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Figure 1: These 3D paintings are rendered in screen space using our method with calligraphy and watercolor styles. The paint
stroke rendering is temporally coherent as the characters and camera are animated.

ABSTRACT
Painterly stylization is the cornerstone of non-photorealistic render-
ing. Inspired by the versatility of paint as a physical medium, exist-
ing methods target intuitive interfaces that mimic physical brushes,
providing artists the ability to intuitively place paint strokes in a
digital scene. Other work focuses on physical simulation of the
interaction between paint and paper or realistic rendering of wet
and dry paint. In our work, we leverage the versatility of example-
based methods that can generate paint strokes of arbitrary shape
and style based on a collection of images acquired from physical
media. Such ideas have gained popularity since they do not require
cumbersome physical simulation and achieve high fidelity without
the need of a specific model or rule set. However, existing methods
are limited to the generation of static 2D paintings and cannot be
applied in the context of 3D painting and animation where paint
strokes change shape and length as the camera viewport moves.
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Our method targets this shortcoming by generating temporally-
coherent example-based paint strokes that accommodate to such
length and shape changes. We demonstrate the robustness of our
method with a 2D painting application that provides immediate
feedback to the user and show how our brush model can be ap-
plied to the screen-space rendering of 3D paintings on a variety of
examples.
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1 INTRODUCTION
State of the art tools for digital 2D painting have reached a level of
maturity that enables expert users to create artistic masterpieces
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using digital painting software. The most popular software pack-
ages use a splat based metaphor as the core brush model. In this
model, brushes are imitated by repeatedly stamping small brush im-
ages along a stroke’s centerline. While flexible, splat based models
cannot easily reproduce many real-world brush appearances. Thus,
more sophisticated methods explore data driven techniques that
use scans of real brush strokes created with media such as oil paint
or calligraphic ink. These methods reproduce the look of real-world
brush strokes with a greater degree of fidelity.

Expressive digital painting is not restricted to 2D. Recent research
has elevated digital painting to 3D in the context of computer-
generated animation. Using 2D gestures on a tablet, users can place
paint strokes on and around 3D characters and environments and
even animate the strokes using keyframing tools. In order to pre-
serve the hand-crafted painterly aesthetic while providing the flex-
ibility of traditional digital painting, rendering methods project the
3D strokes into the 2D viewplane and apply standard 2D brush
models to generate the rendered image. The result is a dimensional
painting that can be viewed from any perspective or even brought
to life using animation.

While these 3D paintings offer an entirely new aesthetic for
computer generated animation, they employ splat based brush
models that are limited in their expressivity and ability to mimic
real-world brushes. The core challenge in this domain is supporting
coherent brush shape and length changes that are inherent in the
context of 3D animated painting. When a stroke is animated or
if the virtual camera moves, the projected 2D stroke can exhibit
dramatic deformations in screen space: its shape and curvature can
vary over time, and its length can arbitrarily evolve. Currently, only
splat based brush models can accommodate these deformations in
a temporally coherent way. As a consequence, painterly animation
has not benefited from advances in more expressive brush models
based on real-world capture. Thus, 3D animated paintings lack the
richness of 2D digital painting since example-based stroke styles
are off limits in 3D.

Our work addresses this shortcoming with a new method for
generating continuously deforming paint strokes. We formalize
this problem in the discrete sense: starting from a paint stroke of
fixed length, and a library of example strokes painted with the
same medium, we precompute shortened and elongated versions
of the strokes, respectively by removing stroke sections and adding
sections found in the stroke library. At run time, if a stroke is
shrunk or stretched, we use a 2D deformation algorithm along with
Poisson blending to continuously add or remove pixels from the
stroke, while guaranteeing temporal continuity.

Our contributions reside in a method for matching stroke parts
to shorten and elongate strokes in a discrete way, and a fast and
robust algorithm for continuous deformation of the strokes. To the
best of our knowledge, the work we present in this paper is the first
method for rendering 3D paintings using a modular, example-based
stroke rendering. Since our algorithm is fast, it can also enhance
2D painting interfaces by displaying real-time feedback to the user
when drawing strokes, which previous methods could not provide
without popping artifacts.

