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Dynamic Bayesian Networks for Student
Modeling

Tanja Käser, Severin Klingler, Alexander G. Schwing, and Markus Gross

Abstract—Intelligent tutoring systems adapt the curriculum to the needs of the individual student. Therefore, an accurate
representation and prediction of student knowledge is essential. Bayesian Knowledge Tracing (BKT) is a popular approach for student
modeling. The structure of BKT models, however, makes it impossible to represent the hierarchy and relationships between the
different skills of a learning domain. Dynamic Bayesian networks (DBN) on the other hand are able to represent multiple skills jointly
within one model. In this work, we suggest the use of DBNs for student modeling. We introduce a constrained optimization algorithm
for parameter learning of such models. We extensively evaluate and interpret the prediction accuracy of our approach on five
large-scale data sets of different learning domains such as mathematics, spelling learning and physics. We furthermore provide
comparisons to previous student modeling approaches and analyze the influence of the different student modeling techniques on
instructional policies. We demonstrate that our approach outperforms previous techniques in prediction accuracy on unseen data
across all learning domains and yields meaningful instructional policies.

Index Terms—Bayesian networks, parameter learning, constrained optimization, error measures, instructional policies.
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1 INTRODUCTION

MODELING and predicting student knowledge is a
fundamental part of an intelligent tutoring system

(ITS). In these systems, the selection of challenges to work
on next is based on the estimation and prediction of the
student’s current knowledge by the student model. The
prediction accuracy and behavior of the student model
directly influence the instructional policies [1] of the system
and hence also the quality of teaching decisions. Therefore,
an accurate student model is essential for individualization,
i.e., the adaptation of the learning content and the difficulty
level to the individual student. A large body of research
was conducted in terms of modeling, i.e., the construction
of accurate student models, and in terms of assessment, i.e.,
the definition of appropriate error measures for assessing
prediction accuracy of student models.

Research in modeling covers a wide range of approaches
for student modeling. Common techniques include logistic
regression models and probabilistic models. Two of the
most popular algorithms for estimating student knowledge
are performance factors analysis (PFA) [2] and Bayesian
Knowledge Tracing (BKT) as presented by Corbett and
Anderson [3].

Traditional BKT and improved versions have been suc-
cessfully used in different tutoring systems [4], [5]. An
important task when using BKT is parameter learning.
BKT models have been fit using brute-force grid search [6],
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gradient descent [7] or expectation maximization [8]. A large
body of research was conducted to construct BKT models
with higher prediction accuracy. Previous work includes
clustering approaches [9] or individualization techniques,
such as learning student- and skill-specific parameters [7],
[10], [11] or modeling the parameters per school class [12].

Exhibiting a tree structure (directed acyclic variable de-
pendencies with a single root variable), BKT allows for
efficient parameter learning and accurate inference. How-
ever, tree-like models lack the ability to represent the hi-
erarchy and relationships between the different skills of
a learning domain. Employing dynamic Bayesian network
models (DBN) has the potential to increase the representa-
tional power of the student model by explicitly modeling
prerequisite skill hierarchies and hence further improve
prediction accuracy. Furthermore, hierarchical models allow
to incorporate expert knowledge and implicitly define the
curriculum of the system. Indeed, hierarchical models have
been successfully applied in ITS. Dynamic learning maps
structure the sequence of topics hierarchically to reach cer-
tain thresholds in post-tests [13]. In cognitive item response
theory, the attribute hierarchy method models hierarchically
ordered attributes (competencies) required to correctly solve
test problems [14]. Bayesian networks [15], [16], [17] have
been applied to model skill dependencies at a single point
in time.

DBNs, on the other hand, have been used to model
and predict students’ performance [18], [19], engagement
states [20], [21], and goals [18]. DBNs are also employed in
user modeling [22]. In cognitive sciences, DBNs are applied
to model human learning [23] and understanding [24].
Despite their beneficial properties to represent knowledge,
DBNs have received less attention in modeling skill hier-
archies as the joint representation of multiple skills over
time in one network imposes challenges for learning and
inference.
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Lately, research in assessment of student models has
gained increasing interest. Traditionally, the prediction
accuracy of student models has been assessed using
performance measures such as the root mean squared
error (RMSE) [7], [12], [25], [26], the area under the ROC
curve (AUC) [6], [27], [28], [29], [30], the mean absolute
error (MAE) [31], [32] and the log-likelihood (LL) [2], [33].
Recently, the use of a single number as a performance
measure has been questioned [34] and the different
measures have been analyzed and discussed [34], [35].
Furthermore, new measures [34] and frameworks [36],
[37] capturing model behavior in more detail have been
introduced. Recent work has also analyzed the impact of
the prediction accuracy on instructional policies [1].

In this paper, we contribute to both the research area of
modeling and the research area of assessment: We present an
efficient method for modeling prerequisite skill hierarchies
and extensively evaluate our approach based on the latest
research conducted in assessment of student models. We
demonstrate how the topologies and relationships between
different skills of a learning domain can be modeled using
DBNs and show the advantages of using pre-requisite hi-
erarchies for student modeling. Recently, [38] showed that
a constrained latent structured prediction approach to pa-
rameter learning for DBNs yields accurate and interpretable
models. Furthermore, DBNs modeling prerequisite skill hi-
erarchies outperform traditional BKT regarding prediction
accuracy [39]. We extend [39] by extensively evaluating the
behavior of our hierarchical skill models regarding predic-
tion accuracy and instructional policies and providing com-
parisons to the popular traditional approaches to student
modeling. We define domain-specific DBNs modeling skill
hierarchies for five large-scale data sets from different learn-
ing domains, containing up to 7000 students. To analyze
the generalization capabilities of our approach, we have
selected data sets generated from different tutoring systems
addressing different fields of education such as mathemat-
ics, spelling learning and physics. Furthermore, students’
age ranges from elementary school to university level. Our
results show that even simple skill hierarchies lead to sig-
nificant improvements in prediction accuracy over BKT and
PFA across all learning domains. Furthermore, the hierarchi-
cal skill models lead to meaningful instructional policies. By
using the same constraints and parametrization for all our
experiments, we also demonstrate that basic assumptions
about learning hold across different learning domains.

2 BACKGROUND: STUDENT MODELS

In this section, we provide an overview of popular ap-
proaches for student modeling, which we later use for
comparison in the experimental evaluation of our method.

2.1 Latent Factors Models

Student models applying logistic regression are based
on the idea that the probability of a correct response to
a task can be represented by a mathematical function of
student and skill parameters. In such models, the binary
task outcomes (correct/wrong) of the students follow a

Bernoulli distribution, i.e., a binomial distribution with
n = 1. Letting yst ∈ {0, 1} denote the response of student s
to task t, we obtain yst ∼ binomial(1, pst).

