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Figure 1: Our method splits the previous opacity optimization technique [GRT13, GSM∗14] into two smaller problems, which accelerates
the optimization and allows us to combine different geometry types (points, lines and surfaces) in a single unified framework. Compared to
previous work our method is completely GPU-based, runs the optimization per pixel, and has view-independent parameters. Left: atmospheric
trace gas pathways in an air flow provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) and right: streamlines
and rain clouds (isosurfaces) at the boundary between troposphere and stratosphere in the cloud-topped boundary layer (CTBL) flow.

Abstract
Displaying geometry in flow visualization is often accompanied by occlusion problems, making it difficult to perceive information
that is relevant in the respective application. In a recent technique, named opacity optimization, the balance of occlusion
avoidance and the selection of meaningful geometry was recognized to be a view-dependent, global optimization problem.
The method solves a bounded-variable least-squares problem, which minimizes energy terms for the reduction of occlusion,
background clutter, adding smoothness and regularization. The original technique operates on an object-space discretization
and was shown for line and surface geometry. Recently, it has been extended to volumes, where it was solved locally per ray by
dropping the smoothness energy term and replacing it by pre-filtering the importance measure. In this paper, we pick up the
idea of splitting the opacity optimization problem into two smaller problems. The first problem is a minimization with analytic
solution, and the second problem is a smoothing of the obtained minimizer in object-space. Thereby, the minimization problem
can be solved locally per pixel, making it possible to combine all geometry types (points, lines and surfaces) consistently in a
single optimization framework. We call this decoupled opacity optimization and apply it to a number of steady 3D vector fields.

This is the authors preprint. The definitive version is available at http://diglib.eg.org/ and http://onlinelibrary.wiley.com/.

1. Introduction

Geometry-based techniques, such as points, lines and surfaces
have found great acceptance in the scientific visualization com-
munity [MLP∗10, ELC∗12a] across all major application areas. An
inherent problem of geometry-based techniques in 3D however is
that they can suffer severely from occlusion problems. That is, rel-
evant data might be hidden behind rather unimportant geometry,

cluttering up the viewport. The notion of relevance is thereby highly
application-dependent, and is therefore modeled as a user parameter.
A central goal of effective visualizations is to strive for a balance be-
tween the avoidance of occlusion and the representation of relevant
information. To this end, Günther et al. [GRT13] proposed opacity
optimization for line data, which was later extended to animated
line geometry [GRT14] and surface geometry [GSM∗14]. Their
approach discretizes the geometry into segments, and computes
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asynchronously on the CPU for each segment an opacity by min-
imizing a quadratic energy that characterizes desirable properties
(avoidance of occlusion, removal of background clutter, smoothness
and regularization). Thereby, opacities are bounded in the range
[0,1] (0 is invisible, 1 is opaque). Such a bounded-variable least-
squares problem can be solved using quadratic programming, which
is for interactive tasks feasible for problem sizes in the order of
only few thousand unknown opacities. A limitation was that the
energy weights were view-dependent and in different orders of
magnitude, when comparing lines and surfaces. Thus, different ge-
ometry types were not easy to combine in practice. Recently, Ament
et al. [AZD16] extended opacity optimization to volume data by
minimizing the energy in ray space (per pixel) and reformulating
the objective function. They had the insight that when removing the
smoothness term, the optimal solution can be calculated analytically.
Instead of smoothing the opacities, they proposed to smooth the
importance field. The obtained visualizations were comparable to
the original opacity optimization, though at better frame rate.

In this paper, we pick up their insight and apply the idea to
the rendering of points, lines and surfaces. That is, we drop the
smoothness term in opacity optimization, and solve for the fragment
opacities analytically per pixel. As shown later in Fig. 4, we found
that smoothing the input importance field is not sufficient when
dealing with sparse geometry data and instead propose to smooth
the opacity solution iteratively in a post-process across the geometry.
Thereby, all calculations can stay entirely on the GPU. The goal is
a unified framework that allows the user to render point, line and
surface geometry jointly in an optimal way. The performance of the
resulting system is bound by the rendering of the transparent geome-
try, which involves sorting and compositing of fragment linked lists.
In summary, our contributions are:

• Decoupling of opacity optimization into two smaller problems:
a minimization problem with analytic solution and an iterative
smoothing of its solution
• Application of opacity optimization to point data
• Combination of different geometry types (i.e., points, lines and

surfaces) in a completely GPU-based pipeline

The benefits are a significantly increased solving rate, view-
independent energy weights and a joint handling of point, line and
surface data, which enhances applicability in practice. The solving
speed-up comes at the expense of a slightly reduced framerate, since
all operations moved to the GPU. We demonstrate our method in a
number of steady 3D vector fields, see Fig. 1.

