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1. Supplementary

In this supplementary material, we first give some fur-
ther insights on the parametric space and the components
contributing to the final error. Then, we demonstrate further
experiments on noise added to the silhouette, poses, com-
parisons to CCA applied to the network features and more
applications of the HKS − Net architecture (1) from the
paper. To complete, we show failure cases, estimated mesh
overlays over the input images for our method, and we also
visually compare to the method from Bogo et al. [1].

1.1. Parametric space and final error components

We chose to use 20 PCA components to generate the
shape space for fairness to methods we compare to [2, 3],
that utilize the same number of components, and also be-
cause it was enough to capture 95% of the energy and avoid
low-variance datasets. Starting from the original meshes
and others spanning such a space, we learn a 4000 di-
mensional internal representation space, extracted from the
HKS features and used to decode mesh vertices directly.
Despite the fact that the embedding space is of higher di-
mensionality than the 20 parameters used in the previous
works, we believe that it’s higher accuracy stems from com-
pact pose-invariant features, needed here to learn non-linear
mappings to higher dimensional mesh vertex spaces. This is
a better learned representation than just pure PCA applied
on the triangle deformations. Furthermore, our method is
also faster than the other methods for the same input and
output resolution. This is one factor that contributes to the
final error estimation, and also demonstrated e.g. in Tab.2
from the paper, when we compare SF−1 to HS−Net−1S.
Another factor that plays an important role is the mapping
from silhouette images to the embedding space. We demon-
strate the decrease in error as the number of view/modes is
increased during training, but remains uni-modal at testing,
utilizing our novel CMNN network (e.g. Tab.2 from the pa-
per, SF − 1 vs SFS − 1). If we consider the influence of
the input image resolution, we believe that it does not play
a role in comparison to the previous works, as we used the

same input image size as in [3], which is half of the resolu-
tion used in [2]. Last but not least, the combination of the
above two factors through joint training also helps decreas-
ing the errors, as we show in Tab.1 SFUS−HKS−1 from
the paper.

1.2. Noise

An important evaluation factor for real world systems is
robustness to noise. Although for our target applications
this is less of a concern, in general this is important. Hence,
we generate noisy silhouettes by non-uniformly eroding or
dilating the silhouette at the border, with filters of various
radii (we consider 1,3,5,7 and 9 pixels). An illustration of
such noise applied to the same silhouette for the various
radii is depicted in Fig.1. The mean error obtained over
all the body measurements when noise is applied to every
input test silhouette for the SF − 1 network, is shown in
Fig.2 (top line), computed as the difference from the clean
silhouette errors. As it can be observed, the increase in error
for reasonable noise radius is small, and even for highest
noise radius, the maximum error is below 2 cm.

Missing Limb. In addition, we perform a further ex-
periment, where silhouette noise is understood as a missing
limb part, which could represent difficulties in silhouette

Measurements SFS-1 SF-1-CCA SFUS-1 SFUS-1-SH

A. Head circumference 3.7±2.9 4.3±3.5 3.9±2.9 4.2±3.4
B. Neck circumference 2.3±1.8 2.8±2.1 2.2±1.7 2.2±1.9
C. Shoulder-blade/crotch length 5.3±4.2 7.2±5.5 5.4±4.1 5.8±4.5
D. Chest circumference 5.9±4.9 7.8±6.9 5.8±4.8 6.6±5.5
E. Waist circumference 7.5±5.9 9.2±7.2 7.5±5.7 8.5±6.6
F. Pelvis circumference 8.4±6.7 9.7±8.1 8.1±6.5 8.6±7.1
G. Wrist circumference 1.9±1.6 3.1±2.1 1.9±1.6 2.1±1.7
H. Bicep circumference 2.9±2.4 4.2±3.4 2.9±2.5 3.3±2.6
I. Forearm circumference 3.1±2.3 3.3±2.6 2.9±2.3 3.2±2.5
J. Arm length 3.3±2.5 4.5±3.6 3.2±2.5 3.5±2.9
K. Inside leg length 6.2±4.8 7.4±6.0 5.7±4.5 6.2±5.1
L. Thigh circumference 5.8±4.9 7.1±5.9 5.8±4.8 6.2±5.3
M. Calf circumference 3.3±2.7 4.3±3.6 3.5±2.8 3.9±3.3
N. Ankle circumference 1.9±1.5 2.1±1.6 2.1±1.5 2.3±1.7
O. Overall height 11.2±8.6 14.1±11.1 10.4±8.1 11.9±9.5
P. Shoulder breadth 2.2±1.2 2.6±2.1 2.1±1.7 2.2±1.9

