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Figure 1: Using our new system, a player is able to manipulate a virtual puppet using a smartphone. The character responds
compellingly and in real-time to the user motions, so that is stays at all times at a fixed distance from the phone.

ABSTRACT
Video games enable the representation and control of characters
that can agilely evolve in virtual environments. However, the de-
tached character interaction they propose – often using a push-
button metaphor – is far from the satisfactory feeling of grasping
and moving physical toys. In this paper, we propose a new inter-
action metaphor that reduces the gap between physical toys and
virtual characters. The user moves a smartphone around, and a pup-
pet that responds in real time to the manipulations is seen through
the screen. The virtual character moves in order to follow the user
gestures, as if it was attached to the phone via a rigid stick. This
yields a natural interaction, similar to moving a physical toy, and
the puppet now feels alive because its movements are augmented
with compelling animations. Using the smartphone, our method
ties together the control of the character and camera into a single
interaction mechanism. We validate our system by presenting an
application in Augmented Reality.
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1 INTRODUCTION
When playing with toys, people cherish grasping them and manip-
ulating them freely. They imagine characters, create stories and
solve quests by moving the toys around and putting them in di-
verse situations. The major frustrating aspect is that the handled
physical puppets are inanimate; they follow the player’s gestures
like a lifeless and unconscious ragdoll. The player’s imagination
then has to fill the secondary motions with compelling animations
like walk cycles, jumps and kicks.

Playing in virtual worlds tackles this shortcoming because full
character animations can be achieved from little inputs. Usually in
video games, the player simply presses a button to trigger a pre-
defined action. However, this makes the interaction more abstract
and it lacks the satisfactory feeling of grasping the character and
physically moving it.
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Recent years have seen the appearance of diverse control de-
vices such as Kinect, Wii controllers, Vive controllers, Leap Motion
and powerful smartphones. Each of them is able to track 3D move-
ments to a certain extent, which opens the door to new interaction
metaphors. Even if many applications have then been introduced,
like mimicking movements and grabbing virtual objects, little work
has been done to retrieve or enhance the particular feeling of ma-
nipulating a puppet.

In our work, we introduce an enhanced puppet interaction sys-
tem, where a virtual character accompanies the user’s gestures in
a compelling manner. The player uses a smartphone to observe,
grasp and move the virtual puppet, whose movements are beau-
tified with detailed animations. The character reacts in real time
to the user’s motions, similar to a physical puppet, with the differ-
ence that it now looks alive. We achieve this by interpreting the
user’s manipulations, with respect to the current character’s state
and the neighbouring environment, into a weighted combination
of predefined animations (see Section 3). Our system requires a
minimal amount of provided animations, that we adapt to different
environments and character dimensions. We illustrate our system
in an Augmented Reality application in Section 4, where the player
can grasp and move a character to make it, among other actions,
walk, jump, pick up objects and even create controllable snowmen
of any dimensions.

2 RELATEDWORK
Interaction metaphors
Interacting with virtual characters requires a correspondence be-
tween user commands and characters’ actions. Most often in video
games, the interaction consists in a push-button approach, where
the user hits a button or a point on the screen to trigger a specific
action (e.g. ’Move there’, ’Jump’, ’Kick’, ’Shoot here’, etc.). Research
works have explored more sophisticated interaction methods to
specify character movements and displacements using sketch ab-
stractions [Guay et al. 2015; Thorne et al. 2004], point trajecto-
ries [Jeon et al. 2010; Lee et al. 2002; Min et al. 2009], or finger
performances on a touch-sensitive surface [Lockwood and Singh
2012]. However, these methods do not permit an interactive control
since the curves or contact points need to be entirely specified
before the character can move.
Another approach to interactively manipulate a virtual character
is to mimic the motion, usually using a full body motion-capture
suit. However, even if many works aimed to reduce the number of
sensors required when performing the motion [Chai and Hodgins
2005; Kim et al. 2012; Liu et al. 2011; Oore et al. 2002; Shiratori
and Hodgins 2008; Tautges et al. 2011], this approach requires spe-
cialized devices that casual users rarely possess. In contrast, our
method solely needs a smartphone, which many individuals already
own. It makes our tool accessible by a very large audience, and
only involves a single hand to be operated. Other works aim to in-
teractively animate virtual characters using abstract gestures [Cui
and Mousas 2018; Rhodin et al. 2015]. In those techniques, user
movements are linked to specific actions of the character, which
make it possible to animate any type of character using different
devices and body parts. However the interaction is very abstract
and unnatural, in contrast to our grasping metaphor.