2. Related Work

Among the techniques that try to solve the occlusion problem, we
can distinguish between seeding algorithms and selection algorithms.
Seeding algorithms are either density-, feature- or similarity-based,
and are typically difficult to adapt into interactive systems, because
of their performance and lack of frame coherence. Selection algo-
rithms on the other hand, pick geometry from a precomputed set of
candidates, which is in interactive scenarios often the easier alterna-
tive, since the extraction (e.g., numerical integration) is moved into
a preprocess. Our method is a selection-based technique. So far, the
occlusion problem was addressed for each geometry type separately.
Consequentially, we devote a subsection to each type.

2.1. Line data

Early works in 3D streamline placement were direct extensions from
2D, including density-based [MTHG03], feature-based [YKP05,
YWSC12], and similarity-based measures [CCK07, MJL∗13]. Li
and Shen [LS07] were the first to recognize that line selection
is a view-dependent problem, which led to their extension of Jo-
bard and Lefer’s [JL97] iterative 2D seeding strategy. Annen et
al. [ATR∗08] computed streamlines that resemble surface contours
by using NPR-inspired local measures to terminate streamline in-
tegration. Xu et al. [XLS10] used entropy fields to guide selection
and rendering so that streamlines represent the information of the
original data set. Marchesin et al. [MCHM10] proposed a greedy
approach that iteratively inserts lines by a score heuristic that ac-
counts for the occupancy (per pixel fill rate) and local line entropy
measures. Due to the greedy nature of this approach, the result
is sensitive to small changes in the processing order, making it
not frame coherent during camera navigation. Frame coherence is
easier achieved with local measures, such as the view-dependent
mapping of screen contribution (visible pixels of a line) to trans-
parency by Günther et al. [GBWT11], which, however, tends to
favor lines closer to the camera. Ma et al. [MWS13] combined lines
from a view-independent and view-dependent candidate set. While
they consider coherence between local views and the last frame,
they do not account for the order of occlusions. Aggregating pixel
statistics of the rasterized fragments is a common approach. Lee et
al. [LMSC11] for instance, used maximum intensity projections of
the entropy field to guide line and camera selection (both from candi-
dates). Lawonn et al. [LGP14] used a curvature-based segmentation
of foreground and background flow in blood vessels and Kanzler
et al. [KFW16] selected lines from a precomputed line hierarchy,
based on a maximum intensity projection of importance, depth and
directional variation. Tao et al. [TMWS13] selected lines and the
viewpoint simultaneously by treating them as interrelated informa-
tion channels in an information-theoretic approach. In this paper,
we build upon the global optimization-based line section approach
of Günther et al. [GRT13], which was later extended to animated
line geometry [GRT14]. We examine the method in Section 3.

2.2. Surface data

In surface-based flow visualization [ELC∗12a], a number of surface
placement method exist that for instance automatically fill a domain
densely and evenly with surfaces [ELC∗12b, ELM∗12], select a
single best surface [MSRT13a], multiple best surfaces [SMG∗14]
or find surfaces that meet certain desired properties best, e.g., be
stretch-minimizing [BKC15], or be aligned with the flow or orthog-
onal to it [MSRT13b]. Günther et al. [GSM∗14] extended opacity
optimization to surfaces, which balances occlusion and visibility.

A general disadvantage of transparency-based approaches is that
transparency inhibits depth perception. Illustrative flow visualiza-
tion [BCP∗12] has contributed a number of methods that improve
transparent surface perception. Hummel et al. [HGH∗10] described
two view-dependent local transparency mappings that highlight sil-
houettes: angle-based transparency and normal variation. Carnecky
et al. [CFM∗13] made the layer order of transparent surfaces distin-
guishable by a diffusion of silhouettes and halos.
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Figure 2: Overview of the rendering pipeline, see Section 4.1 for details. Blue boxes denote the subsequent rendering stages and gray boxes
represent memory. The dashed gray lines indicate stages that use the precomputed object-space discretization.

