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Abstract

In this supplementary material, we detail an alternative synthesis algorithm that we use to generate results with locally regular
structures. We start from an existing discrete texture synthesis method and show how it can be extended to support locally
stationary non-ergodic point processes. In the second Section, we explain how strong local anisotropy can be handled in our
analysis and synthesis framework.

1. Synthesis of Locally Non-Ergodic Sampling Patterns

Our synthesis algorithm assumes a locally stationary point process
and synthesizes a single instance, i.e. distribution, of such a point
process. However, for non-ergodic processes, statistics cannot be
reliably extracted from a single distribution. In other words, ex-
pected values over different distributions generated by the same
point process cannot be estimated from a single larger distribution.
An example of a non-ergodic stationary process can be obtained by
taking a regular grid, and randomly translating or rotating it, which
is also called uniform or isotropic jittering [RAMN12, Ö16] in the
literature. For these processes, difference vectors between sample
points always stay the same as the points always form a regular
grid. However, each instance is actually different due to the random
global translation of the grid. This cannot be inferred by observing
a single distribution.

This is problematic for our synthesis algorihm as the output
statistics are extracted and matched for a single distribution, the
synthesized distribution. Thus, for locally non-ergodic stationary
processes, we need a different synthesis approach. For these cases,
we thus extend a recent texture synthesis based approach for syn-
thesizing distributions of discrete entities [ROM�15].

Below we first explain the basics of this algorithm, and then elab-
orate on how it can be adapted to synthesize distributions from lo-
cally stationary ergodic or non-ergodic processes.

1.1. The Synthesis Algorithm

We start from the formulation of a recent patch based texture syn-
thesis algorithm that can handle discrete repeated structures in gen-
eral domains [ROM�15]. The algorithm takes a single example
distribution as the input, and generates a distribution with similar
local structures. Due to the point-based representation of the tex-
tures, and smooth formulation of the resulting optimization prob-

lem, this formulation forms a suitable foundation for our synthesis
algorithm.

The original algorithm is based on a local similarity measure
between a continuous output function fpxq and the continuous ex-
ample function epxq. The similarity error density is defined, for the
location x, as

Spfpxq,epmpxqqq �
»
Rn
|fpx� sq� epmpxq� sq|2 wpsqds (1)

where wp.q is a window function which delimits a local neighbor-
hood N , and mpxq is a discontinuous mapping that matches each
output domain point x to a point mpxq within the domain of the
example function. Intuitively, S measures how well a local patch in
f matches some other local patch in e. The extent of the patches
is given by the window function w, and the center locations of the
matching patches are x and mpxq for f and m, respectively.

The total similarity error between the output and input functions
is then defined as

T �

»
D

Spx,epmpxqqqdx, (2)

where D is a subspace in the output domain. The T sums up all
matching scores and thus measures the overall matching accuracy
of each patch in f to some patch in e. For minimum T , we thus
need to have that for each patch in the output f , we have a matching
patch in the example e.

As in the common neighborhood matching based texture synthe-
sis methods, the T is minimized alternatively for mpxq and fpxq,
with a matching step (where the best matching neighborhoods for
the current fpxq are found, i.e. mpxq is computed), and a merging
step (where the best output function fpxq is computed for the cur-
rent mpxq).

The key idea of the synthesis algorithm is forming these func-
tions f and e in terms of the sampling points. Denoting the sample

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



paper 1192 / General Point Sampling with Adaptive Density and Correlations | Supplementary Material - Algorithms

points in the synthesized output as tpxiq, i � 1..nu, and those in the
given example distribution with tpeiq, i � 1..mu, the continuous f
and e can be formed by placing Gaussians gpx,σq � e�|x|2{σ2

at all
point locations and summing them together, that is

fpxq �
¸

i

gpx�xi,σq

epxq �
¸

i

gpx� ei,σq. (3)

Then, the similarity error density S can be analytically evaluated
(see the work by Roveri et al. [ROM�15] for details). For the dis-
cretization of the integral in Equation 2, the output domain D is
sampled with a regular grid consisting of the background integra-
tion points ck. For each ck, there is a best matching location mk in
the example domain. Hence, each ck defines a neighborhood Nk
in the output domain, that will match to some neighborhood in the
example domain. The discrete similarity error is then obtained as

T �
¸
k

Spqk,epmkqq. (4)

1.2. Synthesis with Adaptive Density and Correlations

The original algorithm, as described in the last section, is designed
for a single example.