2 RELATEDWORK
Being one of the main pillars of non-photorealistic rendering, pain-
terly stylization has been subject to many research publications.
While we can refer the reader to [Hertzmann, 2003] or [Hegde et al.,
2013] for an extensive study of existing techniques, it is worth
noting the differences between different lines of work to position
our research. In particular, one can distinguish between automatic
and interactive methods. On the one hand, automatic methods like
[Litwinowicz, 1997] stylize images and videos in screen space, and
research in the linage of [Meier, 1996] aims at stylizing 3D scenes
by automatically placing paint strokes on objects and characters.
On the other hand, methods presenting interactive applications
give more control to artists. Notable works include paint gestures
to place multiple strokes for texturing 3D models [Salisbury et al.,
1994], or to place individual strokes, mimicking existing 2D painting
tools while using 3D objects as canvases, like the seminal WYSI-
WYG NPR [Kalnins et al., 2002], Deep Canvas [Katanics and Lappas,
2003], or OverCoat[Schmid et al., 2011].

When reviewing the state of the art in painterly rendering, it is
worth aiming one’s attention towards the paint stroke models that
are commonly used. A vast majority turn out to be splat based or to
use simple procedural or geometry-basedmodels. Many lightweight
brush models were developed for 2D applications, with a focus on
computational efficiency, and the frequency of such methods in
painterly rendering is no surprise. Notable procedural methods
include the popular work by DiVerdi and colleagues for mimicking
watercolor paintings [DiVerdi et al., 2012], or more advanced meth-
ods that treat the 2D canvas as a mesh and represent paint strokes
using triangles [Benjamin et al., 2014].

While such techniques make sense for their specific applications,
they mostly produce uniform strokes that exhibit symmetry. As
a consequence, painterly rendering techniques that rely on them
lack variety. For example, splat models are used in [Meier, 1996],
WYSIWYG NPR [Kalnins et al., 2002], Deep Canvas [Katanics and
Lappas, 2003], and OverCoat [Bassett et al., 2013, Schmid et al.,
2011]. The method of [Litwinowicz, 1997] uses simple 2D capsule
geometry around generated paint strokes.

In the context of digital 2D paintings, attempts at more realistic
renderings havemade use of physical simulation to produce realistic
paint strokes. Papers that target elementary tasks like simulating
liquid dispersion in paper [Chu and Tai, 2005, Van Laerhoven and
Van Reeth, 2005] to those that provide complete frameworks for
bristle simulation like Wetbrush [Chen et al., 2015], all make use
of a particle simulation to represent paint transfer from the brush
to the support as well as an Euler fluid simulation to animate the
paint settling on the support. Intermediate methods like IMPaSTo
[Baxter et al., 2004] put an emphasis on the final appearance of
the paintings, while [Shi and Zhou, 2014] makes use of the GPU to
provide artists with real-time feedback when simulating paint.

In our current work, we leverage the power of example-based
methods. While such techniques do not make use of complex phys-
ical simulations, they can produce a wide range of painting styles.
Two research papers were a direct inspiration for our work: [Ando
and Tsuruno, 2010] and [Kim and Shin, 2010]. Their strategy is to
acquire strokes from physical media and then segment them in
pieces. Once a user draws a query stroke, a rendered stroke can be
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synthesized by stitching stroke pieces together. A line of followup
work has emerged from these advances. In particular, the numerous
publications by Lu and colleagues target realistic-looking paintings
using example-based methods. In HelpingHand [Lu et al., 2012],
they present a method for shape matching between query strokes
and acquired examples. Their further developments in RealBrush
[Lu et al., 2013] use examples of smeared and smudged paint strokes
to broaden the range of styles that their method can produce. Fi-
nally, in DecoBrush [Lu et al., 2014a], they present an extension
of their example-based framework to pattern strokes. However, by
relying heavily on the shape of the query strokes, they have made
example-based stroke animation very challenging.