2.3. Volume data

In volume data, occlusion is typically treated with transparency. Vi-
ola and Gröller [VG05] regarded smart visibility techniques, includ-
ing ghosting and cutaways. Especially in direct volume rendering,
a number of techniques exist, including importance-based opacity
mappings [VKG04], opacity adjustments based on psychological
principles [CWM∗09], or incorporation of a relevance function into
the volume rendering equation [MDM10]. Other conceptually dif-
ferent ways to avoid occlusion are exploded views [APH∗03] and
interactive spatial separation by deformation [CSC07].

Ament et al. [AZD16] extended opacity optimization to volume
data, naming it extinction optimization. They not only optimized the
extinction along view rays, but also along shadow rays. They showed
that the opacity optimization energy has an analytic minimum, when
the smoothness term is neglected. In this paper, we make use of this
observation, but apply the concept to point, line and surface data.

3. Opacity Optimization

In this section, we briefly describe the original opacity optimization
approach for line data [GRT13]. Given is a set of lines that cover the
domain densely. First, all lines are split into equally-sized segments.
An importance gi (with gi ∈ [0,1]) is assigned to each segment to
specify the relevance to the user. Importance might be derived from
geometric properties (size, curvature), information theory (linear
and angular entropy), statistics (directional variance) or specific
properties (vorticity, distance to domain boundary). In screen-space,
the segments occlude each other. The occlusion degree hi j states
the number of pixels of segment i that occlude another segment j,
and ai j denotes object-space adjacency, which is 1 if segments are
adjacent and 0 otherwise. The optimal opacity αi for each of the n
segments is computed by minimizing the quadratic energy:
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with bounded variables 0≤ αi ≤ 1.

Term (1) is a regularization that prevents empty renderings by
penalizing αi unequal to 1 (opaque). Term (2) introduces a penalty
if an unimportant segment i (i.e., 1−gi is large) occludes to some
degree an important segment j (i.e., g j is large). Then, hi j > 0 and
thus the product (1−gi)

λhi j g j has a high value. To minimize the
term, the optimization will fade out the segment in front, i.e., αi is
reduced. Thereby, λ steers the fall-off of gi from 1, which allows the
user to put further emphasis on the important structures. Term (3)
removes background clutter by fading out unimportant segments
behind important ones. Term (4) enforces a slow change of the
opacity along a line by penalizing the difference in opacity between
adjacent segments. The energy weights q≥ 0, r ≥ 0 and s≥ 0, and
the emphasis exponent λ > 0 are set by the user, whereas p = 1 by
default. Minimizing this energy leads to a (convex constrained) lin-
ear system, which is low-banded (e.g., 3-diagonal for lines) [Gün16],
yet still a global system needs to be solved.

The method was later extended to animated lines [GRT14], for
which the discretization was selected view-dependently from a pre-
computed split tree, and a temporal smoothness term was added to
the energy to ensure frame coherence. Shortly later, the original ap-
proach was extended to surfaces [GSM∗14], which were subdivided
into patches. The objective function was the same as in Eqs. (1)-(4),
though ai j was related to geodesic distance.

The object-space opacity optimization requires the solution of a
global system and only a few thousand elements can be optimized
interactively, which is not enough for large point data sets. Other
disadvantages are that parameters q, r, s and λ are view-dependent
and that different geometry types could not easily be combined.

4. Decoupled Opacity Optimization

In the following, we introduce a unified framework for the treat-
ment of point, line and surface data. First, we provide a general
overview of the system, them elaborate on the objective function
and afterwards proceed with implementation details.

4.1. System Overview

Fig. 2 gives an overview of the pipeline. While a main difference to
the original opacity optimization is that the energy is now minimized
per pixel, we still require an object-space discretization for the subse-
quent smoothing. Thus in a preprocess, line and surface geometry is
discretized into segments as previously done in [GRT14, GSM∗14].
Points are not subdivided, see Fig. 3.
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Figure 3: Terminology used for points, lines and surfaces: vertices
(black points), segments (green and blue), fragments (orange).

At runtime, we render all point, line and surface geometry, com-
piling fragment linked lists that store a segment ID, user-defined
importance and depth of each fragment. After sorting, these lists
allow us to infer the depth order, which, together with the frag-
ment importance, is used to calculate an optimal opacity value per
fragment. Using the object-space discretization, we gather the mini-
mum opacity of each segment and afterwards apply an object-space
smoothing. We interpolate the opacity values per vertex and fade
into the newly created opacity solution for temporal smoothness. For
final display, all geometry is rendered again with the per-vertex opac-
ities as input, including fragment linked list construction, sorting and
final compositing (optionally at high resolution and multi-sampling).

