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Abstract

3D hand pose inference from monocular RGB data is a
challenging problem. CNN-based approaches have shown
great promise in tackling this problem. However, such ap-
proaches are data-hungry, and obtaining real labeled train-
ing hand data is very hard. To overcome this, in this work,
we propose a new, large, realistically rendered hand dataset
and a neural network trained on it, with the ability to refine
itself unsupervised on real unlabeled RGB images, given
corresponding depth images. We benchmark and validate
our method on existing and captured datasets, demonstrat-
ing that we strongly compare to or outperform state-of-the-
art methods for various tasks ranging from 3D pose estima-
tion to hand gesture recognition.

1. Introduction
CNN based methods have recently led to significant ad-

vances in the literature of hand pose estimation. Many
works, however, are hindered [28, 61, 9, 7, 29] due to lim-
ited real datasets [46, 59, 54, 58], and thus rely on syntheti-
cally generated data. 3D hand pose estimation from monoc-
ular RGB images and video is in particular challenging and
has only recently been explored [62].

We need new network architectures, and new real ground
truth (GT) datasets to tackle this highly ambigious prob-
lem. While the former is easier to achieve and also compare
to, unfortunately on very limited monocular datasets cap-
tured [59], the latter is quite hard to obtain, and based on
the hunger of CNN-s for real data, it seems to also explain
the bottleneck behind limited accuracy of various architec-
tures on such monocular RGB based tasks, as opposed to
their depth counterparts.

In this work, we propose new learning architectures and
high quality datasets to improve the accuracy of 3D hand
pose estimation from a single RGB image. Our squeeze-
net [15] based architecture attempts to map a single RGB
hand image directly to a 3D hand representation (using
angle differences from a reference neutral pose, similar
to [61]), without the necessity to lift from 2D to 3D as in

Figure 1. Real predictions on the HGR dataset [16, 27, 13].

previous works [62, 60, 54]. It is trained on our new, large,
realistically rendered hand dataset, consisting of around 3
Million RGB images with respective 3D annotations. By
construction, such a model allows to refine itself on real-
data in a semi-supervised fashion, showing improved per-
formance on gesture classification tasks (see Sec.5).

A crucial part of our technique is refining the network in
an unsupervised way on real unseen monocular data, given
that a depth image is provided or extracted. We demonstrate
through various experiments that we can obtain a perfor-
mance boost as compared to training with purely synthetic
or limited monocular ground truth data, unlocking further
applications that work with RGB monocular data.

We show increased performance as compared to previ-
ous works based on monocular RGB images on a variety of
tasks (3D pose estimation, hand gesture recognition and 2D
fingertip detection), while being on par with methods that
require depth as input. Our technique can also be seen as an
economic and automatic way of creating a ground truth la-
beled dataset and we believe will be instrumental in creating
new datasets as well.

To summarize, our main contributions are :

• A new realistically rendered hand dataset with 3D an-
notations available to the community, that helps in
hand segmentation and 3D pose inference tasks.

• A method for refining an RGB-based network trained
on synthetic data with unlabeled RGB hand images
and the corresponding depth maps.

1



• A state-of-the-art complete system for 3D hand pose
estimation and gesture recognition from monocular
RGB data that is thoroughly validated on available
datasets.

2. Related work
Hand pose estimation methods can be primarily classi-

fied with respect to the input as depth, monocular RGB,
multi-view, and video-based. Given the low cost of RGBD
sensors, there has been a vast amount of work on hand pose
estimation based on depth images, which can be further
classified as being either generative (model-based), discrim-
inative (appearance based), or both (hybrid) [11]. An addi-
tional classification can be made based on how the input is
mapped to the output : 2D-to-3D lifting [62, 53, 60, 3, 54,
31] or direct 3D mapping based methods [9, 61, 28]. Our
method can be classified as a discriminative, direct 3D map-
ping method with a monocular RGB as input.
Generative Approaches. Melax et al. [22] formulate the
hand optimization as a constrained rigid body problem.
Schröder et al. [37] suggest optimizing in a reduced param-
eter space and Tagliasacchi et al. [45] combine ICP with
temporal, collision, silhouette, kinematic and data-driven
terms to track with high robustness and accuracy from a
depth video. Sharp et al. [38] enhance this approach with a
smooth model and the possibility of reinitialization. Particle
swarm optimization (PSO) approaches have also been used,
requiring extensive rendering of an explicit hand model in
various poses [30], estimating ground truth [54] for the
NYU dataset [54], or combining it with ICP [32] to increase
its robustness. Taylor et al. [50] minimize an error between
a realistically synthesized and real depth image.
Discriminative Approaches. Oberweger et al. [28] show
how to boost the prediction performance by a projection to
a reduced subspace before the final regression, through a
bottleneck layer. Zhou et al. [61] predict joint rotation an-
gles (similar to us) by proposing a forward kinematic layer,
coupled with a physical loss to penalize angles outside a
specified range. Similarly, Dibra et al. [9] map to angles
and show how to refine their CNN on unlabeled depth input
images. Ge et al. [12] do not make use of depth, but instead
project a hand point cloud onto three orthogonal planes and
feed the projections into three different CNN-s. Deng et
al. [7] and Moon et al. [25] map 3D volumetric representa-
tions though 3D CNNs to the pose in 3D. Apart from CNN-
s, there exist also methods that utilize decision forests to
make a 3D pose prediction [17, 47, 56]. These methods are
typically fully supervised, except for [55, 49] and [9]. We
show semi-supervised and unsupervised adaptations, with
real RGB and depth data, however applied to RGB input.
Hybrid Approaches. Sometimes, CNN predictions are
complemented with an optimization step. Tompson et al.
[54] first predict hand keypoints and optimize for the actual