Table 1. Body measurement errors comparison over various exper-
iments considered in the supplementary and results from the paper.
Errors are expressed as Mean±Std. Dev in millimeters.
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Figure 1. 5 silhouettes representing the same person with noise applied to them. Noise parameters (radii) considered 1,3,5,7 and 9 pixels.
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Figure 2. Error plots for the increase in the mean errors as com-
pared to the silhouettes without noise. The top line (SF − 1)
demonstrates the errors when training is performed on clean sil-
houettes and testing on noisy ones. On the other hand, the bottom
line (SF − 1−Noise) demonstrates the errors when noise is in-
flicted into the training data. The mean errors are computed over
all body measurements. The noise parameter (radii) varies from 1
to 9 pixels.

extraction over various body parts, due to motion blur, oc-
clusion or similar foreground-background color (e.g. when
a person stays in front of a wall or uniform background
colour, quite often the feet project onto the floor/pavement
which could be of the same color as the shoes, e.g. Fig.3
from the paper). For this, we evaluate the SF − 1 on test
data of the form depicted in Fig.3, where a limb part is miss-
ing. We observe a little increase of 3.77 mm in the overall
mean error, as compared to SF − 1 evaluated on the com-
plete silhouettes. This could be due to the human body prior
and its symmetric properties.

Train with Noise. Lastly, we perform an experiment,
where instead of only testing with noisy silhouettes, we also
train with noisy ones. For this experiment the amount of
training data grows linearly with the amount of noise radii
we consider. Once again the network trained is similar to
SF − 1, and we call it SF − 1−Noise. Evaluating on the
same test silhouettes as the first noise experiment, we ob-
serve a decrease in the mean error, as shown in Fig.2 (bot-
tom line), which shows that adding perturbations and noise
to the training data makes the method more robust to it.

Figure 3. Visualization of the input silhouettes when a limb part is
missing.

1.3. CCA

In the paper, we demonstrated that cross-correlating fea-
tures during training time at later stages, by sharing weights
in fully connected layers, improved predictions for our
test samples. One main advantage of cross-view learning
through neural networks is that the training data does not
need to be stored in memory and especially, one can add as
many views as desired, as compared to CCA [4] that has
been practically shown for two views only. Nevertheless,
for fairness also to the method from [3], we compare to a
version of our network that utilizes CCA for correlation,
and only considers two views (the front and side silhouette
scaled and in a neutral pose). The training goes as follows
: 1. We first train two networks separately, one for the front
SF − 1 and one for the side SS − 1 to map view specific
silhouettes to the embedding space. This is utilized to learn
view specific features directly from the network (as opposed
to [3] that extract handcrafted features); 2. Then, we extract
8064 features from the last convolutional layer over each
view, for all of our training data, and since the dimension-
ality is quite high, similar to [3], we apply dimensionality
reduction through PCA up to 500 dimensions that capture
most of the energy. Starting from these 500 dimensional
vectors we apply CCA, to find linear projection bases where
the correlation of the projected features is maximized; 3. In
the end, we train a smaller network of three fully connected
layers SF −1−CCA, to map from the 500 CCA projected



Figure 6. Illustration of people in various poses considered
throughout our experiments.

features of the frontal view only (the desired one) to the em-
bedding space. At test time, a new frontal view silhouette
is first input to SF − 1 that performs a forward pass to ex-
tract 8064 features, which are then projected onto PCA and
CCA. The projection is mapped through SF − 1−CCA to
the embedding space, which in turn reconstructs the mesh
with the help of the HKS − Net. We demonstrate the re-
sults of this procedure for the same synthetic meshes and
we compare to our cross-modal training over two views
SFS − 1 in Tab.1. It can be noticed that our method out-
performs the CCA based one. The latter still performs well,
however on the expense of added memory footprint and un-
scalability to more than two views. Furthermore, it is not
trivial to train the network end-to-end without splitting it
into various components. And lastly, we think that most
of the learning is due to the non-linear mapping performed
from SF−1−CCA, rather than from the linear CCA map-
ping.

1.4. Late Sharing

We perform a further experiment, to demonstrate the
need of sharing weights at later stages in the network for the
cross-modal training, as opposed to sharing at earlier stages.
The motivation behind late sharing was that we first wanted
to let the network separately figure out the appropriate fil-
ters to apply to the various views, and then combine higher
level and more meaningful features through shared fully
connected layers. To demonstrate this, we train a network
considering three views, similar to SFUS−1, however here
the weight sharing starts from the first convolutional layers,
all the way to the end, which we call SFUS−1−SH . The
evaluations of this network for the same synthetic data, with
frontal scaled silhouettes as input, are depicted in Tab.1.
It can be seen that the results are worse than SFUS − 1,
demonstrating the need for late sharing.

