in the imperfect performed motion, while the green mannequin shows the looping cycle extracted by our
algorithm. Note that in each case, we solve for a single multidimensional curve representing the whole motion (dimension
127 for the punch cycle, 254 for the walk cycle and 160 for the samba cycle).

Frame O Frame T Frame 2T Frames 0 & T Frame O Frame T Frames O & T

Figure 10: Handles of these two physics simulations (i.e. translating top of cloth and rotating basis of hair) move periodically.
Though, the simulated motions are not periodic, as shown in red with frames spaced by the period T. Our algorithm extracts
looping motions, in green, from these simulations. The dimensionality of the cyclified curves is respectively 7804 and 2611.

SCA’17, July 28-30, 2017, Los Angeles, CA, USA

mechanisms that would enhance MoCurves for the representation
and manipulation of supplementary attributes. As well, we provide
a way to easily edit planar contacts, but the intuitive authoring of
more complex interactions, such as non-planar or dynamic contacts,
remains an open and challenging problem.

Our algorithm can find cycles even in structured physical sim-
ulations such as cloth, as shown in Fig. 10. However, it does not
conserve the physical correctness of the original simulation. In the
future, we would like to integrate mechanical constraints into our
algorithm in order to create physically-accurate cyclic simulations.

8 CONCLUSION

In this work, we introduced an authoring tool tailored to cyclic
motion design. Our tool enables a user to repeatedly act out a
periodic movement and automatically extract a single closed cyclic
motion. In order to conserve a fine level of control required by
artists, we then introduced MoCurves, a curve editor that combines
both space and time into a single geometric entity that allows
coordinated editing in a single viewport. By removing a thick layer
of expert knowledge required by general purpose animation tools,
we allowed both professional artists and novice users to create
compelling animations.

ACKNOWLEDGEMENTS

This project has received funding from the European

@8 Union’s Horizon 2020 research and innovation program
under the Marie Sklodowska-Curie grant agreement No 642841. We
would like to thank the participants of our user study for their time
and the fruitfull disussions.

REFERENCES

Amr Ahmed, Farzin Mokhtarian, and Adrian Hilton. 2003. Cyclification of Human
Motion for Animation Synthesis. In Eurographics 2003 - Short Presentations.

Jinxiang Chai and Jessica K. Hodgins. 2005. Performance Animation from Low-
dimensional Control Signals. ACM Trans. Graph. 24, 3 (2005), 686-696.

Byungkuk Choi, Roger Blanco i Ribera, J. P. Lewis, Yeongho Seol, Seokpyo Hong,
Haegwang Eom, Sunjin Jung, and Junyong Noh. 2016. SketchiMo: Sketch-based
Motion Editing for Articulated Characters. ACM Trans. Graph. 35, 4 (2016), 146:1—
146:12.

Byungkuk Choi, Mi You, and Junyong Noh. 2008. Extended Spatial Keyframing for
Complex Character Animation. Comput. Animat. Virtual Worlds 19, 3-4 (2008),
175-188.

M. G. Choi, K. Yang, T. Igarashi, J. Mitani, and J. Lee. 2012. Retrieval and Visualization
of Human Motion Data via Stick Figures. Comput. Graph. Forum 31, 7pt1 (2012),
2057-2065.

Se-Joon Chung, Junggon Kim, Shangchen Han, and Nancy S. Pollard. 2015. Quadratic
Encoding for Hand Pose Reconstruction from Multi-Touch Input. In EG 2015 - Short
Papers.

Loic Ciccone, Martin Guay, and Robert W. Sumner. 2016. Flow Curves: an Intuitive
Interface for Coherent Scene Deformation. Computer Graphics Forum 35, 7 (2016),
247-256.

Patrick Coleman, Jacobo Bibliowicz, Karan Singh, and Michael Gleicher. 2008. Stag-
gered Poses: A Character Motion Representation for Detail-preserving Editing of
Pose and Coordinated Timing. In Proc. of the 2008 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. 137-146.

Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. 2010. Generalized Biped
Walking Control. ACM Trans. Graph. 29, 4 (2010), Article 130.

Sean Curtis, Ming C. Lin, and Dinesh Manocha. 2011. Walk This Way: A Lightweight,
Data-Driven Walking Synthesis Algorithm. In MIG.

Mira Dontcheva, Gary Yngve, and Zoran Popovi¢. 2003. Layered Acting for Character
Animation. ACM Trans. Graph. 22, 3 (2003), 409-416.

Oliver Glauser, Wan-Chun Ma, Daniele Panozzo, Alec Jacobson, Otmar Hilliges, and
Olga Sorkine-Hornung. 2016. Rig Animation with a Tangible and Modular Input
Device. ACM Trans. Graph. 35, 4 (2016).

