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Figure 1: Understanding natural or synthetic complex distributions such as the natural distribution of trees based on the altitude on the left
is a difficult problem if the arrangement of the entities, resulting from pair-wise interactions, is spatially-adaptive, as shown for a canonical
example in the middle. Our analysis technique provides an informative and comprehensive summary of such distributions. The correlations
in our framework are represented with a set of extracted basis pair correlation functions (PCF 1 and 2, from local patches 1 and 2 in the
example in the middle), and the corresponding weight maps illustrating how they are interpolated in space. Our synthesis algorithm utilizes
these measures to synthesize distributions with adaptive density and correlations on Euclidean domains (right) or surfaces (left).

Abstract

Analyzing and generating sampling patterns are fundamental problems for many applications in computer graphics. Ideally,
point patterns should conform to the problem at hand with spatially adaptive density and correlations. Although there exist ex-
cellent algorithms that can generate point distributions with spatially adaptive density or anisotropy, the pair-wise correlation
model, blue noise being the most common, is assumed to be constant throughout the space. Analogously, by relying on possibly
modulated pair-wise difference vectors, the analysis methods are designed to study only such spatially constant correlations. In
this paper, we present the first techniques to analyze and synthesize point patterns with adaptive density and correlations. This
provides a comprehensive framework for understanding and utilizing general point sampling. Starting from fundamental mea-
sures from stochastic point processes, we propose an analysis framework for general distributions, and a novel synthesis algo-
rithm that can generate point distributions with spatio-temporally adaptive density and correlations based on a locally station-
ary point process model. Our techniques also extend to general metric spaces. We illustrate the utility of the new techniques on
the analysis and synthesis of real-world distributions, image reconstruction, spatio-temporal stippling, and geometry sampling.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image Generation—
Antialiasing 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Color, shading, shadowing, and texture
1.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Curve, surface, solid, and object representations
1.4.1 [Image Processing and Computer Vision]: Digitization and Image Capture—Sampling
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1. Introduction

Sampling patterns lie at the heart of many important applications in
computer graphics such as representing and integrating functions,
anti-aliasing, image and geometry sampling, physically-based sim-
ulation, non-photorealistic rendering, object and texture placement,
and modeling natural distributions. It is thus essential to understand
and control characteristics of sampling patterns.

Point distributions are generally characterized by the density and
the arrangement of the sampling points given by the pair-wise cor-
relations among point locations, as higher order correlations are
not needed to study most patterns [IPSS08, 0G12]. The most stud-
ied correlation model is based on variations of blue noise patterns
where the points are randomly distributed with a minimum dis-
tance between pairs [Uli88]. Adaptive density, locally anisotropic
distributions, or patterns on surfaces can be obtained by adapting
the metrics used accordingly, while keeping the correlation model
fixed [LWSF10, dGBOD12, JZW*15]. Recent works further ex-
plore matching a given target correlation model [ZHWW12,0G12,
WPC*14, AHD15], resulting in an explicitly controlled arrange-
ment of points. However, for all the synthesis methods, the corre-
lation model is assumed to be constant throughout the space, re-
sulting in translation invariant patterns up to local density varia-
tions. The analysis methods are thus also designed for studying
such translation invariant correlations via statistics based on distri-
butions of modulated difference vectors or distances between pairs
of points and associated spectral measures [BWWM10, WW11,
0OG12, HSD13]. Hence, point patterns where the correlations are
spatially varying cannot be handled with the current common anal-
ysis and synthesis techniques. In Figure 1, we show an example
point distribution with spatially-adaptive correlations, where the
pattern transitions from blue to green noise from left to right. Uti-
lizing such patterns can lead to significantly improved results for
many applications in computer graphics.

In this work, we present novel analysis and synthesis techniques
for point patterns with adaptive density and adaptive correlations.
Starting from the theory of stochastic point processes, we propose
a novel analysis method for general point patterns, and a synthesis
algorithm capable of generating distributions with spatially adap-
tive density and correlations. The proposed statistics converge to
provably discriminative measures from point processes, and pro-
vide a comprehensive framework for point patterns. We illustrate
how such patterns can improve image and geometry sampling with
various examples. In summary, our main contributions are the fol-
lowing:

e The notion of adaptive correlations, and a comprehensive anal-
ysis framework for general point patterns. The proposed mea-
sures are based on well-known statistics form stochastic point
processes, and reduce to previous analysis tools for the special
case of translation invariant patterns.

o A synthesis algorithm for point patterns with adaptive density
and correlations on general domains. We apply the algorithm to
generate distributions on Euclidean domains as well as surfaces.
In contrast to the previous works, the algorithm offers full con-
trol over the distributional characteristics.