Additive Factors Model (AFM). The AFM [40], [41] is a
logistic regression model, which models the probability pst
of solving a task t correctly as a function of three parameters,
resulting in

pst = (1 + exp(−(θs +
∑

qkt(βk + γk · Tsk))))−1. (1)

Hereby the random effect θs ∼ N (0, σ2
θ) denotes the

student proficiency and the fixed effects βk and γk denote
the difficulty and the learning rate for skill k, respectively.
Tsk is the number of practice opportunities student s has
seen for skill k and qkt is 1, if task t uses skill k, and 0
otherwise.

Performance Factors Analysis (PFA). The PFA [2] is an
extension of the AFM, with the following definition of the
linear component:

pst=(1+exp(−(θs+
∑

qkt(βk+γk ·Ssk+ρk ·Fsk))))−1. (2)

In contrast to AFM, PFA differentiates between correct and
incorrect practice opportunities: Ssk denotes the number of
correctly solved tasks for student s at skill k, while Fsk
denotes the number of failures for student s at skill k. The
fixed effects γk and ρk therefore denote the learning rates
for successes and failures, respectively.

2.2 Bayesian Knowledge Tracing
BKT models are a special case of DBNs [42] or more
specifically of Hidden Markov Models (HMM), consisting
of observed and latent variables. Latent variables represent
student knowledge about one specific skill and are assumed
to be binary, i.e., a skill can either be mastered by the
student or not. The observed variables are also binary: they
represent student answers (correct/incorrect) to questions
associated with a specific skill and depend directly on the
latent variables. The state of the latent variables is inferred
based on these observations.

There are two types of parameters in an HMM: tran-
sition probabilities and emission probabilities. In BKT, the
emission probabilities are defined by the slip probability pS
of making a mistake when applying a known skill and the
guess probability pG of correctly applying an unknown skill.
The transition probabilities are described by the probability
pL of a skill transitioning from the unknown to the known
state, while pF is the probability of forgetting a previously
known skill. In BKT, pF is assumed to equal zero. The last
parameter required to describe the BKT model is the initial
probability p0 of knowing a skill a-priori.

Employing one BKT model per skill, the learning task
amounts to estimating the parameters given some obser-
vations. More specifically, given a sequence of observa-
tions ym = (ym,1, ..., ym,T ) with ym,t ∈ {0, 1} and time
t ∈ {1, . . . , T} for the m-th student with m ∈ {1, . . . ,M},
what are the parameters θ = {p0, pL, pF , pS , pG} that max-
imize the likelihood

∏
m p(ym | θ) of the available data. In

BKT, this task is commonly solved using brute-force grid
search [6], gradient descent [7] or expectation maximiza-
tion [8].



3

w0

w ,...,w2 5

w ,w6 7

w ,w8 9

w ,...,w10 17

w w19,18

w ,w2120w ,w20 21

w1

w w19,18

SA,2

w ,w20 21

w w19,18

w ,...,w10 17

w ,w6 7

w ,w8 9

SA,1 SA,T

SN,1 SN,2 SN,T

SG,1 SG,2 SG,T

Fig. 1. Structure of the graphical model for a DBN unrolled over T
time steps. Circular nodes represent skills (latent binary variables),
while the rectangles represent the observable student answers to tasks
associated with those skills. The illustrated DBN models the hierarchical
relationships between the three skills SA, SG, and SN . The index
numbers denote the respective time step, i.e., SA,1 represents the state
of skill SA at time t = 1.

3 METHODS: DYNAMIC BAYESIAN NETWORKS

DBNs have the potential to increase the representational
power of the student model and therefore further increase
prediction accuracy. Subsequently, we first give an introduc-
tion to DBNs using the traditional probabilistic notation,
before introducing our log-linear formulation and the cor-
responding optimization. Finally, we also present a possible
specification of a simple DBN.

When employing DBNs, we consider the different skills
of a learning domain jointly within a single model. Student
knowledge is again represented using binary latent vari-
ables (one per skill), which are updated based on observa-
tions associated with the skill under investigation. However,
we now also model the dependencies between the different
skills, e.g., two skills SA and SB are conditionally dependent
if SA is a prerequisite for mastering SB .

To illustrate this concept, consider Fig. 1 which shows
an example DBN unrolled over T time steps. The circular
nodes represent binary skill variables: similar to BKT, a skill
can be either mastered or not. The example network consists
of three skills: SA, SG, and SN . The rectangular nodes
represent observable variables, i.e. binary student answers
(correct/incorrect) to tasks associated with the respective
skill. The index numbers indicate the time step.

3.1 Probabilistic Notation

The learning task of a DBN model is described as follows:
let the set of N variables of the model be denoted by
X = {Xi | i ∈ {1, . . . , N}}. The set of variables X
contains all skill nodes S as well as all observation nodes
O of the model. In addition, let H denote the domain of
the unobserved variables, i.e., missing student answers and
the binary skill variables, while Y refers to the observed
space, disjoint from the latent space H. Let us consider an
example student m for the model in Fig. 1 solving a task
associated with skill SG,1 in the first time step correctly, i.e.,
OG,1 = 1. The set of observed variables ym for the first time
step consists of the student’s answer, i.e., ym = {oG,1}. The
set of hidden variables hm for the first time step contains all

other variables, i.e., hm = {SA,1, SN,1, SG,1, ON,1}. During
learning, we are interested in finding the parameters θ
that maximize the likelihood of the observed data

⋃
m ym

with ym = (ym,1, ..., ym,T ) representing a sequence of T
binary answers from the m-th student, while hm denotes
the hidden variables for student m. The log-likelihood of a
DBN [43] is then given by

L(θ) =
∑
m

ln

∑
hm

p(ym,hm | θ)

 , (3)

where we marginalize over the states of the hidden variables
hm for student m. The joint probability p(ym,hm | θ) of the
model for student m is defined via

p(ym,hm | θ)=
∏
i

p(Xm,i=xm,i | pa(Xm,i)=xm,pa(Xm,i))

=
∏
i

pijm,ikm,i
, (4)

where Xm,i is the i-th variable in the model for student
m and pa(Xm,i) are the parents of Xm,i, while xm,i and
xm,pa(Xm,i) are the realizations of the random variables
Xm,i and pa(Xm,i), i.e., the states assigned to Xm,i and
pa(Xm,i) given by (ym,hm). Furthermore, we let jm,i :=
xm,i and km,i := xm,pa(Xm,i) to simplify the notation.
Therefore, pijm,ikm,i

denotes exactly one entry in the con-
ditional probability table (CPT) of Xm,i.