4.2. Objective Function

Previous opacity optimization approaches used the object-space
discretization to keep the problem size small. In this work, we solve
the problem locally per pixel.

Energy Function. When minimizing the energy for each pixel
independently, the discrete elements are the n fragments that were
rasterized into the same pixel, i.e., the elements of a fragment linked
list, sorted from front to back:
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which is the energy by Günther et al. [GRT13,Gün16] from Eqs. (1)-
(3) without the smoothness term Eq. (4). Note that Eqs. (5)-(7)
sum over fragments, not segments. (For brevity, we abstain from a
formal redefinition.) Thus, αi is the unknown opacity of a fragment,
hi j is the occlusion term that denotes whether fragment i occludes
fragment j. If the fragments are sorted from front to back, then:

hi j =

{
1 : i < j
0 : else

h ji =

{
1 : i > j
0 : else

(8)

The importance gi (with gi ∈ [0,1]) specifies the relevance of a frag-
ment, e.g., using geometric properties, information theory, statistics,
samples from scalar fields or distance measures.

Term (5) is a regularization that makes the geometry try to be as
visible as possible. Term (6) reduces the opacity αi of an unimpor-
tant fragment (1−gi) if it occludes to some degree hi j an important
fragment (g j). Similarly, Term (7) removes background clutter by

Figure 4: Comparison: computing opacities per pixel and smooth-
ing of importance as in [AZD16] (left), opacities computed per pixel
with subsequent object-space smoothing (our method, right).

fading out unimportant fragments behind important ones. For ref-
erence, we set p = 1, whereas the energy weights q≥ 0 and r ≥ 0,
and the emphasis exponent λ > 0 are set by the user.

Analytic Solution. Without a smoothness term, the opacity values
of the individual fragments are independent of each other [AZD16].
Hence, the energy can be rearranged to E = ∑

n
i=1 Ei(αi) with
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so that for each fragment the opacity αi can be optimized indepen-
dently by minimizing the quadratic energy Ei(αi). Using Eq. (8),
the optimal opacity is found by setting dEi(αi)

dαi
= 0 and rearranging

for αi [AZD16]:

αi =
p

p+(1−gi)2λ

(
r ∑

i−i
j=1 g2

j +q∑
n
j=i+1 g2

j

) (9)

The resulting opacities are in the range [0,1].

Smoothing. Minimizing the energies above per fragment leads to
an efficient, analytic closed-form solution. With sparse geometry,
however, discontinuities occur, as visible in Fig. 4 (left) for line
geometry. If only one line is visible in a pixel, the line fragment will
be fully opaque. At line crossings, however, the occlusion terms will
reduce the opacities of the fragments in the linked list, which cre-
ates unwanted discontinuities. Smoothing the importance [AZD16]
across the geometry does not remove this artifact, since the opacity
in pixels with a single fragment is not affected. Instead, we smooth
the opacities across the geometry, for which we use the precomputed
object-space discretization. In a first step, we determine among the
fragments of each discrete segment the one with smallest opacity
value, yielding a per-segment opacity. (We discuss in Section 6.5
why we prefer the minimum over the average operator.) Afterward,
we iteratively smooth (s iterations) the per-segment opacities, and
interpolate per-vertex opacities for final display, see Fig. 4 (right).

5. Implementation

In the following, we reiterate the steps of the computation pipeline
(see Fig. 2) and provide implementation details on each step.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



Tobias Günther, Holger Theisel & Markus Gross / Decoupled Opacity Optimization for Points, Lines and Surfaces

In a preprocess, the object-space discretization is computed. The
discretization of lines follows [GRT14], i.e., we proportionally sub-
divide the candidate line set based on the length of the individual
lines, such that segment sizes are as uniform as possible. For sur-
faces, we use a geodesic farthest point sampling as in [GSM∗14]
to distribute points uniformly on the surfaces. The corresponding
Voronoi cells form the discrete surface elements. The distances are
computed with the method of Crane et al. [CWW13]. At runtime,
we iterate the following steps each frame:

1. Render all point, line and surface geometry, and construct one
linked list per pixel [YHGT10] that stores the fragments of all
geometry types. Each list entry stores the importance gi, the
depth value (for sorting), an ID that allows us to retrieve the
segment that the rasterized fragment belongs to, and the index of
the next fragment in the list. All lists are constructed in fragment
shaders by rendering with single-sampling.