L. Ciccone et al.

Martin Guay, Marie-Paule Cani, and Rémi Ronfard. 2013. The Line of Action: An
Intuitive Interface for Expressive Character Posing. ACM Trans. Graph. 32, 6 (2013),
205:1-205:8.

Martin Guay, Rémi Ronfard, Michael Gleicher, and Marie-Paule Cani. 2015. Space-time
Sketching of Character Animation. ACM Trans. Graph. 34, 4 (2015), 118:1-118:10.

Fabian Hahn, Frederik Mutzel, Stelian Coros, Bernhard Thomaszewski, Maurizio Nitti,
Markus Gross, and Robert W. Sumner. 2015. Sketch Abstractions for Character
Posing. In Proc. of the 14th ACM SIGGRAPH / Eurographics Symposium on Computer
Animation. 185-191.

Jessica K. Hodgins, Wayne L. Wooten, David C. Brogan, and James F. O’Brien. 1995.
Animating Human Athletics. In Proc. of the 22Nd Annual Conference on Computer
Graphics and Interactive Techniques. 71-78.

Eugene Hsu, Marco da Silva, and Jovan Popovi¢. 2007. Guided Time Warping for
Motion Editing. In Proc. of the 2007 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation. 45-52.

Takeo Igarashi, Tomer Moscovich, and John F. Hughes. 2005. Spatial Keyframing for
Performance-driven Animation. In Proc. of the 2005 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. 107-115.

Jaewoong Jeon, Hyunho Jang, Soon-Bum Lim, and Yoon-Chul Choy. 2010. A sketch
interface to empower novices to create 3D animations. Computer Animation and
Virtual Worlds 21, 3-4 (2010), 423-432.

Ming Jin, Dan Gopstein, Yotam Gingold, and Andrew Nealen. 2015. AniMesh: In-
terleaved Animation, Modeling, and Editing. ACM Trans. Graph. 34, 6 (2015),
207:1-207:8.

Jongmin Kim, Yeongho Seol, and Jehee Lee. 2013. Human motion reconstruction from
sparse 3D motion sensors using kernel CCA-based regression. Computer Animation
and Virtual Worlds 24, 6 (2013), 565-576.

Manmyung Kim, Kyunglyul Hyun, Jongmin Kim, and Jehee Lee. 2009. Synchronized
Multi-character Motion Editing. In ACM SIGGRAPH 2009 Papers. 79:1-79:9.

Joseph Laszlo, Michiel van de Panne, and Eugene Fiume. 2000. Interactive Control for
Physically-based Animation. In Proc. of the 27th Annual Conference on Computer
Graphics and Interactive Techniques. 201-208.

Jehee Lee, Jinxiang Chai, Paul S. A. Reitsma, Jessica K. Hodgins, and Nancy S. Pollard.
2002. Interactive Control of Avatars Animated with Human Motion Data. In Proc.
of the 29th Annual Conference on Computer Graphics and Interactive Techniques.
491-500.

Juncong Lin, Takeo Igarashi, Jun Mitani, and Greg Saul. 2010. A Sketching Interface
for Sitting-pose Design. In Proc. of the Seventh Sketch-Based Interfaces and Modeling
Symposium. 111-118.

Huajun Liu, Xiaolin Wei, Jinxiang Chai, Inwoo Ha, and Taehyun Rhee. 2011. Realtime
Human Motion Control with a Small Number of Inertial Sensors. In Symposium on
Interactive 3D Graphics and Games. 133-140.

Noah Lockwood and Karan Singh. 2011. Biomechanically-inspired Motion Path Edit-
ing. In Proc. of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. 267-276.

Noah Lockwood and Karan Singh. 2012. Finger Walking: Motion Editing with Contact-
based Hand Performance. In Proc. of the ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. 43-52.

Tyler Martin and Michael Neff. 2012. Interactive Quadruped Animation. In MIG.

Jianyuan Min, Yen-Lin Chen, and Jinxiang Chai. 2009. Interactive Generation of
Human Animation with Deformable Motion Models. ACM Trans. Graph. 29, 1
(2009), 9:1-9:12.

Greg Mori, Serge Belongie, and Jitendra Malik. 2005. Efficient Shape Matching Using
Shape Contexts. IEEE Trans. Pattern Anal. Mach. Intell. 27, 11 (2005), 1832-1837.

Tomohiko Mukai. 2011. Motion Rings for Interactive Gait Synthesis. In Symposium on
Interactive 3D Graphics and Games. 125-132.