3.2 Log-linear models
The log-likelihood of a DBN can alternatively be formulated
using a log-linear model. This formulation is flexible and
predominantly used in literature [44], [45]. Therefore, we
reformulate the learning task in the following. Let φ : Y ×
H → RF denote a mapping from the latent spaceH and the
observed space Y to an F -dimensional feature vector. The
log-likelihood from Eq. (3) can then be reformulated to

L(w) =
∑
m

ln

∑
hm

exp
(
w>φ(ym,hm)− ln(Z)

) , (5)

where Z is a normalizing constant and w denotes the
weights of the model. Next, we show that this log-linear
formulation of the log-likelihood is equivalent to the tradi-
tional notation. Comparing Eq. (5) to Eq. (3), it follows that∏

i

pijm,ikm,i
=

1

Z
expw>φ(ym,hm)

=
1

Z
exp

∑
i

w>i φi(ym,hm), (6)

and therefore

∀i, j,k : pijk =
1

Z
expw>i φi(x), (7)

where x are the realizations of all random variables in X
with j ∈ x and k ⊂ x. A feature vector φ and weights
w that fulfill Eq. (7) can be specified as follows: consider
the CPT describing the relationship between a node XA

and its n − 1 parent nodes pa(XA). The CPT for these n
nodes contains 2n entries. Let k ∈ {0, 1}n−1 denote one
possible assignment of states to the parent nodes pa(XA).
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We can therefore define p(XA = 1 | pa(XA) = k) =
1 − p(XA = 0 | pa(XA) = k) = 1 − pA,0,k. To con-
tinue, let pA,xA,k = 1

Z expwA,k(1 − 2xA) = expwA,k(1 −
2xA)/(expwA,k + exp(−wA,k)), which leads to the feature
function φA(x) = 1 − 2xA. We therefore obtain the joint
distribution as a product of the exponential terms which
translates to a weighted linear combination of feature vector
entries in the exponent and thus fulfills Eq. (7). From this
formulation also follows that we need 2n−1 parameters to
specify a CPT including n skills.

3.3 Optimization
Due to the loopy structure, the learning task for DBNs is
computationally more expensive than the one for HMMs.
However, [45] showed that some approximations admit
efficient parameter learning. Note that interpretability of the
parameters is not ensured, since guarantees exist only for
converging to a local optimum, i.e., the approximation might
result in degenerate models with for example a probability
of guessing pG > 0.5. Therefore, [38] extended the approach
presented by [45] to include constraints on parameters and
demonstrated that the constrained optimization increases
prediction accuracy on unseen data while guaranteeing
interpretable models. Using the log-linear formulation, the
algorithm presented in [38] can be directly applied to learn
the parameters of a DBN model.

3.4 Specification
Next, we explain the specification of a simple DBN. The
example DBN illustrated in Fig. 1 consists of three skills:
SA, SG, and SN . Two of the skills (SG and SN ) have tasks
associated with them, while the third skill SA cannot be
observed. Similarly to BKT, we can interpret the parameters
of a DBN in terms of a learning context. To specify the CPTs
of the example DBN, we employ F = 22 weights that can
be associated with a parameter set θ. We subsequently use
' to denote proportionality in the log domain; i.e., w ' p is
equivalent to w ∝ exp p. Let ON denote the task associated
with skill SN . Then the parameters w20 ' p(ON = 0 | SN =
0) = 1− pG and w21 ' p(ON = 0 | SN = 1) = pS represent
the guess and slip probabilities. Similarly, w18 and w19 are
associated with pG and pS as evident from Fig. 1. Further-
more, parameters w6 ' p(SA,t = 0 | SA,t−1 = 0) = 1 − pL
and w7 ' p(SA,t = 0 | SA,t−1 = 1) = pF are associated
with learning and forgetting; the same holds true for w8

and w9.
Skills SA and SG are prerequisites for knowing skill SN ,
i.e., the probability that skill SN is mastered in time step t
depends not only on the state of skill SN in the previous
time step, but also on the states of SA and SG in the current
time step. Therefore w10 ' p(SN,t = 0 | SN,t−1 = 0, SA,t =
0, SG,t = 0) = 1 − pL0, where pL0 denotes the probability
that the student learns SN despite not knowing SA and SG.
Also, w17 ' p(SN,t = 0 | SN,t−1 = 1, SA,t = 1, SG,t = 1) =
pF1, the probability of forgetting a previously learnt skill.
Furthermore, we set wl ' 1 − pLM if l ∈ {11, 12, 13} and
wl ' 1 − pFM if l ∈ {14, 15, 16}, where pLM denotes the
probability that the student learns SN given that he knows
at least one of the precursor skills of SN . Moreover, pFM
is the probability that the student forgets the previously

known skill SN , when either SA or SG or none of them
are known.
Finally, the parameters wl with l ∈ {2, 3, 4, 5} describe
the dependencies between the different skills. We let wl '
1 − pP0, if l ∈ {2, 3, 4} and w5 ' pP1, where pP0 is
the probability of knowing a skill despite having mas-
tered only part of the prerequisite skills and pP1 denotes
the probability of failing a skill given that all precursor
skills have been mastered already. Moreover, we refer to
the probability of knowing a skill a-priori via p0. Note
that w0 and w1 are associated with p0. The example DBN
can therefore be described by the parameter set θ =
{p0, pG, pL, pF , pL0, pF1, pLM , pFM , pP0, pP1}. Importantly,
the method proposed in this work is independent of the
exact parametrization used. The parametrization introduced
here serves as an example only and could be easily ex-
tended.

4 EXPERIMENTAL EVALUATION

We show the benefits of DBN models with higher repre-
sentational power on five data sets from various learning
domains. The data sets were collected with different tu-
toring systems and contain data from elementary school
students up to university students. With the extensive ex-
perimental evaluation, we aim at answering the following
three research questions. 1) What are the benefits in terms
of prediction accuracy of DBNs representing skill hierarchies
compared to traditional student modeling approaches assuming
independence between the different skills? 2) Where do the differ-
ences in prediction accuracy between the different student models
come from? 3) How do the different student modeling techniques
influence instructional policies?

4.1 Experimental Setup
Evaluation of the models was performed using a training-
test setting: For all the different models, we learned the pa-
rameters on a training set and evaluated their performance
on a test set. All evaluation measures were computed using
student-stratified 10-fold cross validation.