2. Related Work

Analysis of point patterns. Determining characteristics of point
patterns is essential for many applications in computer graph-
ics such as stippling and halftoning [SGBW10, Fatl1], anti-
aliasing [Mit87, LD08, HSD13], object placement [Weil0], inte-
gration [PH10, SK13, PSC*15], or geometry sampling [OAG10].
A widely used analysis tool is the power spectrum, a 2D diagram
computed by averaging the periodograms of point distributions that
are instances of a certain point pattern. When the point pattern is
translation invariant, many important characteristics such as anti-
aliasing properties or anisotropy of the generated distributions can
be inferred from the power spectrum [LDO8, Uli88]. Other anal-
ysis methods rely on spatial measures such as minimum distance
between points [LDO8], discrepancy [Shi91], distributions of dif-
ference vectors [WW11], or distances [OG12, HSD13] between
sample point locations. These methods can also be extended to
non-Euclidean domains or point patterns with adaptive density or
anisotropy [BWWM10,LWSF10,WW11]. For all cases, the under-
lying correlation model is assumed to be constant and translation
invariant, and the adaptivity in density or space the points reside
on is buried into the difference or distance measures used to com-
pute the statistics. In contrast, we present a general analysis method
that can handle point patterns with adaptive density and correla-
tions. We prove that the proposed measures converge to provably
discriminative statistics from stochastic point processes.

Synthesis of point patterns. Synthesis methods can generate point
distributions with certain characteristics controlled by the construc-
tion of the synthesis algorithm or via explicitly provided statistics.
Most techniques in computer graphics focus on blue noise distribu-
tions, where there is a minimum distance between pairs of points,
and they are distributed randomly otherwise [Uli88,HSD13]. Varia-
tions can be generated by altering the distances between points and
introducing randomness via adding, removing, or moving the sam-
pling points [L1082, MF92, BSD09, Fat11,dGBOD12,JZW*15], or
tiling [Ost07] methods. Such distributions are very important for
their anti-aliasing properties [Uli88, HSD13], and can be combined
with adaptive density methods [LWSF10, dGBOD12, CGW*13],
or generated on surfaces [JZW™15] for further applications. How-
ever, they cannot be utilized to model more complex patterns where
this correlation model does not hold. To synthesize more gen-
eral patterns with controlled characteristics, recent techniques rely
on matching the statistics of output distributions with given tar-
get statistics [ZHWW12,0G12, WPC* 14, AHD15]. These methods
can also handle adaptive density, but are not trivial to extend to non-
Euclidean domains such as surfaces [JZW™*15]. Paralleling analy-
sis methods, all synthesis algorithms so far assume a given con-
stant pair-wise correlation model, and locally alter the density or
anisotropy of points distributions. A notable exception is the work
by Ju et al. [JCP*10], which, however, only models group motions
and crowd behaviour based on a qualitative analysis. We present the
first technique that can synthesize general point distributions with
adaptive pair-wise correlations and density. It has been observed
in rendering [Durl1,SK13, SNJ* 14] that adapting both simultane-
ously can reduce the error in numerical integration. We show that
such adaptivity can also significantly improve image and geome-
try sampling. The algorithm offers full control over the spectrum

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.



R. Roveri et al. / General Point Sampling with Adaptive Density and Correlations

of points on surfaces, in contrast to the previous surface sampling
methods.

Stochastic point processes. The discipline of stochastic point pro-
cesses [MWO04, IPSSO08] provides a principled mathematical treat-
ment of general point patterns by characterizing generating pro-
cesses that underlie point distributions. Hence, each distribution is
considered a realization of a stochastic point process. A point pro-
cess can be defined by setting a random variable at each point in
space, and analyzing the correlations among these random vari-
ables. Equivalently, we can consider correlations among point lo-
cations over different realizations of a point process. Intuitively,
first order correlations describe density, and second order pair-wise
correlations determine the arrangement of points. Recent works
in computer graphics explore utilizing statistics from point pro-
cesses to analyze and synthesize point distributions [WW11,0G12,
HSD13]. The main assumption of these works is that the underlying
point process is stationary, i.e. the generated distributions are trans-
lation invariant up to density differences. Adaptive density can then
be obtained by altering the distance or difference metric utilized.
However, many important distributions from classical jittering pat-
terns [Mit96] to complex distributions found in nature [IPSSO8]
cannot be modelled with these assumptions. We abandon the as-
sumption of an underlying stationary correlation model, propose a
comprehensive analysis framework for understanding a more gen-
eral set of point processes, and develop the associated synthesis al-
gorithms.

3. Analysis of General Sampling Patterns

In this section, we introduce a theoretical framework to study gen-
eral point patterns, and a set of tools and diagrams that allow
for qualitative and quantitative understanding of point distributions
exhibiting spatially adaptive density and correlations. We will il-
lustrate that applying existing analysis techniques does not yield
meaningful statistics for this general case. We start with the most
general case where first and second order correlations are consid-
ered, and move on to a locally stationary model that describes a
wide range of natural and synthetic point patterns.

3.1. Stochastic Point Processes

The field of stochastic point processes provides a general mathe-
matical framework to study point patterns. Intuitively, a point pro-
cess is a generating algorithm or mechanism for a set of distribu-
tions that share common characteristics. We utilize this theory as a
basis to understand and analyze general point patterns with adap-
tive correlations. We present a brief introduction to point processes,
we refer the readers to the excellent books [MWO04, IPSS08] for a
more in-depth discussion.