Although the original algorithm from [ROM�15] can synthe-
size output point sets with general repeated patterns, these patterns
are determined by a single example. Hence, it can be used to syn-
thesize a stationary distribution with fixed pair-wise correlations,
while the density can vary in the output space by scaling the exam-
ple [ROM�15], resulting in the same limitations as the previous
sampling papers. Having an example distribution with spatially-
adaptive correlations will not generate adaptive correlations in the
output since the neighborhoods from the example are assumed to
be repeated throughout the output space. Hence, the main challenge
of adaptive synthesis is revising the technique to allow for multiple
examples and their combinations.

Adaptive Correlations In order to synthesize distributions with
adaptive correlations, we thus extend the similarity error density
to consider multiple input functions and weight their importance
depending on the location in the output domain. In this case, instead
of having a single example function e, we have multiple functions
ep.

For an arbitrary point x in the output domain D, there is a weight
wppxq that gives how much example ep is influencing that point.
Our weighted similarity error density then computes a weighted
average of the local similarities between the output function and
multiple input functions, as

Swpxq �
¸

p
wppxqSpfpxq,eppmppxqqq (5)

where Spfpxq,eppmppxqqq is the similarity between the output func-
tion f , and the p-th input function ep, and mp is the matching func-
tion from the output domain to the domain of ep.

In the synthesis algorithm in the paper, we define a pair corre-
lation function (PCF) at each point x as a linear combination of
basis PCF-s. The example distributions that define ep give these

basis PCF-s, and the weights wp correspond to the computed or
given weights for linearly combining the basis PCF-s. Hence, in-
stead of having a PCF at each point in the output domain as a linear
combination of the basis PCF-s, we have the corresponding basis
example distributions and their linear combinations explicitly given
in Equation 5.

Adaptive Density and Orientation The original method ac-
counts for adaptive density and orientation by introducing a scale
factor spxq and a rotation matrix Rpxq defined at every location in
the output domain, which scales and rotates the example domain
before matching. After computing the sizes of the neighborhoods
Nk according to the given local density λk as described in the pa-
per, we adjust the scaling field s such that at each neighborhood,
we have the required number of points αn (please see the paper)
in the neighborhoods of the same size in the example domain on
average. The rotation for each neighborhood is used to rotate the
corresponding examples for that neighborhood before synthesis, as
done by Roveri et al. [ROM�15].

While simply scaling the input function with spxq, as proposed
in [ROM�15], works for slight changes of scales, we found that,
in order to properly handle adaptive densities, it is necessary to ac-
cordingly scale some additional parameters as well which are pro-
portional to the input scale. The standard deviation σ of the Gaus-
sians used to define the input and output functions in Equation 3
needs to be adapted according to the size of the neighborhoods and
hence the scaling function s. If both σ and the local density of the
sample points is small, there is little overlap between the Gaussians,
and the minimization routine will not be able to compute a reliable
gradient. Conversely, having Gaussians with a large overlap blurs
out the distributional details and makes the synthesis not reliable.
For a Gaussian placed at a sample position x in the output domain,
we thus scale its initial σ with the scale factor spxq. We use the
same scheme as in the paper for placing the neighborhood center
points ck.

We show an example case where we compare to the original
algorithm with non-adaptive neighborhood sizes and regular sam-
pling of neighborhood centers in Figure 1. The example input dis-
tribution is shown in (a). Figure 1 (b) shows the output of our syn-
thesis algorithm with our modifications, i.e. setting a proper spac-
ing between the neighborhood centers, while (c) and (d) are ob-
tained with the original algorithm where there are many overlap-
ping large neighborhoods, and neighnorhoods with small overlap,
respectively. Unlike the PCF based synthesis case, our adjustments
for the neighborhood sizes and the corresponding neighborhood
sampling are essential to get correct statistics for point distribu-
tions.

Initialization and Control Sampling We start by randomly
initializing samples in the whole output domain as explained
in the paper. In addition, the optimization procedure described
in [ROM�15] includes a control sampling strategy to dynamically
adapt the number of samples in the output domain and achieve bet-
ter convergence. At each iteration, samples at random positions are
added and existing samples are deleted if this would improve the
similarity error density measure. We refer to the original paper for
more details.

Geometry Sampling and Local Anisotropy The original
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(a) (b) 

(c) (d) 

Figure 1: Different distributions generated for the blue noise input
example shown in (a). We obtain distributions with correct statis-
tics when using our adjusted distribution of neighborhood centers
(b), while having large (c) or small (d) overlaps leads to skewed
characteristics.

method allows to define guiding fields in 3D to accordingly ori-
entate the input example and synthesize a distribution on a curved
suface.

For small anisotropy factors, the original method allows to syn-
thesize anisotropic distribution by simply scaling the input exam-
ple. For strong anisotropy, the method can be extended to utilize
anisotropic Gaussians.