Fitting the BKT models was done using [7], applying
skill-specific parameters and using gradient descent for op-
timization. As described in [7], we set the forget probability
pF to 0, while pS and pG are bounded by 0.3. In the
following, we will denote this constrained BKT version as
BKTC . Since parameter fitting for BKT models converges
to different values depending on the initialization of the
algorithm [6], [28], [46], we generated ten different BKTC
models using different start values. We included the default
values provided by [7] as well as nine other randomly
generated sets of start values fulfilling the constraints. Sub-
sequently, we selected the model with the best prediction
accuracy in terms of root mean squared error on the test
set for comparison. This selection process overestimates the
performance of BKT and therefore provides an upper bound
on the prediction accuracy of BKT.

The parameters of the latent factors models were trained
using the lme4 package of R. AFM and PFA require a stu-
dent parameter (the student proficiency θp): For the unseen
students in the test sets, we set θp to the mean of the trained
student parameters.
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We used constrained latent structured prediction [38]
to learn the parameters of the DBNs. All models were
parametrized according to Sec. 3.4 and we imposed the
constraints described in the following on the parameter
set θ of the different models to ensure interpretable pa-
rameters. For our first constraint set C1, we let pD ≤ 0.3
for D ∈ {G,S, L, F, L0, F1} to ensure that parameters
associated with guessing, slipping, learning and forgetting
remained plausible. The constraints on θ can be directly
turned into constraints on w. For the example DBN (Fig. 1),
the constraints translate into the following linear constraints
on the weights for C1: wi ≥ 0.4236, if i ∈ {6, 8, 10, 18, 20}
and wi ≤ −0.4236, if i ∈ {7, 9, 17, 19, 21}. For the second
constraint set C2, we augmented C1 by limiting pD ≤ 0.3
if D ∈ {LM,FM,P0, P1}, yielding wi ≥ 0.4236, if i ∈
{2, 3, 4, 11, 12, 13} and wi ≤ −0.4236, if i ∈ {5, 14, 15, 16}
for the example DBN (Fig. 1). The additional constraints
ensure that parameters are consistent with the hierarchy as-
sumptions of the model. The constraint sets C3 and C4 bound
the same parameters as C1 and C2, but are more restrictive by
replacing 0.3 by 0.2. Note that for these examples constraints
were selected according to previous work [3]. Similarly to
BKTC , we ran the optimization ten times for each constraint
set using different starting values. Subsequently, we selected
the model with the highest likelihood on the training data
set for comparison.

Prediction for the probabilistic models was performed
as follows: we assumed the observation at time t = 1 to be
given and predicted the outcome at time twith t ∈ {2, ..., T}
based on the previous t−1 observations. To predict the out-
come of the latent factors models, we evaluated the trained
regression model at time t. The number of observations
T for the different experiments is the minimal number of
observations, which includes observations of all skills of the
according model.

4.2 Data Sets and Models

We evaluated our DBN models on five large-scale data sets.
To analyze the generalization capabilities of our approach,
we selected data sets according to the following criteria: the
data logs come from different ITS (Calcularis, Andes2,
Cognitive Tutor, and Dybuster) and cover a wide
range of age classes (from elementary school children over
high school children up to university students) as well as
different learning domains (mathematics, physics, spelling).
In the following, we describe the five data sets as well as
their respective DBNs. Note that we use the same skill
sets for all our models, i.e. the skill sets described for the
DBNs are also used for BKTC , AFM, and PFM. We further
assume that each observation is associated with exactly one
skill.

Number Representation. To build the first model, we used
data collected from Calcularis, an ITS for elementary
school children with math learning difficulties [47].
Calcularis turns current neuro-cognitive theory into the
design of different instructional games training number
representations and number understanding as well as
arithmetic operations. Student knowledge is represented as
a DBN consisting of different mathematical skills [48], [49].

The data set contains log files of 1581 children with at least
five sessions of 20 minutes per user.
The graphical model used in this experiment (see Fig. 1)
is an excerpt of the skill model of Calcularis described
in [48]. Skill SA represents knowledge about the Arabic
notation system. Calcularis does not contain any tasks
associated with this skill. The ability to assign a number
to an interval is denoted by SG. The task associated with
this skill is to guess a number in as few steps as possible.
Finally, SN denotes the ability to indicate the position of a
number on a number line. We used a maximum of T = 100
observations per child for learning and prediction and
specified the CPTs of the graphical model with F = 22
weights as illustrated in Fig. 1.

Subtraction. The second model is based on the same data
set as the first model. This time, however, we investigated
subtraction and number understanding skills. The graphical
model (see Fig. 2) is again an excerpt of the skill model [48]
of Calcularis. Subtraction skills are ordered according to
their difficulty, which is determined by the magnitude of
involved numbers, task complexity and the means allowed
to solve a task. Skills S1 (e.g., 48-6=?), S2 (e.g., 48-9=?), S3

(e.g., 48-26=?), S4 (e.g., 48-29=?) and S5 denote subtraction
tasks in the number range 0−100. We emphasize that there
are no observation nodes associated with S1 and S5. The
number understanding skill S6 represents knowledge about
the relational aspect of number (i.e., a number can be seen
as a difference between two other numbers) in the number
range 0−1000. Finally, skills S7 (e.g., 158-3=?), S8 (e.g.,
158-3=?) and S9 (e.g., 158-9=?) represent subtraction tasks in
the number range 0−1000. The difference between S7 and
S8 lies in the means allowed to solve the task. A maximum
of T = 100 observations per child was used for learning
and prediction. Specification of the CPTs for the model
requires F = 86 weights as illustrated in Fig. 2.

Physics. To build the third model, we used the ‘USNA
Physics Fall 2005’ data set accessed via DataShop [50].
Data originate from 77 students of the United States Naval
Academy and were collected from Andes2, an ITS for
physics [18]. The tutor uses rule-based algorithms to build
solution graphs that identify all possible solutions to the
different tasks. Based on these graphs, a Bayesian network
is constructed to assess the general physics knowledge of
the student as well as the progress for the problem at hand.
We used the different modules of the data set as skills for
our experiment. The graphical model is depicted in Fig. 3.
Note that, since we are neither experts regarding physics
education nor concerning Andes2, we intentionally used
a simplified model representing a subset of the modules
as skills to avoid introducing incorrect assumptions. The
model consists of the following modules: “Vectors” (SV ),
“Translational Kinematics” (SK ), “Statistics” (SS) and
“Dynamics” (SD). These modules consist of complex tasks
for the given topic, i.e., calculating total forces in a system
(see example in [18]). A maximum of T = 500 observations
per child were considered for learning and prediction and
the model can be described by F = 33 weights.
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Fig. 2. Structure of the graphical model for the Subtraction data set. The DBN models the hierarchical relationships between the nine subtraction
skills and contains 16 variables (nine latent and seven observable variables) per time step. The illustration shows the DBN unrolled over T = 100
observations.