The main construct to define a point process is assigning a ran-
dom variable X (B) to every Borel set B € D for a given domain
D. Hence, a point process is described by infinitely many random
variables. If we fix some sets B;, we can stack all random variables
for these sets to have the random vector X = [X(By), -, X (Bx)]”.
The point process can then be fully defined by the joint proba-
bility P(X(B1) < b1, ,X(Bn) < by) of the random variables at
B; for all n and all different sets B;. A familiar example of such
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a random variable is the random number of points N(B) in B.
We can then study the joint probability of the random variables
N(By),--- ,N(By) to characterize a point process. For the simplic-
ity of the exposition, we will consider point processes with D € R?
in the discussion below, but the concepts also extend to general
measure spaces.

General Gaussian processes. Gaussian processes cover almost
all types of point processes encountered in applications [IPSS08].
These processes are characterized by having a Gaussian distribu-
tion for the random vectors X. Hence, the mean and covariance of
the vectors are sufficient to describe Gaussian processes. The im-
portance of such processes is highlighted by the term second or-
der dogma in physics [IPSS08], as they very accurately model all
distributions found in nature. For these processes, the first and sec-
ond order moment measures and the associated product densities
are sufficient for a complete specification.

Product densities. All Gaussian processes can be described by the
first and second order product densities. The first order product den-
sity A(x) is called the intensity of the point process, and intuitively
measures the average density of points at x over different distribu-
tions generated by the point process. It is proportional to the prob-
ability of finding a point in an infinitesimal volume dx around x
such that A(x) = p(x)dx. The expected number of points in a set B
is given by the integral ExN(B) = [, A(x), where the expectation
is over different distributions X = [x;, - - - |, X; € D generated by the
point process. The second order product density p(x,y) is propor-
tional to the joint probability of finding a pair of points in dx and
dy, p(x,y)dxdy = p(x,y). This statistic determines the pair-wise
correlation model, which can be spatially varying for general point
processes.

Stationary and isotropic point processes. Stationarity and
isotropy are common intrinsic assumptions in the literature. For sta-
tionary point processes, the generated distributions are translation
invariant. Hence, A(x) is a constant, and p(X,y) turns into p(x —y),
a function of the difference vector between two points in space. If
we further assume rotation invariance, then p(|x —y|) is a 1D func-
tion. For stationary distributions, the second order product density
is often expressed in terms of the normalized pair correlation func-
tion (PCF) g(h) = p(h)/A%, where we defined h = x —y. Estima-
tors of PCF are used for analysis and synthesis of stationary distri-
butions in recent works [WW11,0G12, HSD13]. It is also closely
related to the more commonly used periodograms with a Fourier
transform [HSD13]. Utilizing this simplified form of pair-wise cor-
relations lies at the heart of the main limitation of previous analysis
and synthesis methods. Instead, we will utilize the general p, and a
model with local stationarity for our techniques.

3.2. Locally Stationary Processes

Analysis with general first and second order statistics is in general
difficult as the resulting measures are not intuitive, and hard to es-
timate unless many instances of the same pattern are available, due
to the expectations Ex involved (we present a formal derivation of
the estimators of product densities, and related measures in the sup-
plementary material). For many cases, however, it can be assumed
that these measures exhibit a certain degree of smoothness in space.
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Figure 2: A distribution with adaptive correlations (left), and the
space of extracted PCF’s (right) projected into a two dimensional
subspace via PCA. Our algorithm detects the two indicated PCF’s
as the dominant ones, and represents all others as linear combina-
tions.

We can then decompose the pattern into locally stationary patterns
around each point in space.

Within the neighborhood Nx of a point x, the pattern is then fully
described by a constant intensity Ay, and a PCF gy (h). For a sta-
tionary distribution, there can only be a global anisotropy due to the
translation invariance of the generated point distributions [IPSSOS8],
such that the PCF can also be written as gx(|/h|) once the neighbor-
hood is reshaped with a matrix My by applying it to all h;; = x; —x;;
for x;,x; € Nx to cancel this global anisotropy (we elaborate on
how M can be computed in the supplementary material).

Given a distribution with the set of points {x;,-- -} generated by
an underlying point process, the local intensity Ax and PCF g, can
be estimated. The intensity has a natural estimator as we derive in
the supplementary material with A, = 2xieN, k(x,x;) for anormal-

2.2
ized kernel such as the Gaussian k(x,x;) = e~ ¥ %117/ /(\ /no)?.
The smoothness of the estimation controlled by ¢ can be set to re-
flect the assumed density variation in the distribution.