1.5. Convolutional Filters

For illustrative purposes, we also demonstrate the fil-
ter responses of one of the last convolutional layers for
SF − 1 − P when the input silhouette is of a person in
three various poses (Fig.4). A more detailed version of the

Figure 7. Mesh reconstruction (right) when a partial mesh (left) is
input into the HKS −Net.

single view architecture is depicted in Fig.5. The network
internally learns to distinguish between various body parts
(e.g. limbs), as similar looking filters are applied to the
same parts (e.g. hands), even though the poses vary. An
illustrative figure of the various poses we consider in the
paper and here is depicted in Fig.6.

1.6. Experiments on HKS-Net

Despite our intention in this paper to demonstrate accu-
rate estimation of human body shapes from silhouettes, here
we present some further experiments that show some of the
nice properties of the HKS −Net. We demonstrate visual
results of the reconstructions as well as mean errors com-
puted over all the body measurements. For each input mesh
we first compute the HKS descriptor. That is then fed into
the HKS−Net to reconstruct the final mesh. For the quan-
titative results, we compute the difference of errors for each
measurement, obtained for each of the experiments that we
consider (which modify the original mesh), from the errors
obtained when the original meshes in neutral pose are input
to the HKS −Net.

Partial Mesh. First, we assume the mesh in a neutral
pose comes with missing parts (limbs etc.). We remove the
left hand over all the test meshes. The qualitative recon-
structions are depicted in Fig.7. The mean overall added
error is 6.72 mm. We can observe that the network has re-
constructive abilities despite missing extremities.

Posed Mesh. Secondly, we test over meshes coming in



Figure 4. Visualization of filter responses on the last convolutional layers of SF −1−P . The same person in three various poses is shown.

Figure 5. Network architecture for a single view case trained with SF − 1−P architecture from the paper. For other types of inputs, such
as side view etc., the architecture is the same.

poses obtained from Linear Blend Skinning (LBS) and dif-
ferent from the neutral one. This experiment is important
for applications where the computation of a neutral pose
of a given posed-mesh is needed. This would allow for
mesh alignment, matching as well as consistent measure-
ment computations. Some qualitative reconstructions are
depicted in Fig.8. The mean overall added error is 3.72
mm. This almost implies invariance to isometric deforma-
tions, however due to LBS artefacts the errors increase a bit
as opposed to the neutral pose reconstruction.

Noisy Mesh. Lastly, we evaluate robustness to mesh
noise for the HKS − Net. For this we apply random ver-
tex displacements to the original ground truth meshes. The
qualitative reconstructions are depicted in Fig.9. The mean
overall added error is almost negligible, 0.2 mm, which im-
plies robustness to mesh noise.

1.7. Failure Cases

One typical example of a failure case is that of a single
view ambiguity, e.g. Fig.10 (bottom), where we show a
synthetic mesh of a man with pot belly that is not captured
from the frontal silhouette, hence the reconstruction (on the
right) tries to best explain it. Other examples are bodies that
do not reside in the shape space from which we generate the
data, e.g. the muscular male in Fig.10 (top).

1.8. Mesh Overlaps

We show the estimated meshes (third column in gray),
utilizing our method SF−1−P from the paper, for three in-
put photos from Dibra et al. [3] (same individuals as in Fig.3
from the paper) along with the estimated meshes (last col-
umn in pink) from the method of Bogo et al. [1], in Fig.11.
We also show the meshes estimated with our method and
that from [1] overlayed on the input images, in Fig.12 and
Fig.13 respectively, in order to emphasize the differences in
estimations from both methods. It can be noticed that our



Figure 8. Mesh reconstruction (right) when a posed mesh (left) is
input into the HKS −Net.

Figure 9. Mesh reconstruction (right) when a noisy mesh (left) is
input into the HKS −Net.

method gives more accurate estimations for these individu-
als, with a tendency of the method from [1] to overestimate,
also visible by the difference in silhouette projection, es-

Figure 10. Examples of two failure cases.

Figure 11. Results for predictions on the test images from Dibra
et al. [3]. From left to right: the input image in a rest pose, the
corresponding silhouette, the estimated mesh by our method SF−
1− P , and by the method of Bogo et al. [1].

pecially on the torso and around the waste in Fig.13. Addi-
tionally, in Fig.12 we show the overlay on the scanned mesh
of another individual from the testing dataset. Please note
that we did not apply linear blend skinning to change the
neutral pose to fit perfectly the input silhouette, in order to



Figure 12. Estimated overlayed meshes utilizing our method over-
layed on the input images or scans (bottom-right).

enhance the fact that for the application of automatic body
measurement a fixed pose is not needed. The method from
Bogo et al.[1] on the other hand attempts to more accurately
estimate the 3D body pose, which is also the main purpose
of their work.
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