Algebra. This model is based on data from the
KDD Cup 2010 Educational Data Mining Challenge
(http://pslcdatashop.web.cmu.edu/KDDCup). The data set
contains log files of 6043 students that were collected by the
Cognitive Tutor [4], an ITS for mathematics learning.
The student model applied in this system is based on
BKT, since the cognitive theory behind the cognitive tutor
assumes skills to be independent.
We used the units of the ‘Bridge to Algebra’ course as skills
for our experiment and selected four units of increasing
difficulty, where students have to solve word problems
involving calculations with whole numbers. The graphical
model for this experiment is illustrated in Fig. 4. Skill
SA (e.g., 728624 − 701312) denotes written addition and
subtraction tasks without carrying/borrowing, while SS
involves carrying/borrowing (e.g., 728624 − 703303). SM
(e.g., 33564 × 18) and SD (e.g., 10810 ÷ 46) represent long
multiplications and divisions. The original model for the
data set used contains 94 skills that were carefully designed
by domain experts. Building a fine-grained skill hierarchy
would also require domain expert advice. Therefore, we
again employed a simplified skill model representing a
subset of the modules as skills. We used a maximum

of T = 500 observations per student (consisting only
of ‘correct on first attempt responses’) for learning and
prediction and specified the CPTs of the model employing
F = 29 weights.

Spelling. The last model uses data collected from
Dybuster, an ITS for elementary school children with
dyslexia [51]. The data set at hand contains data of 7265
German-speaking children. Dybuster groups the words of
a language into hierarchically ordered modules with respect
to their frequency of occurrence in the language corpus as
well as a word difficulty measure. The latter is computed
based on the word length, the number of dyslexic pitfalls
and the number of silent letters contained in the word.
We used these modules as skills to build our graphical
model (see Fig. 5). Skills SE , SM and SD denote the
modules 3, 4 and 5 within Dybuster. Word examples
are “warum” (“why”, SE), “Donnerstag” (“Thursday”,
SM ) and “Klapperschlange” (“rattlesnake”, SD). We used
a maximum of T = 200 observations per child for the
learning and prediction tasks and parametrized the model
using F = 21 weights.
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Fig. 3. Structure of the graphical model for the Physics data set. The
DBN contains four latent nodes (the skills SV , SK , SS , and SD) and
three observable variables per time step and evolves over T = 500
observations.
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Fig. 4. Structure of the graphical model for the Algebra data set. The
DBN represents the relationships between four skills (SA, SS , SM , and
SD) and their associated observable nodes. The illustration shows the
DBN unrolled over T = 500 observations.

4.3 Prediction Accuracy

To answer our first research question What are the benefits
in terms of prediction accuracy of DBNs representing skill hi-
erarchies compared to traditional student modeling approaches
assuming independence between the different skills?, we assessed
the predictive performance of the different models using the
root mean squared error (RMSE) and the area under the
ROC curve (AUC). The RMSE is widely used in educational
data mining to measure the performance of skill models

w0

w ,w1 2

SE,1
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w ,w9 10 w ,w9 10

SD,2

Fig. 5. Structure of the graphical model for the Spelling data set. The
DBN consists of six variables per time step (three latent skill nodes and
three observable nodes) and evolves over T = 200 observations.

and has demonstrated a high correlation to the ‘moment
of learning’ (step in which a student learnt a skill) for
BKT models [35], [52]. The AUC is also often applied for
the evaluation of educational models [6], [27], [28], [29],
[30], but its use as the only performance metric has been
questioned lately [34]. However, in our case the AUC is used
as an additional measure to the RMSE to assess the models’
abilities to discriminate failures from successes. All error
measures were calculated using 10-fold student-stratified
cross validation. Statistical significance was computed us-
ing a two-sided t-test, correcting for multiple comparisons
(Bonferroni-Holm). Tab. 1 details the RMSE and AUC for all
models and data sets. Bold numbers denote a significant im-
provement of the constrained DBN model (for the different
constraints C1 - C4 on the probabilities described in Sec. 4.1)
over all alternative models (BKTC , AFM and PFA). The best
performing model for each measure is marked (*).

The constrained DBN approach yields significant and
large improvements in prediction accuracy compared to
BKTC for the Number Representation data set. We highlight
the reduction of the RMSE by 3.8% and the large improve-
ment achieved in AUC (AUCBKTC

= 0.5995, AUCC2 =
0.7026). The constrained DBN models also outperform the
logistic regression models in terms of RMSE and AUC with
a reduction of the RMSE of 5.9% for AFM and 4.5% for PFA.
AFM performance worst for both measures on this data set.
While PFA exhibits an RMSE similar to BKTC , it shows a far
better AUC than BKTC (AUCBKTC

= 0.5995, AUCPFA =
0.6717). Note that all constrained DBN models significantly
outperform all alternative models on both measures.

The resulting prediction accuracy for the Subtraction data
set again demonstrates that the hierarchical DBN model out-
performs the BKTC model as well as the logistic regression
models. With a reduction of the RMSE by 3.5% compared
to BKTC and a reduction in RMSE of 3.0% over the PFA
model, the benefits of the DBN model are again substantial.
The DBN model exhibits a large improvement in AUC over
BKTC (AUCBKTC

= 0.5990, AUCC4 = 0.6928). Note that the
PFA model again significantly outperforms BKTC regarding
the AUC. The DBN model shows a large growth in AUC
(compared to PFA) for the more restrictive constraint sets
(AUCC2 = 0.6882, AUCC4 = 0.6928, AUCPFA = 0.6532).
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For the Physics data set, we observe significant and
substantial improvements of the AUC over all alternative
models (AUCC3 = 0.7021, AUCBKTC

= 0.4991, AUCPFA
= 0.5807, AUCAFM = 0.5425). Furthermore, the RMSE is
reduced by 6.3% compared to BKTC and by 6.6% compared
to PFA. For this data set, the logistic regression models
exhibit an RMSE similar to BKTC , however, they show a
substantially larger AUC than BKTC .