Smartphone as a control device
Smartphones are very powerful computing devices that comprise a
large variety of sensors – multi-touch screen, cameras, accelerome-
ter, gyroscope, etc. – which provide a lot of information about their
manipulation, and in particular their displacement. The gesturing
of smartphones has been explored in several domains of computer
graphics to model simple 3D shapes [Vinayak et al. 2016] and edit
animations [Lockwood and Singh 2016]. Despite that, a large major-
ity of mobile applications only take benefit of the tactile screen to
drive a virtual character, using a push-button approach as described
above. Very few works have taken advantage of the displacement
information to reconstruct a motion, using a single [Haegwang
et al. 2014] or several [Pascu et al. 2013] smartphones, but none
of them allows to move the character in a puppeteering manner
as we do. Closer to our work, Willis et al. [2011] propose to attach
a handheld projection system and animate a character in the vir-
tual world as one moves its projection on a wall. Unfortunately,
their technique only allows displacements in 2D (on the wall) and
simplistic animations.

Interactive motion generation
Most video games use underconstrained interfaces. In that case,
full character animations can be generated using motion data-
bases [Arikan and Forsyth 2002; Holden et al. 2017, 2016; Min and
Chai 2012], physical simulations [Coros et al. 2010; Geijtenbeek
et al. 2013; Laszlo et al. 2000; Yin et al. 2007] or even both [Geijten-
beek et al. 2012; Liu et al. 2010; Zordan et al. 2014]. Cases where the
interface is not underconstrained are when the character has a very
simple configuration, when the manipulation is not interactive –
e.g. layered approach [Ciccone et al. 2017; Dontcheva et al. 2003;
Neff et al. 2007] – or when the user is using an input device with a
large number of degrees of freedom – e.g. motion capture suit [Song
et al. 2017] –, none of which is our case. In our system, we opt for
a database approach. We require very few preexisting motions, and
we compose blended ones on the fly using a technique based on
the inverse distance weighting.

3 APPROACH
3.1 MotionStick
We propose a new interaction principle, theMotionStick, that works
as an extension of theMotionBeam introduced byWillis et al. [2011].
A user manipulates a smartphone that has information about it’s
orientation, position and movement in space. By looking at the
virtual environment through the screen, they can point the phone
towards an object and grab it by holding down the touchscreen.
The object is then fixed to the end of an invisible MotionStick, as
represented in Fig. 2, and will react appropriately to any movement
of the smartphone caused by the user. While being held this way,
the distance and relative rotation to the phone is maintained, giving
this control scheme a very responsive and direct feel. In some cases
these constraints can be relaxed, especially to handle collisions. For
example, if the grabbed object is pushed into the floor, the length
of the MotionStick is shortened appropriately in order to prevent it
from phasing through the floor.
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Figure 2: Using the MotionStick metaphor, a virtual charac-
ter is manipulated as if it was attached to the end of an imag-
inary stick fixed to the smartphone.

This interaction metaphor, similar to a physical reach extender,
yields a natural interaction with virtual objects. The very light user
interface, simply consisting of pointing with a smartphone, makes
it very easy to learn and use. Moreover, regardless of this simplicity,
it provides the user with a fine and expressive control on the virtual
space. This will be showcased in section 4 with our implementation
prototype, where our application does not require any additional
user input interface.