Tomohiko Mukai and Shigeru Kuriyama. 2009. Pose-timeline for Propagating Motion
Edits. In Proc. of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. 113-122.

Michael Neff, Irene Albrecht, and Hans-Peter Seidel. 2007. Layered Performance
Animation with Correlation Maps. Comput. Graph. Forum 26 (2007), 675-684.
Sageev Oore, Demetri Terzopoulos, and Geoffrey Hinton. 2002. A Desktop Input
Device and Interface for Interactive 3D Character Animation. In In Proc. Graphics

Interface. 133-140.

A. Cengiz Oztireli, Ilya Baran, Tiberiu Popa, Boris Dalstein, Robert W. Sumner, and
Markus Gross. 2013. Differential Blending for Expressive Sketch-based Posing. In
Proc. of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
155-164.

Charles Rose, Brian Guenter, Bobby Bodenheimer, and Michael F. Cohen. 1996. Efficient
Generation of Motion Transitions Using Spacetime Constraints. In Proceedings of the
23rd Annual Conference on Computer Graphics and Interactive Techniques. 147-154.

Takaaki Shiratori, Moshe Mahler, Warren Trezevant, and Jessica K. Hodgins. 2013.
Expressing animated performances through puppeteering. In 2013 IEEE Symposium
on 3D User Interfaces (3DUI). 59-66.

Fernando Wagner da Silva, Luiz Velho, Jonas Gomes, and Siome Goldenstein. 1999.
Motion Cyclification by Time x Frequency Warping. In Proceedings of the XII
Brazilian Symposium on Computer Graphics and Image Processing. 49-.

Authoring Motion Cycles

Ronit Slyper and Jessica K. Hodgins. 2008. Action Capture with Accelerometers. In
Proc. of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
193-199.

Jochen Tautges, Arno Zinke, Bjorn Kriiger, Jan Baumann, Andreas Weber, Thomas
Helten, Meinard Miiller, Hans-Peter Seidel, and Bernd Eberhardt. 2011. Motion
Reconstruction Using Sparse Accelerometer Data. ACM Trans. Graph. 30, 3 (2011),
18:1-18:12.

Silvio César Lizana Terra and Ronald Anthony Metoyer. 2007. A performance-based
technique for timing keyframe animations. Graphical Models 69, 2 (2007), 89-105.

Matthew Thorne, David Burke, and Michiel van de Panne. 2004. Motion Doodles: An
Interface for Sketching Character Motion. In ACM SIGGRAPH 2004 Papers. 424-431.

Benjamin Walther-Franks, Marc Herrlich, Thorsten Karrer, Moritz Wittenhagen,
Roland Schréder-Kroll, Rainer Malaka, and Jan Borchers. 2012. Dragimation: Di-
rect Manipulation Keyframe Timing for Performance-based Animation. In Proc. of
Graphics Interface 2012. 101-108.

Xin Wang, Qing Ma, and Wanliang Wang. 2012. Kinect driven 3D character animation
using semantical skeleton. In 2012 IEEE 2nd International Conference on Cloud
Computing and Intelligence Systems, Vol. 01. 159-163.

Xiaolin Wei and Jinxiang Chai. 2011. Intuitive Interactive Human-Character Posing
with Millions of Example Poses. IEEE Comput. Graph. Appl. 31, 4 (2011), 78-88.
Andrew Witkin and Zoran Popovic. 1995. Motion Warping. In Proc. of the 22Nd Annual

Conference on Computer Graphics and Interactive Techniques. 105-108.

KangKang Yin, Kevin Loken, and Michiel van de Panne. 2007. SIMBICON: Simple
Biped Locomotion Control. In ACM SIGGRAPH 2007 Papers.

Innfarn Yoo, Michel Abdul Massih, Illia Ziamtsov, Raymond Hassan, and Bedrich Benes.
2015. Motion Retiming by Using Bilateral Time Control Surfaces. Comput. Graph.
47, C (2015), 59-67.

Innfarn Yoo, Juraj Vanek, Maria Nizovtseva, Nicoletta Adamo-Villani, and Bedrich
Benes. 2014. Sketching Human Character Animations by Composing Sequences
from Large Motion Database. Vis. Comput. 30, 2 (2014), 213-227.

SCA’17, July 28-30, 2017, Los Angeles, CA, USA

	Abstract
	1 Introduction
	2 Related Work
	3 Overview and Workflow
	4 Cycle Specification
	5 MoCurves
	5.1 Spatial manipulations
	5.2 Temporal manipulations
	5.3 Contacts

	6 Results
	7 Limitations and Future Work
	8 Conclusion
	References