On the Algebra data set, all DBN model configurations
significantly outperform all other models regarding the
RMSE and the AUC. We observe an improvement in RMSE
of 3.7% compared to BKTC and of 3.8% and 5.1% compared
to PFA and AFM, respectively. The lower RMSE of all the
models compared to the other data sets probably stems
from the bias towards correct observations, i.e., this data set
contains 85% of correct observations. Improvements in AUC
are also substantial with all models exhibiting much lower
values than DBN (AUCC2 = 0.7042, AUCBKTC

= 0.6012,
AUCAFM = 0.6034, AUCPFA = 0.6407).

Performance differences between the four models tend to
be low for the Spelling data set. While still being significant,
the absolute improvement in RMSE of the DBN models
compared to BKTC drops to 0.1%. The logistic regression
models show a similar performance (RMSEPFA = 0.4481,
RMSEAFM = 0.4498). The DBN models again outperform
AFM and BKTC regarding the AUC (AUCC4 = 0.5808,
AUCBKTC

= 0.5029, AUCPFA = 0.5495) and perform in
range with PFA (AUCPFA = 0.5790). However, AUC values
for all the models tend to be lower than the values achieved
on the other data sets.

4.4 Model Behavior
Our second research question Where do the differences in
prediction accuracy between the different student models come
from? aims at understanding model behavior in more detail
and investigating the observed differences in prediction
accuracy (see Sec. 4.3) between the different approaches. To
answer this question, we computed the Brier score of the dif-
ferent models [34]. The Brier score is equivalent to the mean
squared error (MSE) and can be decomposed into three
components: BS = REL - RES + UNC. The uncertainty (UNC)
quantifies the inherent uncertainty of the events (correct and
incorrect outcomes) in the data set and is independent of
the selected model. The reliability term (REL) measures the
difference between predicted and observed probabilities. A
reliability of zero (REL = 0) indicates a perfectly reliable
prediction. The resolution term (RES) measures how much
predictions differ from the base rate (proportion of correct
outcomes in the data set) and therefore gives and indication
of the range of predicted probabilities, i.e., a high resolution
is desirable. An ideal model would therefore minimize the
REL term, while maximizing the RES term. We computed
the Brier score and its components using 10-fold student-
stratified cross validation. Statistical significance was calcu-
lated using a two-sided t-test, correcting for multiple com-
parisons (Bonferroni-Holm). The reliability and resolution
for the different data sets are displayed in Fig. 6. For the
DBNs, we included only the model with the best RMSE for
each data set (see Tab. 1).

For the Number Representation data set, BKTC exhibits
a significantly better reliability than the DBN model with

the best RMSE (RELBKTC
= 0.0732, RELC4 = 0.0859). The

reliabilities of the DBN model and the PFA model are in
range (RELPFA = 0.0929), while AFM shows a much worse
reliability (RELAFM = 0.1178), but has the best resolution
(RESAFM = 0.0919). Resolutions of the DBN and PFA mod-
els are again similar (RESPFA = 0.0737, RESC4 = 0.0685).
For this data set, BKTC achieves a significantly lower reso-
lution than DBN (RESBKTC

= 0.0332), which explains the
performance differences in RMSE.

We observe a different picture for the Subtraction data
set. While the DBN and PFA models show again similar
reliabilities (RELC2 = 0.0522, RELPFA = 0.0557), BKTC
exhibits a worse reliability (RELBKTC

= 0.0671); however,
the differences in reliability between BKTC and DBN are not
statistically significant. The DBN model again demonstrates
a significantly higher resolution than BKTC (RESC2 = 0.0406,
RESBKTC

= 0.0241). Also the results for the AFM model are
confirmed, which shows the worst reliability (RELAFM =
0.0741), but a high resolution (RESAFM = 0.0445).

On the Physics data set, the BKTC , PFA, and DBN
models shows similar reliabilities (RELC3 = 0.0127, RELPFA
= 0.0141, RELBKTC

= 0.0174), the AFM again demon-
strates a significantly worse reliability than the DBN model
(RELAFM = 0.0237). For this data set, the DBN model
exhibits a significantly higher resolution than all the other
models (RELC3 = 0.0262, RESBKTC

= 0.0016, RESPFA =
0.0096, RESAFM = 0.0138).

The DBN model achieves a better reliability than all the
other models on the Algebra data set, with all differences
being statistically significant (RELC2 = 0.0170, RELPFA =
0.0246, RELBKTC

= 0.0216, RELAFM = 0.0275). The same
fact holds true for the resolution, where the DBN model
again significantly outperforms all the other models (RESC2
= 0.0160, RESBKTC

= 0.0069, RESPFA = 0.0127, RESAFM
= 0.0152). This result explains the lower RMSE achieved for
all tested DBN models (see Tab. 1).

All models achieve similar reliability on the Spelling data
set (RELC4 = 0.0284, RELPFA = 0.0262, RELBKTC

= 0.0288,
RELAFM = 0.0294), with all the small differences between
DBN and the other models being statistically significant.
There is no significant difference between the resolution of
the DBN and the PFA models (RESC4 = 0.0102, RESPFA =
0.0137). The AFM achieves a significantly higher resolution
than the DBN model (RESAFM = 0.0153), while the DBN
model significantly outperforms BKTC regarding the reso-
lution (RESBKTC

= 0.0030).

4.5 Instructional Policies

Lately, the influence of small differences in performance
measures on the learning outcome has been questioned [25].
However, it has been shown that models with similar
predictive performance can lead to significantly different
instructional policies [1], [36], which leads to our third
research question: How do the different student modeling tech-
niques influence instructional policies?. To evaluate the impact
of the different models on the task selection, we calculated
the effort E (number of practice opportunities needed to
pass a skill) and score S (percentage of correct observations
after having the skill passed) of the different models. We
used the Teal framework [36] to define the mastery criterion:
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TABLE 1
Prediction accuracy (RMSE and AUC) of the experiments, comparing different constraints sets for the DBNs with BKTC , AFM and PFA. Numbers

in bold denote a significant improvement of the DBN model over all alternative models (BKTC , AFM and PFA). The best result for each
performance measure is marked (*).

DBNC1 DBNC2 DBNC3 DBNC4 BKTC AFM PFA
Number
Representation

RMSE 0.4469 0.4452 0.4416 0.4378* 0.4550 0.4657 0.4586
AUC 0.7008 0.7026* 0.7010 0.6971 0.5995 0.6262 0.6717

Subtraction RMSE 0.4417 0.4215* 0.4389 0.4216 0.4368 0.4457 0.4347
AUC 0.6166 0.6882 0.6344 0.6928* 0.5990 0.5763 0.6532

Physics RMSE 0.4521 0.4272 0.4244* 0.4465 0.4530 0.4527 0.4497
AUC 0.6644 0.7009 0.7021* 0.6874 0.4991 0.5425 0.5807

Algebra RMSE 0.3325 0.3246* 0.3311 0.3260 0.3369 0.3419 0.3374
AUC 0.6711 0.7042* 0.6731 0.7040 0.6012 0.6034 0.6407

Spelling RMSE 0.4521 0.4495 0.4491 0.4472* 0.4503 0.4498 0.4481
AUC 0.5699 0.5775 0.5737 0.5808* 0.5029 0.5495 0.5790
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Fig. 6. Reliability (REL) and Resolution (RES) over the different data
sets for BKTC , AFM, PFA and the DBN model with the lowest RMSE.