When moving a virtual object around, it has the ability to react
in more ways than just updating its position and rotation according
to the state of the MotionStick. In the following subsections, we
will describe a method that enables an object to come to life by
animating it in accordance to the way it is moved. From here on
out, we will use a terminology corresponding to a humanoid (e.g.
walking, crouching); however, note that our system is adaptable to
any type of animated object, such as quadrupeds and cars.

3.2 State Machine
We use a state machine to determine how the virtual character is
animated to react in real time to the user movements. For exam-
ple, in one state the character stands on the ground but as soon as
the user flicks the character up it switches to the jump state. Each
state is defined by its internal logic, root position, configuration
of the character animation and the IK state. The context of the
state machine consists of the environment – i.e. the ground and
other objects surrounding the character – and the user inputs – i.e.
movements of the MotionStick. One state is the active state and at
every time-step its logic updates the state of the character anima-
tion based on the context. Events can be defined that trigger a state
change and thus another state becomes the active one, changing
the behaviour of the animated character.

The MotionStick metaphor does not restrict the manipulation of
the object by the user. That is why the system controlling the char-
acter has to be prepared for any input, even when no predefined
animation is appropriate. Our system handles such unexpected in-
puts by having a default state that is activated when such a situation
arises. A fitting default state would be to turn the character into a
ragdoll. It is for example necessary when a character that has no
jump momentum is held in the air; instead of having a character
with an inappropriate jumping animation in the air, the user would
instead be holding a physically simulated ragdoll.

Unpredictable user inputs also mean that animations with a high
degree of interaction with the world have to be adapted (e.g. the
character picks up an object from different directions and poses).
In these cases, we use inverse kinematics to adapt animations to
the given situation. For example, when the character picks up an
object, its hands are moved close to the object independent of the
underlying animation.

3.3 Animation Blending
One challenge when animating a character with MotionStick is
that the input movement is very continuous. Therefore, contrary to
interfaces with a push-button metaphor, we cannot simply play a
limited set of preexisting animation clips. For example, if animations
are defined forWalking and Running states, it is unclear which one
to choose when the manipulation speed is just between the two.
The solution we choose is to use animation blending. There exists
different algorithms for blending animation clips – e.g. linear, cubic,
etc. – and our method can be used with any of them; we will thus
treat the blending algorithm as a black box.

Figure 3: An example of a blend-space graph with the prede-
fined animation clips idle(0,1),walking(0.5,1), running(1,1),
idle crouching(0,0) and walking crouching(1,0). In green is
the desired blended animation with parameters pvel = 0.2
and pheiдht = 0.73.

Our system requires a small database of animations, that can
be used to blend together new ones. Each provided animation i
has N blend parameters pi, j ∈ [0, 1], that are used to place it in the
N -dimensional blend space – we call that point pi = (pi,1, ...,pi,N ).
Given a new point p in that space, the blending algorithm returns
a new animation that is a combination of the neighbouring ones.
Fig. 3 gives a blend space example where five animation clips are
predefined – idle, walking, running, crouching idle and crouching
walking – and each of them has two blend parameters – correspond-
ing to the root velocity and the crouching height. The challenge is
then to map the values from the user input ui (i.e. the smartphone’s
position, orientation, speed, etc.) to the blending parameters p(ui ).

Most mappings are linear, which makes the computation of
p(ui ) straightforward. For example, the height of the smartphone
uheiдht is mapped linearly to the crouching height: p(uheiдht ) =
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(uheiдht − a) ∗ 1/(b − a) (clamped to [0, 1]). However, other map-
pings are non-linear, in particular the smartphone velocity uvel .
This is especially important because an inexact mapping would
produce the wrong animation and result in foot sliding artifacts.
We solve this by creating a lookup table and make it continuous
using inverse distance weighting.