2. Generate one thread per pixel that sorts the fragment linked list
of the pixel by depth from front to back.

3. Iterate the fragment linked lists to compute the optimal opacity
value αi of each fragment using importance gi, see Alg. 1. Using
the aforementioned ID, each fragment can be associated with
a segment. In the same step, per-segment opacities can be de-
termined by atomically computing the minimum opacity of the
fragments that belong to one segment.

4. The per-segment opacities of lines and surfaces are iteratively
smoothed using Laplacian smoothing. For line geometry, we use
the two adjacent segments and for surface geometry the eight
geodesically closest segments.

5. For lines and surfaces, a per-vertex opacity is interpolated from
the per-segment opacities. (For points, each vertex is a segment.)
The interpolation weights are precomputed. See the blending
weight parameterization in [GRT13] (lines) and the blending
weights in [GSM∗14] (surfaces) for details. Care must be taken
with segments that are not on the viewport, since their per-
segment opacity is undefined and cannot be used in the per-vertex
interpolation. Once the per-vertex opacities are computed, we
fade toward the solution for temporal smoothness. The result is
written to a vertex buffer that contains the current opacities.

6. The final rendering pass uses the current opacity values as vertex
input and simply displays the result, including fragment linked
list construction, sorting and compositing. This pass can be at
higher resolution and with multi-sampling for better quality.

Self-occlusion. With line and surface data, large segments can self-
occlude. While self-occlusions were easy to exclude in the original
optimization [GRT13], we need a special treatment in Alg. 1. Each
fragment keeps an ID that allows us to retrieve its corresponding seg-
ment. When self-occlusion handling is enabled, we skip a fragment,
if its predecessor had the same ID. The difference is seen in Fig. 5.
Here, each geometry is represented as one segment. The top image
contains objects that do not occlude another object, yet they appear
transparent. This is due to self-occlusion, which is not desired and
taken care of in the bottom image.

6. Results

In the following section, we demonstrate decoupled opacity opti-
mization in a number of data sets, in which different geometry types

Input: List of fragments with importance gi, weights p, q, r, λ.
Output: Optimal opacity αi of each fragment in the list.
gall ← 0, g f ← 0 ;
for i = 1, . . . ,n do

gall ← gall +g2
i ;

end
for i = 1, . . . ,n do

gb← gall−g2
i −g f ;

αi← p/
(

p+(1−gi)
2λ
(
r ·g f +q ·gb

))
; // Eq. (9)

g f ← g f +g2
i ;

end
Algorithm 1: Per-fragment opacities αi are computed by iterating
the fragment linked lists twice. First, the squared sum of all im-
portance values gall is computed, which is used in the second pass
to compute the squared sum of importance values gb behind the
current fragment. (Pseudo code adapted from [AZD16].)

self-occlusion
handling: off

self-occlusion
handling: on

Figure 5: In the CTBL data set, each geometry is represented as
one segment. Some segments self-occlude, thus the objects fade out,
since they apparently occlude something of interest (top). We can
avoid this effect by skipping self-occlusions (bottom).

are combined in one scene. We further discuss parameters, compare
with the original opacity optimization, measure the performance and
finally discuss algorithmic choices and limitations.

6.1. Points, Lines and Surfaces

The CTBL data set contains a cloud resolving boundary layer
simulation between troposphere and stratosphere (UCLA-LES
in [Ste13]). It was used to derive cloud statistics that can be fed
as sub-scale parameters into large scale climate simulations. The air
flow is visualized in Figs. 1 (right) and 6 by streamlines. Thereby,
line color encodes importance, in this case velocity magnitude. Iso-
surfaces depict the scalar cloud indicator field, showing a correlation
between (fast) vertical transport and the presence of clouds. The
cloud color encodes the surface area of a cloud. Larger clouds are
assumed to be more important. By using opacity optimization, line
geometry is faded out that hinders the view on large clouds. Since
streamlines with high magnitude are important, as well, they stay
visible in the clouds, illustrating their vertical uplift.

The ECMWF flow contains a large scale reanalysis of the weather
in the Northern hemisphere from April 10−19, 2010 and was pro-
vided by the European Centre for Medium-Range Weather Forecasts.
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Figure 6: Clouds (isosurfaces) and airflow (streamlines) at bound-
ary between troposphere and stratosphere in CTBL. Top: all ge-
ometry is opaque, causing occlusion. Bottom: opacity optimization
clears the view on large clouds and streamlines with high magni-
tude, which allows us to analyze the correlation between fast vertical
transport and the presence of clouds (q = 50, r = 100, s = 5, λ = 3).