It is also important to note that this line of work is closely re-
lated to the area of user-guided texture synthesis where the painting
metaphor was first introduced by [Ashikhmin, 2001]. Recent ad-
vances by [Lukáč et al., 2015] are able to synthesize single strokes
with similar quality to RealBrush. Due to their combined formula-
tion of edge and directional awareness they are able to reproduce
the boundary effects typical for natural media. However, all these
methods share the same drawback that prevents their direct applica-
tion to the 3D world: Running their algorithms on the same stroke
at different animation keyframes yields very different appearances
which cannot be simply mitigated by interpolation.

Hence, continuously animating complex paint strokes is a chal-
lenge often mentioned as an open problem in papers cited above.
Of the few proposed solutions, the most significant in our opinion
is SLAM textures [Bénard et al., 2010], where self-similar textures
of various lengths can be synthesized along with continuous ani-
mations blending between them. However, SLAM textures need,
by definition, to be self similar and tileable, which makes them
inappropriate for paint strokes that carry semantic information,
such as variations in shape and texture due to the painting direc-
tion or pen pressure. Inspired by SLAM textures and taking a fresh
start from the methods presented in 2010 [Ando and Tsuruno, 2010,
Kim and Shin, 2010], we synthesize example-based strokes using
stroke example pieces of known size. We show how to generate
a discrete set of strokes of various lengths and how to seamlessly
animate between them. We believe to have opened a new direction
for stroke animation on which advances similar to those of Lu and
colleagues can be built.

3 STROKE ACQUISITION AND
PRE-PROCESSING

Our method takes libraries of strokes painted with different phys-
ical media as input. The examples shown in this paper were ac-
quired with a consumer flatbed scanner. As is commonwith existing
example-basedmethods the painted strokes have to be isolated from
the support color. However, a fully automatic method is not desir-
able since speckles of color around a paint stroke can be ambiguous.
On the one hand, they can be caused by noise in the acquisition
process or grain in the support material, in which case they should
be removed. On the other hand, they can also be a side-effect of
using a rough brush and should be preserved. We therefore involve
the user in this process and ask him/her to perform the clean-up
manually with the help of common tools such as the Photoshop
Magic Wand. After this step no further user interaction is required.

∂B

I

B∂I

Figure 2: We first distinguish between the interior area I
(blue) and boundary area B (red). ∂I and ∂B refer to the
boundaries of the respective regions and are 1-pixel wide 8-
connected lines in the discrete case.

Kim [Kim and Shin, 2010] or Lu [Lu et al., 2013] use shape in-
formation for stroke synthesis and their stroke libraries include
examples with various curvatures to improve their results. However,
we rely on geometric stroke deformation to handle shape changes
continuously over time and cannot benefit from using curvy ex-
amples. Therefore it is sufficient for our system to only collect
relatively straight example strokes. Additionally, we assume the
painting gesture to be from left to right to define the stroke’s start
and end. This assumption can be enforced by manually rotating
the acquired stroke images if needed.

(a) Computing the spine

(b) Source skeleton

stroke length l

stroke
height
h

(c) Target skeleton

Figure 3: We trace ∂B (red line) from the top and bottom re-
spectively at a regular distance to find points on the stroke
spine (blue line)(a). We then cast lines orthogonal to the
spine at each spine point and intersect it with ∂B to form a
quad mesh around the stroke (b). Finally we map the spine
segments and ribs from (b) to a straight spine (yellow line)(c).
Performing texturemapping from the source to target skele-
ton flattens the example stroke.

Since the examples may still contain small curvy parts or be
askew, we perform an additional stroke flattening step (Figure 3).
We start by computing a deformation skeleton that covers the stroke.
Using the same technique as described in [Jamriška et al., 2015], we
first extract the stroke boundary region B and interior region I by
applying Gaussian blur to the alpha mask of each stroke image and
by thresholding the result. We refer to the boundary of each region
as ∂B and ∂I respectively (Figure 2). Choosing a large kernel size (31
pixels in our experiment) results in a smoother contour and adds an
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offset around the stroke so that the full stroke is covered. The alpha
threshold differs from library to library depending on how vivid
the boundary effects are e.g. oil is a medium with highly distinct
features around the boundary and requires a higher threshold.