We fill our lookup table by choosing a set of probe points p∗k in
the blend space with a high enough density (e.g in a grid). The user
properties u∗k of these probe points can automatically be measured
by blending the corresponding animation and then measuring its
properties, for example the movement velocity. With that, when a
user provides new input values u, the corresponding blend parame-
ters are computed using inverse distance weighting:

p(u) =


∑
k
wk (u)p∗k∑
k
wk (u)

, if d(u,u∗k ) , 0 for all i

p∗k , if d(u,u∗k ) = 0 for some i
(1)

with
wk (u) =

1
d(u,u∗k )

q (2)

where d is the euclidean distance between two points and q ∈R+ is
the power parameter – in our implementation we usedq = 7. A high
q leads to a "sharper" resolution because only the points very close
tou, but also needs a higher density of probe points to prevent jerky
transitions. In Fig. 4, we show the lookup table obtained from the
example in Fig. 3. Notice that the border, defined by all animation
clips with pvel = 1, is not a straight line. This demonstrates that
the mapping of the velocity parameter is non-linear.

Figure 4: The generated lookup graph used in our implemen-
tation, with a user input that has to be projected to be inside
the area of well defined blend parameters. The blend param-
eter for velocity pvel is encoded in the red color channel of
the probe points, ranging from 0 to 1.

There is the corner case where the user input u is outside of
the defined area of possible animations – e.g. the user moves the
character so fast that no animation can be blended to match that
velocity. To tackle that, we first project u onto the border of the set
of feasible configurations, obtaining u ′. In higher dimensions, the
border would be amulti-dimensional mesh. In the case of movement
velocity, we then speed up the animation by a factor uvel

u′
vel

in order
to achieve a motion with the desired velocity.

4 APPLICATION
We demonstrate our system by developing an Augmented Real-
ity application running on iPhone X. It was implemented using
Unity with the libraries Vuforia (for the AR), FinalIK (for inverse
kinematics) and PuppetMaster (for interpolating between ragdoll
simulation and static animation). The ARKit framework allows Vu-
foria to use the computational power of the iPhone X to enable
robust markerless AR tracking. For blending between animations,
we used the native animation framework of Unity. We hereafter
describe the characteristics of our prototype and how they relate
to the challenges described in Section 3. Please refer to Fig. 6 or the
accompanying video to observe the principle features.

Our implementation uses only 7 animation clips: idle, walking,
running, idle crouched, walking crouched, get-up andmid-jump. All
other animations are a combination of animation blending, ragdoll
simulation and IK. For example, rolling a snowball is made possible
by taking the crouched animation and then placing the hands on
the surface of the snowball. The user inputs include the position,
velocity and orientation of the smartphone in space. Additionally,
we use the touchscreen as a single button to grab the puppet with
the MotionStick metaphor. No other buttons or inputs are used
which makes the interface extremely easy to learn. The environ-
ment of our state machine contains the distance of the puppet to
the ground and the set of manipulable objects nearby.

Figure 5: The statemachine used in our implementation. Ar-
rows indicate our events that switch to a new active state.

Please refer to Fig. 5 for our state machine. The ragdoll state
is used in any situation where the user would force an undesired
situation. E.g. when the jumping arc would be too unrealistic. The
walking and crouched animations are generated with our animation
blending method discussed in Section 3.3. This lets the character re-
act to any user movement with a suitable blended animation. More
details about the jump state are given in the following paragraph.
Please refer to the accompanying video from the timestamp 00:41.
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Figure 6: An outline is shown when an object is in focus to be grabbed (left). When pressing down on the touchscreen the
character is controlled with the MotionStick metaphor using smartphone movements. Animations are generated to fit to any
given situation and user input.