Figure 7: Pathways of trace gases. Top: opaque display of particles
and lines. Bottom: opacity optimization reveals pathways with high
velocity magnitude (q = 400, r = 50, s = 5, λ = 4).

For the analysis, convective flow features in the wind velocity field
are of interest, since they are related to the exchange of energy and
transport of trace gases in the atmosphere. Figs. 1 (left) and 7 com-
bine particles and streamline geometry, showing different transport
paths. Point and line geometry was seeded in different altitude layers.
We used the wind velocity magnitude as importance measure, which
emphasizes the fastest transport pathways.

6.2. Parameters

The energy weights q, r and λ behave intuitively as in the origi-
nal opacity optimization. First, the overall opacity is adjusted by
varying q, then emphasis λ is set to adjust the important structures.
Afterwards, the background can be cleared using r and finally the
result is iteratively smoothed. We refer to [GRT13] and [GSM∗14]
for a parameter study and a description of the incremental setting of
the parameters.

View Independence. A strong advantage of per-pixel optimization
(this paper) over per-segment optimization (previous work) is that
the energy parameters are now entirely view-independent, i.e., they
no longer depend on the camera location. Fig. 8 views the TREFOIL

data set from different distances (far, near and close-up) using the
same energy parameters. With per-segment optimization, the param-
eters would have to be readjusted, since the occlusion degrees are
accumulated from all visible fragments of a segment. For a distant
viewpoint, the total number of fragments and therefore the occlusion
is lower, which leads the optimization to assign more opaque values.
The TREFOIL data set was provided by Candelaresi and Branden-
burg [CB11] and contains a magnetic field. Here, velocity magnitude
was used as importance measure, which reveals the trefoil knot.

Smoothing. The key difference to the original method is that in the
decoupled approach, the opacity solution is smoothed separately
in a post-process by Laplacian smoothing. Fig. 9 shows results for
varying numbers of smoothing iterations in the DELTA WING flow,
which was provided by Markus Rütten. If the number of iterations
is too small, the object-space discretization becomes apparent.

Importance. In opacity optimization, the relevance of a geometric
object is prescribed by the user. The importance measure is the main
tool to adjust which structures should be visible and which may fade
out if necessary. When combining different types of geometries, it
is also the method of choice to prioritize. In Fig. 10 for instance,
we adjusted the importance to steer the visibility of points and lines.
In Fig. 10a, important points have higher relevance than important
lines. Therefore, the core of the tornado is illustrated by points. In
Fig. 10b, the situation is vice versa. Here, lines reveal the vortex
core. In both images, stream surfaces that wind around the core are
faded out to clear the view. For reference, Fig. 10c was rendered
with all points, lines and surfaces opaque: it is clear that occlusion
prevents understanding of the vortex core.

Problem Size. The VISCOUS FINGERS data set was subject of
the 2016 Scientific visualization contest [Sci16]. It is result of a
finite point-based ensemble simulation of a salt layer dissolving
in a cylindrical water container [Kuh14]. All particles carry a salt
concentration, which serves as importance measure (color-coded).
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Figure 8: With per-pixel optimization (this paper), the energy parameters are independent of the camera location. Here, the TREFOIL is
shown from three camera locations (far, near and close-up), using the same energy weights (q = 50, r = 400, s = 15, λ = 2).

no smoothing s = 10 iterations

s = 50 iterations opaque surface

Figure 9: Result after varying numbers of Laplacian smoothing
iterations. If the number is too small, the underlying object-space
discretization becomes visible (q = 50, r = 10, λ = 2).

To reduce the fill rate, we decreased the size of unimportant parti-
cles. The ensemble simulations contain a number of runs for three
resolutions. Fig. 11 shows the original point set and our result for
all three resolutions. For all, we used the 80th time step of the first
run. With our method, the viscous fingers become visible.

6.3. Comparison

In the following, we compare the results of our decoupled opacity
optimization with the original opacity optimization, which solves a
bounded-variable least-squares problem. For line data, we compare
with hierarchical opacity optimization [GRT14] and for surface data
with [GSM∗14]. Fig. 12 gives qualitative and quantitative results.
The top row shows the results of the previous methods and the
bottom row shows our approach. In all cases, the results are visually
similar, which means our simpler approach can approximate the full
opacity optimization quite well.