The estimated PCF can be computed by utilizing an existing
smooth estimator for isotropic processes [IPSS08, 0G12]:

1 k(b — k1)

ge(hl) = o
R2ovalmja—T oty g ()

(D

where |0V is the volume of a unit sphere in d dimensions, ary,,
is the autocorrelation function of the indicator function for N, i.e.
Iy, (y) = 1 for y € Nk and zero otherwise, and k is a 1D normal-
ized kernel (we use the Gaussian).

The intensity in the whole domain can be simply set as X(x) =
Ax. Similarly, the tensor field given by My can be interpolated or
visualized as part of the analysis. However, setting a different PCF
for each point in space adds many degrees of freedom, and hence
makes qualitative and quantitative analysis, as well as synthesis dif-
ficult. Hence, we would like to compress the space of PCF’s present
in a given distribution.

3.3. Spatially Varying Correlations

It has been observed in previous works [OG12, HSD13] that the
space of possible PCF’s is rather limited, as valid PCF’s lie on
a subspace of low dimensionality (effectively 2 or 3 dimension).
Due to this low dimensionality, all PCF’s can be represented as
linear combinations of a few basis PCF’s. Although Oztireli and

Gross [OG12] have shown that the subspace of the PCF’s is ap-
proximately linear, our only assumption for analysis is its low di-
mensionality such that PCF’s can be represented as linear combina-
tions of a few basis PCF’s (for synthesis, we will need the stronger
linearity assumption, as elaborated on how we do synthesis). We
thus would like to summarize the variability in Ny with a PCF dic-
tionary, and express the rest of the PCF’s as linear combinations of
the dictionary elements.

In practice, we will have a finite number of neighborhoods Nx
around certain points ¢; in space. These points can be regarded as
measurement points for the computed statistics. The corresponding
PCF’s g;(|h|) at ¢;’s are sampled and stored as vectors gj.

Given these g;, we would like to compute L basis PCF vectors
g; such that all others can be represented as a linear combination of
these PCF’s. Note that we would like to have a compact representa-
tion with an as small as possible L, while tolerating a certain error.
The g;’s should also provide a meaningful summary of the adap-
tive correlations. We thus do not utilize sparseness based dictio-
nary learning algorithms that generate an over-complete represen-
tation. Since there can be a variety of PCF’s appearing in a given
distribution, a simple clustering algorithm such as k-means cluster-
ing will also not give meaningful summaries, as can be observed in
Figure 2.

Instead, we adopt an approach that is motivated by the structure
of the PCF space. Oztireli and Gross [OG12] have observed that the
main variation in the PCF space is due to the degree of irregularity
in the generated distributions, and most variance can be captured
with a few components. We thus first perform a PCA on the vec-
tors g; and reduce the number of dimensions such that we retain 99
percent of the variance. This typically results in three components,
the first capturing most of the variance. We then choose the PCF’s
that are at the two ends of the line segment formed by the first
component as shown in Figure 2. If these are already very close,
we can conclude that the distribution is stationary. The weights wy;
are then computed as described below such that g, = >, wyg +
e;. If maxy |e|| > eg for a threshold eg, the PCF that is furthest
away from the already added PCF’s is added. These two steps are
performed alternately till the maximum error becomes sufficiently
small. For each g;, the weights are computed by solving the fol-
lowing optimization problem for wy; with quadratic programming:

L 2

8k — Z Wii8l

=1

min

L
Zwkl =1, wy=0. (2)
=1

We illustrate an example of the chosen PCF’s, corresponding
patches, and weight maps for those PCF’s in Figure 3. This is a
synthetic example generated by our synthesis method we describe
in the next section and thus comes with known ground truth PCF’s
and weight maps. Our analysis accurately figures out the two main
PCF’s and their interpolation weights.

3.4. The Analysis Framework

Our framework thus estimates spatially adaptive density, the basis
PCF’s g;, and the corresponding interpolation weights in space. We
plot some of these diagrams for synthetic examples in Figures 1
and 3, and for a real example with distributions of locations of
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Figure 3: An input distribution (left) and its analysis via our method, differential domain analysis [WW11], and periodogram. The patches
that correspond to PCF 1 and 2 are marked on the point distribution. The weight map shown is wy for PCF 1. We do not show w, as it
is equal to 1 —wy. This is a synthetic example, with ground truth PCF’s and weight maps provided. Our analysis successfully recovers the
dominant PCF’s and weights. Since the previous analysis methods mix different correlations, they cannot provide an informative summary.

Figure 4: (Top) From left to right: a real-world distribution of
sheep, intensity map, and weight maps for the two marked patches.
(Bottom) Zoomed regions around the marked patches.

sheep acquired from a real scene in Figure 4. Note that before com-
puting the PCF’s, local anisotropy can be canceled as explained in
the supplementary material, and the PCF’s g; are normalized with
respect to density (Equation 1). Thus, we get the same PCF regard-
less of these degrees of freedom.