Parameters The parameter σ determines the smoothness of the
matched functions. In our implementation, it is set to the aver-
age spacing between the samples in the example. We refer to
the [ROM�15] for other parameters. The neighborhoods should be
large enough to capture the PCF of the distribution within them. For
the distributions used in the paper, the neighborhoods sizes were set
to include at least 50 samples.

1.3. Limitation

The main limitation of this discrete texture synthesis based algo-
rithm results from using actual example distributions rather than
extracted statistics as we do in the paper. A well-known limitation
of such neighborhood based texture syntehsis approaches is that
they cannot handle repetitions at multiple scales [ROM�15]. For
the case of synthesizing point distributions, this means that clus-
tered distributions, where the points in each cluster follow a certain
distribution, and the clusters themselves follow another distribu-
tion, may not be reliably synthesized. In practice, we have observed
that we still get visually accurate results for these cases. However,
the statistics deviate from those of the examples slightly.

2. Analysis and Synthesis with Local Anisotropy

2.1. Analysis

The matrix Mx is a measure of anisotropy. We utilize 2D anisotropy
measures from the spatial point processes literature [IPSS08] to
compute Mx. This method performs a simple density estimation
on the difference vectors hi j. First, a radial histogram of the vec-
tors hi j is computed. Each bin thus corresponds to a direction on
the unit hypersphere and a distance from its center. The domi-
nant anisotropy is then extracted by picking the directions with the
smallest and largest bin sums. We then form a covariance matrix Cx
with two eigenvectors set as these directions, and the eigenvalues
as the corresponding bin values. Finally, the matrix Mx is set as the
whitening transform Mx � C�1{2

x such that the resulting difference
vectors hi j are distributed isotropically. Note that when we apply
the transform Mx, we assume that the volume |Nx| also scales so
as to keep the intensity at λx. This step is designed for point dis-
tributions on two dimensional domains such as the 2D plane or
two-manifold surfaces in 3D, or with limited number of anisotropy
directions in higher dimensional domains.

2.2. Synthesis

Before feeding into the estimator, the difference vectors hi j are first
whitened with Mkhi j. The gradient B

Bxi
Ek is then computed, mul-

tiplied with M�1
k , and summed over all neighborhoods to get the

final gradient ∆i �
°

k Mk
B
Bxi

Ek for point xi.
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Abstract

In this supplementary material, we present a theory of general point distributions in terms of the product densities of underlying
point processes. We show how these can be estimated from example distributions and interpreted. We establish how this theory
relates to and extends existing techniques that assume a stationary point process, and propose a measure of stationarity.

1. Analysis of General Sampling Patterns

1.1. Campbell’s theorem

Campbell’s theorem relates sums of values of functions at the point
locations generated by a point process, to the integrals of those
functions and the product densities. For our methods, the follow-
ing two special cases of the theorem will be important,

EX
ÿ

xiPX
f pxiq “

ż

Rd
f pxqλpxqdx, (1)

EX

‰
ÿ

xi,x jPX
f pxi,x jq “

ż

Rd

ż

Rd
f px,yqρpx,yqdxdy, (2)

for any positive function f . We will start from these expressions to
derive our estimators in the next section. For brevity, we drop the
integration domains where clear.

1.2. Estimating Product Densities

Our analysis relies on estimating the statistics λpxq and ρpx,yq as
defined in the previous section. These two statistics define all point
patterns under the common assumption of Gaussianity. The density
measure λpxq can be easily estimated using standard techniques
such as kernel density estimation. The estimation of ρpx,yq has so
far not been considered except for the case of stationary or isotropic
correlation models. We derive a reliable estimator that converges to
ρ, and show that it can be interpreted as a density estimator in the
higher dimensional space of aggregated point coordinates.

Given multiple distributions generated by a point process, we
would like to design unbiased and low variance estimators for the
product densities. We start with deriving an estimator for the inten-
sity based on the Campbell’s theorem and show how it naturally
extends to second order product density ρ. We assume a monoton-
ically decreasing positive kernel function k for the estimators. In
this work, we assume a Gaussian kernel with kipxq :“ kpx,xiq :“

1
p
?

πσqd e´||x´xi||
2
{σ

2
. If we plug this into the expression into Equa-

tion 1, we get

EX
ÿ

xiPX
kpx,xiq “

ż

kpx,yqλpyqdy. (3)

The convolution on the right-hand side converges to λpxq as σÑ 0.
The left-hand side is the classical non-parametric density estimator.
This estimator will get better as we get more instances of the point
pattern.