Solves per Second. The previous approaches computed the mini-
mization asynchronously on the CPU, which can become slow for
large problem sizes or when the depth complexity is high. With line
geometry, we typically have much larger problem sizes (n≈ 10k)

than we observe for surface data (n≈ 400). Also, the depth complex-
ity is higher for dense line data, which results in longer fragment
linked lists that need to be copied to the CPU for further processing.
Consequentially, the setup of the system matrix also gets slower. In
summary, we expect a higher gain for line data than for surfaces
when applying our method. Indeed, for lines we observe a 23−83×
speedup, for surfaces only 2.61−2.78×.

Frames per Second. While we expect a higher solving rate, we
must expect a slower rendering performance, since all calculations
moved to the GPU. This problem is less severe than the bottlenecks
created by the CPU, since GPU performance has increased rapidly
over the years. For line data, the frame rate dropped by 0.24−0.46×
and for surfaces by 0.3−0.5×. Still, the frame rates have been well
beyond 60 fps. (In extreme cases it would be imaginable to distribute
the computation over multiple frames.)

Data Sets. The first column demonstrated results on the BOR-
ROMEAN data set, which contains magnetic decaying rings that
were numerically simulated [CB11]. The second column contains a
HELICOPTER flow, which shows experimental wind tunnel data of a
helicopter in descent [YTvdW∗02]. Here, the two wake vortices are
of interest. The third column shows the flow in a STATIC MIXER,
provided by Markus Rütten. The last data set was also courtesy of
him and contains the DELTA WING, which contains two vortices.

6.4. Performance

Table 1 contains detailed performance measurements of the pipeline
steps described in Section 5, including linked list construction (1),
sorting (2), per-segment opacity computation (3), iterative smooth-
ing (4), interpolation of per-vertex opacity (5) and final display (6).
For all measurements, we used an Nvidia GTX 1080 GPU with 8
GB VRAM and an Intel i7-6700K CPU with 4.0 GHz. All images
were rendered with a viewport resolution of 1000× 1000 pixels.
Among the first 5 steps (computation of per-vertex opacities), we
printed the bottleneck bold, which was in almost all cases the sorting
of the fragment linked lists. This means, the performance is bound
by the number of fragments per pixel. This can be seen by the lower
performance of dense point sets (Viscous high) and dense line sets
(Helicopter), compared to surface data (Static Mixer or Delta Wing).
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(a) Points are more important than lines. (b) Lines are more important than points. (c) Opaque rendering as a reference (cluttered).

Figure 10: Importance can be used to prioritize individual geometry types. Here, in the TORNADO flow (q = 1000, r = 50, s = 50, λ = 3.5).

194,248 particles 571,817 particles 1,790,040 particles

Figure 11: Performance comparison in VISCOUS FINGERS data
set, demonstrating our method (bottom) for different point set sizes.
The top row contains the original opaque data (top), which suffers
from occlusion. The limiting factor is the fill rate-related sorting and
processing of the transparent fragments (q = 200, r = 50, λ = 3).

Data set 1 2 3 4 5 6 Total
CTBL 0.79 1.93 0.52 0.03 0.10 3.03 6.4
ECMWF 0.67 12.0 1.38 0.02 0.01 9.62 23.7
Tornado 0.47 1.96 0.59 0.04 0.01 1.85 4.92
Borromean 0.88 2.95 0.94 0.04 0.02 4.32 9.15
Helicopter 1.04 5.96 0.71 0.03 0.02 7.59 15.4
Static Mixer 0.32 0.89 0.73 0.09 0.02 0.94 2.99
Delta Wing 0.63 0.70 0.73 0.27 0.25 0.92 3.50
Viscous (low) 0.53 1.15 0.41 − 0.02 1.95 4.06
Viscous (med) 1.09 4.72 1.96 − 0.02 6.79 14.6
Viscous (high) 2.40 14.1 7.34 − 0.08 19.8 43.72

Table 1: Runtime in ms for the individual computation steps (1−6),
described in Section 5, as well as the total time per frame.

6.5. Discussion

In the following, we discuss algorithmic choices and limitations.