Unlike Kim [Kim and Shin, 2010] or Lu [Lu et al., 2013] we do
not require the user to trace the stroke center line (also referred
to as spine). Instead we automatically extract it by examining the
stroke boundary across a vertical scanline from left to right at a
fixed interval. We connect the top and bottom pixel of ∂B at the
current scanline and define the midpoint as a point on the spine. For
each such point, we cast a line orthogonal to the spine and intersect
it with ∂B to obtain the ribs of the skeleton. Connecting the rib
ends and spine points defines a sequence of quads that ensures
full coverage of the stroke. Finally, to flatten the stroke we map
the spine to a straight polyline of equal length and equal segment
lengths. Ribs are mapped in a similar fashion onto the flattened
spine and connected to form the target skeleton. The deformation
is simply a quad-based texture-mapping procedure from the source
to the target skeleton. Since we assume relatively straight input
strokes, this process does not introduce significant distortions, and
our stretching and shrinking problem formulations benefit from
working along a straight spine.

The resulting textures are the base strokes of our system and
texture hierarchy as described in Section 4. Each base stroke has
a length l and height h that are defined by the first stroke pixel
encountered from the left and right respectively top and bottom (see
Figure 3c). Additionally, we recompute the boundary-interior mask
for each base stroke and define ∂B of the mask as the boundary of
the base stroke. We have built an interface for the user to choose
which base stroke is used to render a certain input stroke as shown
in the accompanying video.

4 STROKE CUTS
4.1 Overview
Our method begins by synthesizing a texture for a given query
length lq . We refer to stroke lengthening when lq > l and to stroke
shortening when lq < l . These operations need to be continuous
to avoid popping effects during an animation. A naive approach
that satisfies this requirement is to scale the base stroke texture to
match lq . However, thismethod destroys the nature of the texture by
stretching its features. To circumvent this issue, we draw inspiration
from the artmap methodology, in particular from the self-similar
artmaps by [Bénard et al., 2010], and create a continuous hierarchy
of textures. Our hierarchy is constructed as following: For stroke
stretching we cut the base stroke at appropriate places and pull the
pieces apart. For each cut we find a suitable image patch of width
wmax from the stroke library to insert. Our hierarchy consists of
textures of length l +w · nc wherew ∈ [0,wmax ] and nc denotes
the number of cuts. At each level in the hierarchy we reveal the first
w pixel columns of the matching patch at every cut. The inserted
partial image patch is processed to ensure continuity at the contour
and at the seams (Section 4.4). Note that this algorithm can be
applied recursively to synthesize arbitrarily long textures. Stroke
shrinking works in a similar fashion but instead of adding patches
we gradually remove image patches (Section 4.5).

4.2 Stroke Segmentation

∂B

We regard a cut as a vertical line that
separates two neighboring columns of
pixels. For each example stroke we first
compute suitable cut locations. Small
speckles or streaks located around the
stroke boundary are salient features that
contribute to the stroke’s character. To
avoid cutting through them, we first
identify such features using the interior-

boundary segmentation technique described in Section 3. By using
a small kernel size (3 pixels) we obtain a thin boundary line around
every stroke feature. If a column of pixels contains more than 2
boundary pixels it is classified as non-valid for placing a cut next
to it (see inset). We also add a horizontal margin (2 pixels in our
experiments) to ensure some distance to non-valid cut locations.
Lastly, we enforce the minimum distance between two cuts to be
wmax . Placing cuts too close to each other leads to distortions in
the synthesized texture. This heuristic is not needed for very grainy
material such as crayon (Figure 4). For such cases we simply cut
the stroke at regular intervals.

4.3 Patch Matching
The next step given the cut locations is to determine the image
patch to insert. We may assume that strokes within a library already
bear a certain level of similarity and calculate a set of candidate
patches based on the library. For each example stroke in the library
we move a window of width wmax from left to right. If both the
left and right end of the window are valid cuts (see Section 4.2) we
include the image bounded by the window as a candidate and move
the window bywmax /2 to the right. If not we move the window by
one pixel to the right until a valid window is found. This ensures
that patch candidates do not have separated features.