Discussion. The density estimate we compute is closely related to
previous works that utilize such local modulations of difference
vectors or distances [LWSF10, WW11]. The mentioned methods
compute these directly from the spaces or functions to be estimated,
e.g. replace Euclidean distance with geodesic distances, or com-
pute the anisotropy tensors from an image to warp the difference
vectors. After local normalization with density and anisotropy, pre-
vious analysis methods compute global statistics such as PCF’s or
periodograms on the whole dataset, leading to blending of different
correlations, as discussed above and shown in Figure 3. In contrast
to these approaches, our analysis technique can separate the impor-
tant components of correlation models and density apart, and have
spatially-adaptive correlations explicitly built in for handling com-
plex point distributions.

Especially for clustering distributions, there is an inherent ambi-
guity on whether the intensity or PCF is causing the fluctuations in
the density of points [IPSSO8]. Hence, given a distribution such as
in Figure 3, it is hard to disentangle these two different statistics.
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Our strategy is letting the user assume a certain degree of smooth-
ness for intensity, such as the one we show in Figure 4.

In practice, in this work we assume local isotropy, as we
work with small neighborhoods and we did not encounter locally
strongly anisotropic distributions in practical cases. In the supple-
mentary material, we describe how strong local anisotropy can be
handled with standard methods from point processes.

Parameters. For computing the PCF’s we use the same parameters
as in a previous work [OG12]. All parameters are relative to ruax,
the minimum distance between pairs of points for the maximum
packing of points in a domain [LD08]. We then set ¢ = 0.25 for
the Gaussian kernel in Equation 1, the lower and upper limits for
the PCF to r, = 0.016 and rj, = 2.5, respectively, and use a regular
sampling of |h| with 100 samples to convert gi(||h|) to the vec-
tors g;. The smoothness of the intensity A(X) is a user given param-
eter, to disambiguate the intensity-correlation duality as described
above.

4. Synthesis of General Sampling Patterns

Our synthesis algorithm follows the same model of local stationar-
ity as elaborated on in the last section. We assume that the intensity
A and PCF g (r) = gi(|h|) for each neighborhood N, are pro-
vided or estimated from one or more example distributions with the
proposed analysis framework. Then, the main idea of the synthesis
algorithm is to generate a new distribution with statistics matching
these target statistics.

4.1. The Synthesis Algorithm

We assume that we are given a domain and z points to be distributed
to match the target characteristics. The intensity function A(x) can
be scaled with a constant factor such that its integral is equal to n
over the domain. For each neighborhood A, the fitting error can
then be computed as:

E(X) = J

Ta

Tb

(s =) @

Here, X denotes the set of sampling points within Ay, g& (r) is the
estimated PCF from these points with the estimator in Equation 1,
and gy (r) is the target PCF to be matched to. The gradient aixiEk is
then computed and summed over all neighborhoods to get the final
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Figure 5: Adaptive neighborhoods (right) can provide more accu-
rate matching of target sample statistics than isotropic ones (left).

gradient A; = >, (%Ek for point x;. We then perform a gradient
descent x; = X; — AA;, where we choose A with a line search at each
iteration. Similar to the previous section, we discretize the PCF’s
such that the integral in Equation 3 turns into a sum (we explain
how this can be adapted to handle strong local anisotropy in the
supplementary material).

Size and distribution of neighborhoods. We assume that the
domain is divided into overlapping spherical neighborhoods N
around center points ¢;. The volume || of each neighborhood is
computed such that there are the same number of points in each
Ny, by setting [Ny | = on/)y for a constant factor o and the total
number of points n. Since we assume that the point process is lo-
cally stationary in N, the expected total number of points in N,
is then given by [IPSS08] S\Nk\ AM(x) = |[Ng|Ax = an. Note that by
fixing the number of points in each neighborhood, we also fix the
rmax (Section 3.4, parameters) when estimating the PCF’s.

To get correctly blended characteristics, each neighborhood
should also see points belonging to the others. For a neighborhood
of radius Ry, we thus retrieve all sample points that fall into a hy-
persphere of radius Ry + r;, when computing the gradients a%,Ek
for all x; € NVp. For constant R; = R, the neighborhood centers ¢,
lie on a regular grid. The spacing of the grid is set as T = R/2.

Adaptive neighborhoods. In the case of adaptive A, the neighbor-
hood size and thus R changes. Decreasing the spacing, i.e. having
neighborhoods such that 7 < R/2, does not alter the synthesized
distributions, but degrades the performance. Hence, we utilize a
conservative greedy non-uniform sampling of ¢, for efficiency. We
start from a sparse grid such that 7 = miny Ry.. Each grid point ¢, is
then subdivided, starting from ¢; with the largest A;, such that for
each one-ring neighbor 7' < Ry/2.

Discontinuities in the density function violate our assumption of
local smoothness in isotropic neighborhoods. For these cases, it is
important to have an adaptive neighborhood that aligns itself along
the discontinuity and thus avoids it. Typical examples of such cases
are stippling images when the intensity changes abruptly, or ge-
ometry sampling when there are sharp features. For such discon-
tinuities, we utilize adaptive neighborhoods computed by confin-
ing the neighborhood to one part of the discontinuity. For images,
a bilateral filter on intensities, and for geometry on surface normals
is first applied to cluster similar pixels/geometry points. Then, any
neighborhood that contains different clusters is subdivided along
the discontinuity. An example where we apply isotropic and adap-

PCF

Figure 6: A blue noise pattern [BSD09] (left) is used as the input
for our texture synthesis approach (center) and for our PCF based
synthesis algorithm (right).

tive neighborhoods for geometry sampling with blue noise is shown
in Figure 5.