Instruction for a skill s is stopped, when the predicted
probability p̂t of correctly answering the next task t as-
sociated with skill s is above a given threshold R, i.e.,
p̂t > R. Since the effort and score are dependent on the
threshold R employed, we computed the measures for a
range of thresholds R ∈ [0.6, ..., 0.8]. We again calculated all
measures using 10-fold student-stratified cross validation.
We included only one logistic regression model (PFA) in this
evaluation, since PFA consistently outperformed AFM on
the performance measures over all data sets. Furthermore,
we again only included the DBN model with the best RMSE
(see Tab. 1). Fig. 7 shows the resulting effort (blue) and score
(green) for DBN, BKTC and PFA at different thresholds R
over all data sets.

On the Number Representation data set, the three models
show similar scores. The maximum score (S = 0.85) for
the DBN model is reached at R = 0.75 with an average
effort E = 14.92. An effort of E = 14.92 can be consid-
ered as large, since it meets the wheel-spinning criterion

(effort E > 10 [53]). However, the model still reaches a
score S = 0.82 with an average effort below this limit
(E = 9.4). The BKTC model achieves the lowest maximum
score S = 0.79 of all the models, however, the average effort
E = 3.60 is also low. Note that effort and score for the
BKTC model could be computed only for R ≤ 0.69 since the
model never predicted a probability p̂t > 0.69. The values
for the scores show very little differences, this behavior
can be explained by the low resolution of the BKTC model
(see Fig. 6, bottom) on this data set. The PFA model exhibits
the maximum score (S = 0.83) at R = 0.66 with the highest
average effort of E = 17.90. The PFA model generally
predicts flatter learning curves on this data set, resulting
in the higher effort E needed for the given thresholds.

For the Subtraction data set, the results look similar. The
BKTC model exhibits a flat score curve (maximum score
S = 0.68), but also the lowest average effort (E = 6.00).
The DBN model again achieves a considerably higher score
(S = 0.81) than the BKTC model with a reasonable effort
E = 10.07. The PFA model predicts student performance
much more conservatively than the other models, resulting
in high efforts necessary to reach p̂t > R: The PFA model
achieves scores around S = 0.8 for an average effort E >
15.

On the Physics data set, effort (E = 3.00) and score
(S = 0.70) take just one value for the BKTC model. This
is due to the small resolution (RESBKTC

= 0.0016) of the
BKTC model on this data set (illustrated in Fig. 6, bottom).
For the PFA model, scores increase with a higher effort, but
the model generally exhibits very high efforts. However, for
an effort E = 3.00, the model achieves a score S = 0.71,
which is in the range of the BKTC model. Also the DBN
model achieves a score S = 0.70 with an effort E = 3.21 on
average. Similarly to the BKTC model, scores do not increase
with higher effort.

For the Algebra data set, all models achieve higher scores
(SBKTC

= 0.85, SPFA = 0.85, SC2 = 0.85) than on the
other data sets with similar efforts (EBKTC

= 4.00,EPFA =
4.00, EC2 = 5.75). This observation is probably due to the
fact that the Algebra data set contains easier skills; this bias
towards correct observations is also visible in the low RMSE
of all models for this data set (see Tab. 1). For the PFA model,
scores get as high as S = 0.90, but also the average effort
grows to E = 349.27. This high number of observations is
possible due to the simplified skill model: we used the units
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Fig. 7. Effort (blue) and score (green) for the DBN model with the lowest RMSE (top), BKTC (middle) and PFA (right) over all different data sets.
The x-axes denote the thresholds R, the y-axes denote the effort (left y-axis) and score (right y-axis), respectively.

of the course as skills to build the model.
The effort and score for the different models on the

Spelling data set confirm the previous results: We observe
similar scores (SBKTC

= 0.71, SPFA = 0.70, SC4 = 0.71)
with reasonable efforts (EBKTC

= 3.00, EPFA = 3.00,
EC4 = 6.00) for the three models. The BKTC model again
takes only one value for effort and score. For the DBN
model, the scores do not increase with ascending effort.
The scores for the PFA model slowly increase over time,
however, they drop for very high efforts.

5 DISCUSSION

The student model is an integral part of an ITS. One of
the most popular approaches to student modeling is BKT.
However, this technique cannot model the relationships
between the different skills of a learning domain. More
complex DBN models have the potential to increase the
representational power by modeling skill hierarchies.
In this work, we have suggested the use of DBNs
representing skill hierarchies for student modeling and
have extensively evaluated them on five large-scale data
sets. Our experiments answer three important research
questions.

The first research question analyzed the prediction accu-
racy of our approach: What are the benefits in terms of predic-
tion accuracy of DBNs representing skill hierarchies compared to

traditional student modeling approaches assuming independence
between the different skills?. Our results demonstrate that
DBN models outperform BKT in prediction accuracy. For
hierarchical domains, the RMSE can be reduced by 3.5%
(Subtraction data set) to 6.3% (Physics data set). As expected,
adding skill topologies has a much smaller benefit for
learning domains that are less hierarchical in nature (such
as spelling learning). While differences in RMSE are still
statistically significant, the magnitude of improvement is
low. The results obtained on the Physics and Algebra data
sets show that even simple hierarchical models improve pre-
diction accuracy significantly. A domain expert employing
a more detailed skill topology and more complex constraint
sets could probably obtain an even higher accuracy on these
data sets. Our comparison to logistic regression models also
shows the superiority of the DBN models: The DBN models
significantly outperform PFA on all data sets. PFA exhibits
a similar or better RMSE than BKTC on the data sets. These
results are not unexpected since PFA has been shown to be
superior to AFM and BKT [2]. However, these findings have
been disputed for BKT previously [29], [54]. Note that all
models exhibit a much lower RMSE on the Algebra data set
than on the other data sets. This better performance results
from the bias in the data set towards correct observations
(85% of correct observations): prediction accuracy is related
to the bias of the data set, i.e., a uniform distribution of cor-
rect and wrong observations is most difficult to predict. The
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significant reduction obtained in RMSE is very promising.
The RMSE is a proper score [55] and has been widely used
in educational data mining to measure student model per-
formance, for example [7], [10], [11], [25]. The model fitting
procedures we used optimize the log-likelihood of the data;
the RMSE shows a high correlation to this measure [34].
Furthermore, the RMSE is also correlated to the ‘moment of
learning’ (step in which a student learnt a skill) [35], [52].