For each cut, we iterate over all patch candidates to find the
most suitable patch to insert. We deliberately use an ambiguous
term such as suitable as it is difficult to formulate what makes a
patch an ideal fit for a certain cut. Different strokes from the same
library can exhibit slight differences in color. A color dependent
similarity measure will therefore often discard potentially fitting
patches because of their difference in luminance or hue. Remaining
good matches for a certain cut are often found close to that cut,
resulting in obvious repetitions within the same stroke. We decided
to broaden the range of good candidates by defining a hue and lu-
minance invariant similarity measure and rely on Poisson blending
in the following step to even out color differences (see Section 4.4).
The remaining criteria is that the inserted patch must have similar
grain to its potential left and right neighborhood. We therefore
use the histogram of oriented gradients (HoG) as the similarity
metric. First, we deform each candidate as in the patch insertion
step (Section 4.4). We then compare the left half of the candidate (cl )
with the right-most wmax /2 pixels of the left neighborhood (nl ).
Respectively, we compare the right half of the candidate (cr ) with
the left-mostwmax /2 pixels from the right neighborhood (nr ). The
height of the compared region is defined by the maximum spanning
rectangle around the left and right neighborhood as well as the
candidate as shown in Figure 5. This prevents background pixels
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base stroke of length l

lq = l + w · nc, w ∈ (0, wmax]

lq = l−w·
⌊
(np − 1)

2

⌋
, w ∈ (0, wmax]

Figure 4: By iteratively removing and inserting columns of pixels to a base paint stroke, we can synthesize a pyramid of
arbitrarily long stroke textures. w denotes the width of the patches to be removed (upper half of the pyramid) respectively
inserted (lower half of the pyramid). In case the of longer strokes we segment the base stroke with nc cuts and insert patches
at the cuts (Section 4.4). In the case of shorter strokes we segment the base stroke into np patches and remove every second
one (Section 4.5).

from biasing the score. The final score s of a candidate is calculated
as following:

s = (∥HoG(nl ) − HoG(cl )∥2 + ∥HoG(nr ) − HoG(cr )∥2) ·
1
N

The score is normalized by the number of pixels N in the HoG
region since the maximum spanning rectangle differs from candi-
date to candidate. We define the candidate with the lowest score as
the insertion patch at the cut in question.

base stroke base strokecandidate

nl cl cr nr

Figure 5: The maximum spanning rectangle in red and yel-
low is used to compare the histograms of gradient describing
the stroke texture.

4.4 Patch Insertion
Given the cuts of a base stroke, their matching patches and the
stroke’s boundary ∂B we can synthesize a stroke texture of length
lq > l as following: At each cut we wish to insert w = ⌊

(lq−1)
nc ⌋

columns of pixels. We initially take the w first columns of the
matching patch as the image patch P to insert. To ensure that the
stroke contour remains continuous we deform P to match ∂B at
the cut. P itself is enclosed by a quad defined by the boundary of
its source base stroke. The deformation is essentially mapping this
quad to the rectangle defined by ∂B as shown in Figure 7.

Since we use a color invariant similarity metric, the direct inser-
tion of the deformed P may produce visible seams. We use Poisson
blending as first presented in [Pérez et al., 2003] to normalize color
while preserving the local variations of the patch. Poisson blending
normalizes color intensities from the boundary to the interior of

0 1 2

3 4 5 6 ...

Figure 6: For any inserted patch (white), the hatched pixels
are used as boundary conditions in our Poisson color blend-
ing.

an image without altering the image gradients by solving the Pois-
son equation with Dirichlet boundary conditions. In our work, we
impose the color intensities of the pixels adjacent to the cut and pre-
serve the gradients inside the inserted patch. We encode neighbor
relations in a bidirectional map between pixel positions and mask
indices. For example, in Figure 6, neighbors of pixel 1 are pixels 0
and 5. This implementation allows us solve the Poisson equation
directly as a linear system, and the factorization of the system can
be reused for the three color channels. Our implementation only
requires a few milliseconds of computation per patch.