Initialization. We use a simple initialization strategy with random
sampling. Around a randomly chosen neighborhood center ¢;, we
iteratively pick a random point, and keep this point if all neigh-
borhoods containing this point have not reached the desired num-
ber of points. We then discard the ones that already contain enough
points, and continue with random sampling around the remaining
neighborhood centers.

Non-ergodic processes. So far we have considered ergodic distri-
butions where the statistics of the underlying point process can be
estimated by observing a single distribution. There exist stationary
point processes that are non-ergodic [[PSS08]. An important exam-
ple that we encounter in practice is the locally regular distribution,
where the points lie on a regular grid with fixed orientation but ran-
dom global translation. Such a distribution is referred to as uniform
or isotropic jittering in the literature [RAMNI12, O16]. The statis-
tics for this case cannot be extracted or matched to by considering
just a single distribution, as it will have a constant global transla-
tion. In other words, expected values computed over many distri-
butions are not equal to those over a single larger distribution.

For these cases, we propose to extend an existing discrete texture
synthesis algorithm [ROM*15] as we elaborate in the supplemen-
tary material. For ergodic distributions, this method provides iden-
tical results to those generated by the synthesis algorithm presented
in this section (Figure 6), as the same statistical measures are as-
sumed for both cases. For all non-ergodic synthesis results in this
paper, i.e. where locally regular distributions need to be generated,
we employ this method.

5. Results and Discussion

We test our analysis and synthesis algorithms for a variety of dis-
tributions on Euclidean domains and curved spaces, and illustrate a
series of applications for these generalized sets of distributions.

5.1. Analysis and Synthesis of Complex Distributions

We illustrate several examples with adaptive density and correla-
tions in Figures 1, 3, 4. The distributions in Figures 1 and 3 are syn-
thesized with known characteristics, i.e. PCF’s and weight maps.
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1 I
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Figure 7: (Top) The extracted PCF’s and weight maps from a real-
world distribution of sheep (Figure 4) are used to synthesize a new
distribution with a new drawn weight map for PCF 1. (Bottom)
Distribution of trees in a forest is analyzed, and a new forest with a
custom weight map for PCF 1 is synthesized.

Our analysis recovers the ground truth parameters, and our synthe-
sis reproduces local PCF’s very accurately. Notice that, while lin-
ear transitions in PCF’s may not translate into visually linear tran-
sitions of distributions, our algorithm synthesizes new distributions
with the same visual transitions of the given example distribution.
In Figure 4, the characteristics of a sheep distribution are extracted
from a real-world distribution. It can be observed that they form
more regular structures near the fences on the left. We then take
these weights and warp the one for PCF 1 to simulate a circular
fence in Figure 7, and synthesize a distribution. The result accu-
rately reproduces the distributional characteristics of the sheep in
accordance with the environment.

A similar analysis and synthesis result is shown in Figure 7, sec-
ond and third rows, for the distribution of trees in a forest. Instead
of extracting from existing natural distributions, the characteristics
can also be specified by pre-determined rules. In Figure 1, the trees
are forced to form more regular distributions at lower altitudes, in
accordance with real-world observations.
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5.2. Image Sampling and Reconstruction

Being able to control local characteristics of point distributions
opens new ways of improving irregular sampling for function re-
construction and representation. We illustrate an example to image
plane sampling and reconstruction. Instead of using patterns with
anti-aliasing properties such as blue noise, or merely adjusting den-
sity or metrics based on image content, we propose to steer both the
density and correlations in order to obtain better image reconstruc-
tions from irregular samplings.

The main idea is that by distributing sampling points regularly
along main image edges, and ensuring that we do not run into alias-
ing artifacts by a smooth transition to blue noise, we can get sharper
and artifact-free reconstructions. We illustrate examples where we
compare to a blue noise pattern and the bilateral blue noise sam-
pling of Chen et al. [CGW™13] in Figure 8. We first distribute sam-
ples with different methods. For our synthesis algorithm, we ex-
tract the edges in an image with Canny edge detector, and smooth
them to obtain the weighting map (Figure 8, left, insets) for the reg-
ular distribution. This is used to interpolate between the regular and
blue noise distributions. We align the regular distributions with the
edges by computing the local orientation of the closest edge.

Each sample carries a color value. These samples are used to re-
construct an image. For the reconstruction, we use isotropic Gaus-
sian kernels (Figure 8, top) and iterative bilateral filtering (Figure 8,
bottom), when comparing to blue noise and Chen et al. [CGW*13],
respectively. Combination of regular and blue noise sampling leads
to significantly improved results, especially around the edges, for
both cases.