We also computed the AUC of the different models.
While the AUC was criticized as a performance measure
lately [34], [35], it is a useful additional measure (for
example in combination with the RMSE) to assess the
models’ ability to discriminate failure from success. In a
biased data set with a high base rate (i.e., a high frequency
of correct outcomes), a model always outputting the base
rate performs well regarding the RMSE, since the prediction
of the base rate achieves perfect reliability. However, such a
model exhibits a low AUC. The DBN models consistently
show the highest AUC over all hierarchical data sets. For
the Spelling data sets, DBN and PFA perform similarly.
BKTC shows a significantly lower AUC than the DBN
models.

For a better understanding of model behavior, a more
detailed quantification of model performance is useful. To
answer our second research question Where do the differences
in prediction accuracy between the different student models
come from?, we therefore computed the Brier score of the
models [34]. The BKTC model consistently showed the
lowest resolution (RES) of all models and was outperformed
by the DBN models over all data sets. This result is not
unexpected: The AUC is related to the Brier score [56] and
the BKT models exhibited the lowest AUC across all data
sets of our experiments. Furthermore, these results are in
line with previous work which found that BKT models
tend to have a low resolution (RES) [34]. We observe mixed
results for the reliability: BKTC exhibited a significantly
better reliability than the DBN model on the Number
Representation data set and a significantly worse reliability
than DBN on the Algebra and Spelling data sets - reliabilities
were similar on all other data sets. We therefore conclude
that the differences in RMSE between BKTC and DBN
models are mainly due to the low resolution of BKTC .
The DBN models performed similarly or better in reliability
and resolution than PFA (with the exception of the Spelling
data set) and therefore the differences in RMSE between
these two models probably arise from the combination of
the two measures. The AFM consistently showed a bad
reliability (worst model over all data sets), but performed
very well regarding the resolution. The bad reliability of
the AFM might stem from the fact, that AFM does not
differentiate between correct and wrong observations.
The superior resolution of the logistic regression models
is probably due to their nature, i.e., they are fitting a
learning curve over time. Our analyses demonstrate that a
detailed quantification of model performance is helpful for
understanding the properties of the different models.

Lately, the evaluation of student models based on small
differences in performance metrics has been questioned [25].
However, previous work has demonstrated, that small

differences in RMSE can have a large impact on over-
practice [7], [40]. Furthermore, the improvement in per-
formance metric has a significant impact on the expected
number of practice opportunities needed [57] and the in-
structional policy of the system [1]. Other research discussed
the use of a single number as a performance metric [34],
[36], [37]. We therefore used the Teal framework [36] to
answer our third research question: How do the different
student modeling techniques influence instructional policies?.
Teal is threshold dependent and can be applied to all models
used in our experiments.

The BKTC models consistently showed a low effort over
all data sets, scores were in range with the other models. No-
tice, however, that BKTC demonstrated a very low variance
in effort and scores both over time and over the different
data sets. This low variance is caused by the low resolu-
tion (and AUC) of BKTC . While the generally low efforts
and scores might seem promising, the low variance limits
instructional design, since the effort and score cannot be
tuned by adapting the threshold. The DBN models tended to
be more pessimistic than BKTC , i.e., they generally required
a higher effort to reach the same score. This is due to the
fact that these models represent forgetting (pf ≥ 0), which
leads to a slower increase of the predicted probability p̂t.
Nevertheless, the DBN models reached a similar or higher
score than BKTC with a reasonable effort E < 10 (students
with an effort E > 10 can be considered to be wheel-
spinning) [53]. The PFA models showed similar effort and
scores as BKTC for lower thresholds, but effort increased
very fast with not much gain regarding the score. These
results are in line with the observations made in previous
work [1]. We conclude from our experiments that DBN
models yield meaningful instructional policies relating to
cognitive mastery.

From Fig. 7, it is very well visible, that Teal is threshold
dependent. Different thresholds are optimal for the different
models. This dependency on a threshold gives flexibility
to instructional design, since the resulting policies can be
tuned using the threshold. However, the optimal choice
of threshold might be difficult, but could be done in
a data-driven way by first determining a target score.
Therefore, methods not requiring a threshold are an
interesting alternative. The predictive similarity policy [1]
for example stops when the predicted probabilities do not
change anymore regardless of the student’s answer (correct
or wrong).

The results of our extensive experimental evaluation
demonstrate that DBNs are a valuable technique for student
modeling. Our DBN models show a better RMSE and AUC
than traditional student models such as PFA and BKT over
a wide range of data sets. Furthermore, the DBN models
yield meaningful instructional policies. Note, however, that
the performance differences between DBN and BKT, espe-
cially the influence of the different parameters, need to be
investigated further. Recent work [58] has demonstrated
that the prediction accuracy of BKT can be significantly
improved when allowing forgetting (pF > 0). Furthermore,
the reported results on the real world data sets used are
only approximations to the true prediction accuracy and
performance of the instructional policies. The data sets stem
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from learning system with student models and instructional
policies already in place, resulting in the introduction of a
bias into the generated log data.

6 CONCLUSION

In this work, we showed that DBN models are well suited
for representing student knowledge. We extensively eval-
uated our approach on five large data sets from differ-
ent learning domains containing students of a wide age
range. The results demonstrate that the incorporation of skill
topologies yields to significant improvement in prediction
accuracy over traditional student models. Furthermore, the
more complex hierarchical DBN models also lead to mean-
ingful and interpretable instructional policies. The use of the
same parametrization and constraint sets for all experiments
demonstrates that basic assumptions about learning hold
across different learning domains. To conclude, our results
show that modeling skill topologies is beneficial and easy
to use, as even simple hierarchies and parametrization lead
to significant improvements in prediction accuracy and in-
structional policies.

In the future, we would like to analyze the influence of
the skill hierarchies, the different parameters and the rea-
sons for the performance differences between the different
approaches further. We furthermore plan to apply the indi-
vidualization techniques used in BKT [7], [10], [11] to DBNs
and compare the benefits of introducing skill hierarchies
to the advantages of student-individualized modeling tech-
niques. Moreover, we would like to explore the possibility
of learning skill hierarchies from data.
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