If lq gradually increases, so does w . As a result, our algorithm
gradually inserts columns of pixels at each cut (see Figure 8). This
achieves a similar effect as one would by applying Seam Carv-
ing [Avidan and Shamir, 2007] to widen an image. However, our
method has two major advantages over Seam Carving: first, we
simultaneously insert several lines of pixels at consistent locations
which is less salient than having one single line added at succes-
sively different locations. Second, stretching an image with seam
carving is very close to scaling the image and hence shares the
drawback of stretching stroke features, as is shown in the accom-
panying video. Our method, however, preserves the fine textural
details of the painting medium.
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Our method is able to synthesize coherent textures for arbitrary
values ofw . Ifw = wmax we insert the complete matching patch in
every cut. In the case wherew > wmax we re-apply the steps from
Section 4.2 and Section 4.3 to the texture obtained after inserting the
full patches. Our algorithm can therefore be applied iteratively to
synthesize textures of arbitrary length (see Figure 4).When iterating
our algorithm on stretched strokes, keeping the stroke cuts at the
same locations is very likely to insert the same patches at each
iteration, which could result in obviously repetitive patterns. We
therefore add an offset to the search window defined in Section 4.2
at each iteration, ensuring that the cuts will lie at different locations.

Figure 7: In the top stroke, patches are rigidly inserted. We
deform the patches (middle stroke) and apply Poisson blend-
ing (bottom stroke) to obtain a consistent stroke shape and
color.

Figure 8: We continuously insert image columns as the base
stroke is pulled apart at the cut until we have inserted the
full matching patch.

Figure 9: Minimal stroke (right) obtained by recursively re-
moving patches from the original (left).

4.5 Stroke shrinking
At the beginning of a drawing gesture and often in the context of
3D paint rendering, very short strokes have to be rendered. Starting
from a base stroke, we therefore extend our hierarchy of paint
strokes with textures of length lq < l by removing patches from
the original stroke.

A perceptually motivated approach would be to select patches
to remove based on their low saliency or on the similarity to their
neighbors. However, playing back such a non-uniform patch re-
moval creates a non-uniform stretching animation, which is not
pleasant and incoherent with the stretching animations we designed
so far.

Instead, we segment the stroke into regular-sized patches of
width wmax and simply remove every other patch in the stroke.
Say we have np patches, this allows us to synthesize textures of
length l −w · ⌊(np − 1) · 1

2 ⌋ where w ∈ (0,wmax ] are the first w
pixels of the patch to be removed. In other words, we simultaneously
remove ⌊(np − 1) · 1

2 ⌋ columns of pixels per level in the texture
hierarchy (see Figure 4). We keep the start and end patch fixed and
apply the removal recursively until we reach a minimal length. In
our implementation, we stop iterating at 4 patches. Figure 9 shows
an example of such a minimal stroke. Similarily to stroke stretching,
we deform the patch being removed and apply Poisson blending to
maintain shape and color coherence.

5 RENDERING
We have applied our core framework to various use cases: a 2D
painting application providing direct visual feedback, an interface
to stylize and render 3D paintings, and an application generating
replay animations of static 2D paintings. In every case, users can
choose the example paint stroke which is used to build a hierarchy
of strokes as previously described. To render a 2D painting, or a
frame from a 2D or 3D painting animation, we generate a stroke of
the required length using the techniques described in Section 4.

Since we perform the stroke synthesis on a straight stroke, the
synthesized stroke should be deformed to match the target shape.
We embed the straight stroke into a quad strip using quads of fixed
length (we use 10 pixels in our results), and resample the target
stroke shape to the same resolution. By computing ribs on the
target stroke, we can deform the synthesized stroke into the scene
by texture mapping the quads, as shown in Figure 10.

Finally in the case of 3D paintings, we use the depth information
of each stroke point, and useMixed-Order Compositing [Baran et al.,
2011] to coherently handle the depth sorting of rendered stroke
fragments. Fragments from strokes at similar depths are sorted in
stroke-painting order, while strokes at significantly different depths
are sorted in depth order.

To improve performance, we pre-compute the hierarchy of strokes
with fully inserted patches, and perform the partial patch insertion
as well as the deformation at run time. Generally speaking, the
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Figure 10: Stroke embedding (top), and deformed into target
shape (bottom). Our simple stroke parameterization is also
capable of handling self-intersections.

computation of the hierarchy is a system design decision. In our
system, the hierarchy is computed on demand, whenever a stroke
texture of a certain length needs to be rendered. The bottleneck
is the patch matching algorithm which results in a wait time of
several seconds depending on the library size. Textures can then be
generated at interactive rates (including the post-processing steps)
and are cached to speed up rendering of animation frames. It is also
possible to pre-compute a number of textures and provide them as
input to the system (similar to SLAM textures).