5.3. Image and Video Stippling

Such rules can also be defined for image stippling to generate al-
ternative stippling styles. In Figure 9, we illustrate how combina-
tions of blue noise and regular sampling can be utilized to generate
stippled images with a novel style. For these images, the intensity
at a pixel determines the density of the points as in previous works
(e.g. [Fatl1,ZHWW12]), and a smoothed edge map is used as the
weight map for interpolating between a blue noise and regular dis-
tribution. Similarly to our image sampling results, we first detect
the main edges of the image, and set the weight associated with the
regular distribution for a neighborhood N to be inversely propor-
tional to the distance between ¢; and the closest edge, such that as
we move away from the edges, we get a more blue noise type dis-
tribution. The smooth transition between the two correlation mod-
els result in artifact-free distributions. This is in contrast with dis-
tributions generated by simply defining separate regions for blue
noise and regular sampling as illustrated in Figure 9, middle. For
this case, additional structures appear around the edges, leading to
visually unpleasant results.

‘We can develop and extend other stippling styles as well thanks
to the generality of the distributions we can handle. In Figure 10,
we show a different stippling style, which is closer to the one pro-
posed by Kim et al. [KSL*08]. In this style, we extract stylistic
smooth edge maps [KLCO07] (Figure 10 top, middle), and com-
pute the weight map for regular distribution (Figure 10 top, right)
by dilating and smoothing them with a Gaussian. To achieve a
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more regular looking style, we generate larger regular regions
compared to the previous results. We use the PCF of a blue noise
pattern [BSDO09] as the second PCF, and blend between this and
the regular distribution using the computed weight map. The edge
tangent flow [KLCO07] (a smooth vector flow describing the salient
edge tangent direction in the image) is used to orient the regular
distribution along the extracted edges. The density is constant and
the sizes of the dots are changed depending on the intensity of the
image, as in the work by Kim et al. [KSL*08]. Finally, the ex-
tracted lines are shown together with the points.

Interpolating between oriented regular distribution close to the
edges and blue noise elsewhere allows us to avoid artifacts in re-
gions were multiple lines with different orientations intersect. Even
though Kim et al. [KSL*08] propose additional controls to han-
dle such cases, their method, purely based on regular distributions,
can result in structured artifacts, as illustrated in Figure 11, left. By
placing blue noise at the intersections, our method replaces these
structures with blue noise instead (Figure 11, right).

Video stippling. The neighborhoods in our synthesis algorithm can
also be extended in time to get spatio-temporally smooth sampling.
‘We show an example of video stippling in the accompanying video,
using the previously explained stippling style. For these results, in
addition to blending a regular and a blue noise distribution, we set
the PCF of a neighborhood at frame ¢ to be a combination of its
PCF and that of the same neighborhood in the previous frame. The
weight assigned to the previous frame determines the trade-off be-
tween temporal smoothness and fidelity to the current frame. We
found that a weighted average of PCF’s where the PCF of the pre-
vious frame is given a weight of 0.25 works well in practice, i.e.
g =0.25g_,+0.75¢:.

5.4. Geometry Sampling

Our synthesis algorithm extends to curved surfaces. Although re-
cent works [JZW*15] explore adapting the spectrum of blue noise

Reconstruction
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Figure 8: Input images (with extracted and smoothed edges used for determining the weighting for regular sampling in our synthesis shown
in the insets), sampling results with blue noise, bilateral blue noise [ CGW*13], and our technique, and the corresponding recontructions
with isotropic Gaussian kernels (top) and iterative bilateral filtering (bottom).

Reconstruction
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distributions on surfaces, to the best of our knowledge, there does
not exist any algorithm to generate distributions with general char-
acteristics on curved domains. We illustrate different noise patterns
on surfaces in Figure 12. Similar to the planar case, our technique
allows to generate smooth transitions between different patterns
on surfaces as well, as shown for a combination of blue and green
noise in Figures 12 and 1. We use a simple approximation of sur-
face geodesics [BWWM10] in the synthesis algorithm. For every
local patch, the distances are computed on the tangent plane of the
surface, and the points are projected back to the surface after being
moved, similar to previous techniques for blue noise sampling on
surfaces [OAG10].

5.5. Performance

Most of the 2D distributions shown in the paper contain about 5000
samples and were generated with about 200 neighborhood cen-
ters ¢;. The stippling images with adaptive density (zebra) contain
about 25000 samples and were generated with 10000 neighbor-
hoods. The geometry sampling examples have up to 15000 sam-
ples and were generated with 2000 neighborhoods. To compute the
gradient of a sample, the PCF’s of all the neighborhoods in which
the sample is included are taken into consideration. Thus, the per-
formance is mostly influenced by the radii R, and the spacing of
neighborhood centers ¢;. On average, 25 iterations were needed un-
til convergence. Our unoptimized, single core implementation takes
up to one minute to complete one iteration on a PC with an Intel i7-
3770K CPU. The bottleneck of the algorithm is the update of the
PCF’s of all the neighborhoods containing a point, after moving it,
which could be optimized by computing some of the gaussians only
once to update multiple PCF’s. Furthermore, our synthesis algo-
rithm can be significantly speeded up by moving multiple samples
simultaneously, as they influence only their local neighborhood.