While the user input for making the character jump is simply to
lift up the phone with a high enough velocity, a compelling jump
animation requires to squat before taking off (i.e. Anticipation prin-
ciple of animation). Therefore, we force a short delay between the
user movement and the jump in order to build that anticipation. Af-
ter that, the character smoothly returns back to the position given
by the MotionStick, which has meanwhile moved along the jump
path. We can estimate the jump path with a 2-dimensional parabola
when looking from the side view. At each frame the parabola is cal-
culated given the starting position of the jump (x0,y0), the current
position (xt ,yt ) and the current slope of the jump y′t :

y(x) = ax2 + bx + c

where a =
y′t (xt − x0) − yt + y0

(xt − x0)2

b =
y′t (x

2
0 − x2t ) − 2xt (yt − y0)

(xt − x0)2

c =
x2t (y

′
tx0 + y0) − xtx0(y′tx0 + 2y

′
t ) + y

′
tx

2
0

(xt − x0)2

(3)

We use the position of the apex
(
− b
2a ,y(−

b
2a )

)
to animate the char-

acter accordingly. Furthermore, we detect if the jump is not valid,
in which case we switch to the ragdoll state. A jump is considered
invalid if: (1) It rises again after starting the descent (i.e. multiple
apexes), (2) It turns while in air, or (3) It stops in the air. If none of
these cases happen, the character lands back on the ground and
absorbs the shock of the landing by doing a very short crouch.

Figure 7: Screenshots of our application show the character
building a snowman, which then itself builds a second snow-
man.

We propose to showcase our control scheme with a building
experience. Please refer to Fig. 7 for a selection of screenshots or
to the accompanying video from timestamp 01:06. Our application
lets the user build a snowman out of snowballs, that can be rolled
to variable diameters. This snowman then comes to life and can be
controlled just like the original puppet character. Consequently, the
snowman can then also crouch, jump and even build more snow-
men. Because the snowballs making up the snowman have variable
sizes, the proportions of the snowman must also be variable. We
achieve this by extending specific bones of the rig, e.g. by adapting
the length of the neck to accommodate for the head size. An exam-
ple of this setup is shown in Fig. 8.

However, having an overly elongated bone would result in very
stiff movements. In our case, we resolve this problem by inter-
polating the snowball positions between chest and pelvis with a
quadratic bezier curve. The control points are given by the pelvis
position, the chest position, and the point p1 defined as:

p1 =
ppelvis + (1 − b) · pchest + b · pup

2
(4)

where pup is the position of the chest when the snowman is be
standing upright. In our implementation we used a bend factor
b = 0.3.

Figure 8: Our animation rig (blue)with variable bone lengths
and our smoothed spine (red dotted) on a snowman with a
long spine bone.
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5 LIMITATIONS AND FUTUREWORK
The control interface being light, if many different animations and
character behaviors are added to the experience, it might become
unclear what the intent of the user is. For example, gestures corre-
sponding to a punch, a kick, a throw and a headbutt might be too
similar. This can be tackled by introducing more input possibilities
or defining specific user gestures for certain actions, similar to what
Thorne et al. [2004] propose.

As a control device, we chose the smartphone for its versatility,
its prevalence and the unification of controller and camera it pro-
vides. That being said, our method is adaptable to any other device
that tracks position and orientation over time. For example, one
could use a VR system such as HTC Vive or Oculus Rift to grab and
move a character in virtual reality; there, the user could even more
closely interact with the puppet since the MotionStick could be of
length 0. VR systems also support multiple controllers, opening
up possibilities like the simultaneous control of several puppets or
more control on a single one. Another direction for future work
would be to implement a multiplayer mode, so that several smart-
phones can control different puppets in the same environment and
even interact with each other (e.g. shake hands or fight).

6 CONCLUSION
We have introduced a new interaction metaphor to control virtual
characters. It combines advantages of both real and virtual worlds
by providing a great freedom of motion, similar to the manipulation
of physical toys, while augmenting the character’s responses with
engaging animations. We proposed solutions to the new challenges
emerging from such a flexible interaction system, like the inter-
pretation of users’ gestures, the real-time formation of accurately
timed animations and their adjustment to characters with variable
proportions. We validated our approach with an AR application
that allows to create living snowmen of any dimensions.
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