6 RESULTS
We implemented our continuous stroke synthesis system as a library
and used it to develop both 2D and 3D painting applications. The
accompanying video shows an experienced artist using our 2D
application to paint the fish shown in Figure 11 with large gray
pencil strokes as well as black calligraphy strokes for the outlines
and details. Our implementation provides real-time visual feedback
and artists can see each stroke unravel along their painting gesture.
More 2D paintings authored with our software are displayed in
Figure 12, using various examples of physical media.

Our contributions also target 3D paintings in which paint strokes
are embedded around 3D characters and rendered in screen space.
Figure 14 shows a 3D animated fish painting rendered using our
method in a minimal style, taking inspiration from Japanese sumi e
paintings. As the fish wiggles, the 3D camera rotates around it, and
the paint strokes that constitute the painting dramatically change
in length and shape on the screen. The synthesized strokes, how-
ever, remain temporally coherent thanks to our algorithm. We used
example strokes painted with a marker, oil paint, and watercolor. In
a similar fashion, the jellyfish shown in Figure 13 exhibits dramatic
screen-space deformations as it is animated and the camera is mov-
ing. The depth ordering of the strokes varies during the animation,
and our algorithm handles these complex effects coherently.

The rooster in Figure 1 shows a more complex 3D painting
rendered using our method. We use the same library of strokes to
stylize the whole character and show the diversity of stroke shapes
that are natively supported by our method.

7 CONCLUSION AND FUTUREWORK
In this paper, we have extended the range of visual styles accessible
to 3D artists by designing a brush model that benefits from the
adaptability of example-based stroke synthesis. Our method can

Figure 11: 2D fish painted using crayon and calligraphy
strokes.

synthesize a hierarchy of strokes of various lengths and seamlessly
transition between different levels of this stroke hierarchy. To the
best of our knowledge, this core brush model is the first that pro-
duces continuous animations of deforming paint strokes based on
scanned examples of physical painting media. Our efficient algo-
rithm supports interactive rates for real-time stroke synthesis in
a 2D digital painting application. We demonstrated these contri-
butions in different scenarios by showcasing 2D paintings created
by a professional artist using our application and by rendering 3D
paintings using novel visual styles.

While these advances already extend the range of possible visual
styles in 3D animation, we believe that several directions for future
work deserve to be explored. Departing from existing example-
based methods for paint stroke synthesis, we have not looked into
the animation of more complex paint effects. In particular, no spe-
cific attention has been given to realistic color blending as in [Lu
et al., 2014b]. Animated color smearing, taking inspiration from [Lu
et al., 2013], is another exciting direction of research. For example
if a red stroke crosses the path of a blue one during an animation,
a continuous smearing of the colors would create the impression
that paint is moving in front of the viewer’s eyes. One other target
would be to incorporate pen pressure in the stroke synthesis. In-
deed, professional digital artists are used to mapping the pressure
of their pen on their tablet to various stroke parameters, and the
artists that used our 2D painting application were excited about the
idea of incorporating pressure into the application. Simply scaling
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a stroke along its ribs will deform its inner texture and grain, and
modulating the width of a synthesized stroke along its length is
therefore a challenging topic. Finally, stroked painted with real
media exhibit subtle variations based on stroke curvature. Incor-
porating these variations into our method in a data-driven fashion
is another avenue of future work that could further increase the
realism and fidelity of our system.
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Figure 12: Digital paintings created with our 2D painting application.

Figure 13: Jellyfish animation rendered using watercolor strokes on rough paper. During animation the stroke order of the
jellyfish rings will differ since they are close in depth. We use mixed-order compositing [Baran et al., 2011] to guarantee
smooth stroke order transitions.
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Figure 14: Animated 3D fish (top) stylized using two different watercolor libraries (bottom).
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