(© 2017 The Author(s)
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Figure 9: From left to right: stippling with blue noise sampling, regular and blue noise sampling with a sharp transition, and regular and
blue noise sampling with smooth transitions along the edges. The combination of blue noise and regular sampling with smooth transitions
avoid artifacts, while providing a novel sharper stippling style, as illustrated in the insets below. This figure is best viewed on a computer
screen, please zoom-in to see the details clearly. For vector graphics images we refer to the supplementary material.

5.6. Limitations

Theoretically, it is possible that there exist point patterns that vi-
olate the local stationarity assumption, with dense discontinuities
of the first and second order correlations throughout the space, al-
though we have not encountered such distributions in practice. As
we elaborate in the supplementary material, a more general anal-
ysis is possible, but will lead to major difficulties since it requires
multiple instances of the same distribution.

When analyzing a given distribution, it is in general an ill-posed
problem to determine the intensity, anisotropy, and second order
correlations without certain assumptions. Our choices of a smooth
intensity, a simple anisotropy model, and interpolated PCF’s pro-
vide a set of such priors. Note, however, that the forward problem
of synthesis does not suffer from this limitation, and we do not as-
sume smooth density in that case.

Finally, our synthesis algorithm shares some of the limitations
of previous PCF based fitting algorithms [OG12], as it simplifies to
those for the case of a globally constant PCF. In particular, we can-
not guarantee a minimum distance between point locations when
synthesizing blue noise distributions, as the contribution of a pair
of points can be blurred out by many others in the PCF. This can
lead to small fitting errors.

6. Conclusions and Future Work

We introduced novel analysis and synthesis techniques for point
distributions with adaptive density and correlations. The analysis
framework provides an informative view of complex distributions
with extracted maps capturing different distributional characteris-
tics. Based on the same characteristics, the synthesis algorithm
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combines adaptive density and correlations and extends to general
domains.

Sampling and anti-aliasing. The proposed general framework of-
fers new possibilities for accurate representation or anti-aliasing of
images, instead of the generic patterns with blue noise properties.
Exploiting the redundancy of image patches, measures based on
the local content such as edges, textures, and other structures can
be computed and utilized to steer the synthesis algorithm for gen-
eral images.

Rendering. Rendering involves computing integrals of complex
functions. Traditionally, density adaptation of the samples via im-
portance sampling has been the norm to improve the rendering
quality by reducing noise while avoiding artifacts due to aliasing.
Recent works [Durl1, RAMNI12, SK13, SNJ*14] have shown that
adapting density and correlations simultaneously can significantly
improve the rendering results. However, the researchers have been
limited by the analysis techniques [SK13] and pattern generation
algorithms. Our techniques can be instrumental in developing new
sampling methods and understanding existing patterns utilized in
rendering such as for distributed ray tracing. As an example, com-
bining adaptive correlations with the recent works that explore
correlation models for rendering, e.g. [016], can be an exciting
future direction.

Understanding natural phenomena. Distributions and patterns in
nature are inherently spatially adaptive due to environmental fac-
tors. We have illustrated that (e.g. Figure 4), it might not be possi-
ble to explain natural distributions by simply adaptive density. Our
framework can be utilized to understand a spectrum of distributions
ranging from surface details [YHJ*14], facial features [BBN*12],
fluid particles [0G12], to crowds [JCP*10].
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Figure 10: Stippling with a different style. On the top row, we also
show the extracted edges, and the corresponding smoothed map for
the regular distribution.

Figure 11: Stippling a triangle using the method of Kim et
al. [KSL*08] (left), and our style (right).

Figure 12: Our synthesis algorithm can generate patterns with
controllable characteristics and transitions on surfaces.

Geometry reconstruction and remeshing. Reconstruction of ge-
ometry from point samples, and remeshing surfaces for render-
ing or simulations critically depend on the quality of the sam-
pling patterns, given by both the density and the pair-wise correla-
tions [OAG10,JZW™*15]. Our synthesis algorithm extends full cor-
relation control to surfaces, unlocking a significantly extended set
of sampling patterns for geometry sampling. Similarly to our image
reconstruction application, sharp features in surface reconstruction
could be better preserved by aligning regular samples along them.
For remeshing, a regular sampling could be ideal to generate quads,
and a blue noise distribution could be adopted for transitions.

Marked and space-time processes. We have illustrated a simple
application of spatio-temporal sampling for stippling videos with
a trivial extension. A more in-depth analysis with space-time pro-

(© 2017 The Author(s)
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cesses can be used to principally extend our techniques. Similarly,
extensions of the framework to multi-class sampling can be devel-
oped with the theory of marked processes [IPSSOS8].
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