Per-Segment Minimum vs. Average. To calculate an opacity
value per segment, we take the minimum opacity of its visible
fragments. This is a conservative choice, which is favorable over
calculating the average of the fragments. If there is just one fragment
that needs to fade out as it occludes an important object, than the
segment should be removed, otherwise the important object might
not be visible. This decision should be made regardless of how many
other fragments of the segment are not occluding anything, since
this would be dependent on the distance to the camera.

Spatial Smoothing in Screen Space. The necessity to compute an
object-space discretization is somewhat limiting for surface geome-
try. (For line geometry it is trivial, and for points it is not required.)
It would also be possible to perform the smoothing in screen-space.
Carnecky et al. [CFM∗13] for instance, applied screen-space smooth-
ing on fragment linked lists in order to diffuse color that was injected
at silhouettes. Their approach, however, requires to establish neigh-
borhoods between fragments, for which they used heuristics that
can fail in extreme cases, such as very close surfaces.

Temporal Smoothing. The conservative choice of using the min-
imum per-pixel opacity might cause frame incoherence when the
respective minimum pixel vanishes during camera navigation. Thus,
we temporally smooth the per-vertex opacities, similar to [GRT13].
See the video for examples with and without temporal smoothing.

Volume Data. Our pipeline can be conceptually combined with
volume data. After construction of sorted fragment linked lists for all
non-volume data, a volume ray cast could be performed in the spirit
of [AZD16]. As the ray traverses front to back through the volume,
the fragment linked list could be iterated alongside, advancing to
the next fragment, when the volume ray passed the last fragment.

Time-Dependent Data. In this paper, we focused on steady vec-
tor fields. When dealing with time-dependent geometry, a cor-
respondence heuristic is required to ensure temporal coherence.
In [GRT14], this was demonstrated for line geometry, where pre-
vious opacity solutions were advected to the next frame. Suitable
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(a) [GRT14], fps: 419, sps: 1.22 (b) [GRT14], fps: 139, sps: 2.75 (c) [GSM∗14], fps: 533, sps: 103 (d) [GSM∗14], fps: 1032, sps: 112

(e) our method, fps: 102, sps: 102
(q = 2000, r = 20, s = 15, λ = 1.8)

(f) our method, fps: 64, sps: 64
(q = 2000, r = 2000, s = 10, λ = 15)

(g) our method, fps: 269, sps: 269
(q = 2000, r = 200, s = 15, λ = 4)

(h) our method, fps: 312, sps: 312
(q = 50, r = 10, s = 50, λ = 2)

Figure 12: Comparison of [GRT14] and [GSM∗14] (top row) with our decoupled opacity optimization (lower row). The results are visually
similar. The solves per second (sps) increased significantly, whereas the frames per second (fps) reduced, since our opacity computation runs
on the GPU, not the CPU. While previous method solved for the opacities asynchronously, our method can calculate it every frame.

correspondence heuristics depend on the underlying geometry and
on the employed refinement strategies, e.g., if additional vertices ap-
pear because of insertion of points, line vertices or surface triangles.

Perception Issues with Transparency. An inherent problem of
transparency is that fading might be confused with depth cueing,
which inhibits spatial perception. A number of approaches exist that
add visual cues to compensate this effect, such as halos [CFM∗13],
or that avoid transparency by modulating the line width [KFW16].

7. Conclusions

Following Ament et al.’s [AZD16] idea of extinction optimiza-
tion for volumes, we split opacity optimization for geometric
data [GRT13, GSM∗14] into two smaller problems: an analytic
computation of per-pixel opacities, and an iterative smoothing and
blending across the geometry. In the pixel-based formulation, differ-
ent geometry types such as points, lines and surfaces are easily com-
bined in a completely GPU-based framework. Instead of smoothing
the input importance field [AZD16], we perform the smoothing on a
precomputed object-space discretization. Compared to the original
opacity optimization we observed a solving speedup of 23−83×
for lines, and 2.6−2.8× for surfaces. The rendering performance
decreased slightly, since the opacity calculations have migrated to

the GPU. The decoupled approach has more desirable parameter
behavior, i.e., parameter choices are no longer view-dependent.

In the future, we would like to include a view-dependent, possibly
hierarchical selection of the candidate geometry from a precomputed
candidate set, or even with adaptive insertion of geometry if the data
becomes too sparse in close-ups. Additionally, we would like to per-
form not only a view optimization, but also a shadow optimization
as in [AZD16]. Since geometry is rather sparse, shadows could add
too many color discontinuities, which would have to be addressed.
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