Utilizing Campbell’s theorem for higher order statistics, we can
generalize this result. Specifically, for any two distinct point lo-
cations xi and x j, if we plug kpx,xiqkpy,x jq into Equation 2, we
obtain

EX

‰
ÿ

xi,x jPX
kipxqk jpyq “

ż ż

kpx,zqkpy, tqρpz, tqdzdt. (4)

Analogous to the estimator for λpxq, the right-hand side converges
to ρpx,yq as σ Ñ 0, and the left-hand side gives us the estimator
for ρ. Hence, we define the estimator for ρ as

ρ̂px,yq “
‰
ÿ

xi,x jPX
kipxqk jpyq. (5)

This estimator can be computed for each x and y by averaging over
different distributions. Note that this is a 2d-dimensional statistic,
to fully capture the rich correlation structure of the underlying point
process.

Interpretation as a density estimator Since we assume Gaus-
sian kernels, we can combine the two kernels in Equation 5 to ob-
tain a single Gaussian that depends on the distance between the
2d-dimensional vectors rxT yT

s
T , and rxT

i xT
j s

T . Hence, this esti-
mator can be considered as a non-parametric density estimator in
the product space RˆR for the points generated by aggregating all
combinations of different points in the original point pattern.
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Figure 1: Plot of ρ for different 1D distributions: regular grid (a),
infinite regular grid with random translation (b), jittered distribu-
tion (c), random distribution (d).

Figure 1 shows plots of ρ for different 1D distributions. For
the regular grid, we get a regular grid again since the density in
the product space is regular. For an infinite regular grid with ran-
dom translation, we get lines parallel to the x “ y line as shown in
Figure 1 (b). This is due to the correlated translation of sampling
points, i.e. for each realization of this point process, the point loca-
tions are x` t and y` t for a random translation t. If this translation
is independent for each sampling point, we get a jittered distribu-
tion [Mit96, Owe13], and the lines start to become blurred due to
the loss of correlations (Figure 1 (c). Finally, for a completely ran-
dom distribution, we get a constant ρ (Figure 1, d).

Relation to previous analysis techniques The ρ reduces to pre-
viously used statistics for the special case of stationary distribu-
tions. For these distributions, ρpx,yq “ ρpx´ yq is constant for all
x and y with y “ x` h for a constant h. Then, we can integrate
over all such x and y pairs to get an estimator of ρphq for stationary
distributions as follows

ż

EX

‰
ÿ

xi,x jPX
kipxqk jpx`hqdxdy

“EX

‰
ÿ

xi,x jPX

ż

kpx´xiqkpx´x j`hqdxdy

“EX

‰
ÿ

xi,x jPX
k1ph´hi jq,

(6)

with hi j “ xi´x j and k1 is a Gaussian with standard deviation 2σ.
This results in the estimator for stationary distributions proposed by
Wei et al. [WW11]. Similarly, if we integrate for constant ||h||, we
can recover the estimator for isotropic point processes in the work

0.2 

0.1 

0.008 

0.004 

(a) (b) (c) (d) 

Figure 2: Variance graph for some 2D distributions: regular grid
(a), infinite regular grid with random translation (b), jittered dis-
tribution (c), random distribution (d).

by Öztireli et al. [OG12]. Since the ρ is related to periodogram
with a Fourier transform [HSD13], spectral analysis can be sim-
ilarly treated in the same framework for stationary distributions.
Note that for the distributions with adaptive density, previous works
alter the difference or distance metric used, but still assume that the
underlying correlation model is fixed by a single translation invari-
ant ρ. The only method that does not operate under the invariance
assumption is proposed by Subr and Kautz [SK13], where they uti-
lize the Fourier spectrum instead of the phaseless power spectrum.
However, spatially adaptive correlations can be mixed into differ-
ent frequencies in the spectral domain, and thus it is not clear how
to interpret and utilize the resulting diagrams for adaptive correla-
tions.

A measure of stationarity The above observation can be uti-
lized to devise a test of stationarity for general distributions. To
normalize with respect to density, we work with the pair correlation
function (PCF) gpx,yq :“ ρpx,yq{λpxqλpyq. We expect gpx,x`hq
to be constant for a given h. Hence, we can define the variance of g
at this h as a measure of stationarity.

ŝphq “ 1
|V |

ż

V
ĝ2
px,x`hqdx´

„

1
|V |

ż

V
ĝpx,x`hqdx

2

, (7)

for a given domain V and its volume |V |. In the product space, this
means that we are measuring variance of the values of g along lines
parallel to the x “ y line. For stationary distributions such as the
uniformly translated grid in Figure 1 (b) and random distribution in
Figure 1 (d), we get low variance along these lines. We further plot
variance graphs for some 2D distributions in Figure 2. As expected,
stationary distributions result in much less variance. We will utilize
this measure to understand the local behaviour of our synthesis al-
gorithm in the next section.
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For each example, in order: 

 

1. Blue Noise  

2. Regular and Blue Noise with sharp transitions 

3. Regular and Blue Noise with smooth transitions 