pose using inverse kinematics. Mueller et al. [26] fit the
hand skeleton to 2D and 3D joint predictions from a CNN.
Ye et al. [57] combine CNN-s and PSO in a cascaded and
hierarchical manner. Sinha et al. [40] first reduce the dimen-
sionality of the depth input through a CNN and then adopt
a matrix completion approach with temporal information to
optimize for the final pose. Oberweger et al. [29] use a
deep generative neural network to synthesize depth images,
which are utilized to iteratively correct a pose predicted by
another network during testing.
Our method can be regarded as an extension and adaptation
of data-driven methods that directly map an input to e.g. 3D
joint angles [61, 4, 48], with the ability to refine themselves
in an unsupervised manner to real data [9], being the first to
apply this to monocular RGB images instead of depth im-
ages as the input.
Video-Based Methods. Since RGBD sensors are not al-
ways available, further methods have been proposed, that
utilize RGB images in combination with temporal informa-
tion. La Gorce et al. [6] use texture, position and pose infor-
mation from the previous frame to predict the current pose.
Romero et al. [35] exploit temporal knowledge to guide a
nearest-neighbor search. All these methods have to solve
the problem of obtaining a first estimate.
Multi-View-Based Methods. Another approach involves
the use of multiple cameras to compensate for the lack of
depth data, alleviating the problems with occluded parts.
Zhang et al. [59] utilize stereo matching for hand track-
ing, Simon et al. [39] apply multi-view bootstrapping for
keypoint detection, and Sridhar et al. [44] estimate 3D
hand pose from multiple RGB cameras, with a hand shape
representation based on a sum of Anisotropic Gaussians,
whereas [43] combine RGB and Depth data to obtain a
richer input space.
Image-Based Methods. Due to the larger availability of
regular color cameras, as opposed to the abovementioned
methods, we make use of neither depth nor multi-camera or
temporal information. One of the first single frame based
hand detection works, from Athitsos and Sclaroff [1] utilize
edge maps and Chamfer matching. It was only recently that
one of the first monocular RGB based methods [62] for 3D
hand pose estimation was presented, utilizing CNN-s and
synthetic datasets. In contrast to our method, they split the
prediction into a 2D joint localization step followed by a
3D up-lifting, and use their own synthetic dataset to com-
plement the scarcity of existing datasets. We utilize our
new, high quality, hand synthetic dataset to predict 3D joint
angles directly from an RGB image and strongly compare
to [62] on various tasks in Sec. 5. Concurrent to our work,
there exist methods based on Variational Autoencoders [41]
for cross-modal learning and GANs [26] for learning a map-
ping from synthetic to real hands data, that tackle the same
problem of 3D hand pose estimation from RGB images.
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Figure 2. Overview of the training pipeline. Given a monocular RGB image as input, a SegNet [2] based network first segments out the
background, the result of which is input into SynthNet, a CNN model trained purely on synthetic data (Sec.4) that predicts the hand pose
in terms of angles α. In order to fine-tune the network to real monocular data, provided that a corresponding depth image is given, we
augment the initial base network with a depth loss component. We refer to this combination during training time as RefNet. Given α as
well as PCL, a point cloud that initially represents our hand model and gets iteratively updated to the input one, the weights of SynthNet
can be updated without the need of labeled data. At test time, a forward pass through SegNet and SynthNet estimates the desired pose.

3. 3D Hand Pose Estimation and Refinement

The overview of our method is depicted in Fig. 2. We at-
tempt to achieve two main goals : 1. estimate the 3D hand
pose, given a single monocular RGB image, and 2. enable a
refinement of our method predictions on unseen real images
in an unsupervised way. Due to the lack of real RGB ground
truth datasets, we tackle the first goal, by training a CNN
(SynthNet Sec.3.2) that minimizes an angle loss (Langle)
in a supervised manner. We train purely on a new large syn-
thetic dataset (Sec.4), consisting of masked-out renderings
of hands in various poses, shapes, illuminations and textures
and their respective 3D annotations. At test time, we first
segment a raw RGB image in order to obtain only the hand
part, by passing it through a segmentation CNN (Sec.3.1),
trained on a combination of real and our own synthetic data
to minimize a categorical cross-entropy loss (Lmask). This
first part captures priors on the variability of possible free
hand poses already at training time and achieves results on-
par or even better than state-of-the-art works on real datasets
for a variety of tasks (Sec.5).
We tackle the second goal of real data based refinement,
by extending our SynthNet with a component based on
a depth loss (Ldepth), which allows it to get fine-tuned
on unseen unlabeled real RGB data, provided that an ana-
logue unlabeled depth image (registered or unregistered), is
present at training time. We refer to this combination during
training time as RefNet, which can be considered as a dif-
ferentiable renderer. The weights of SynthNet are adapted
to real data in an unsupervised manner. During test time,
a forward pass through it allows to estimate the 3D pose.
This second part is very important, because of the known
discrepancy between real and synthetic data due to different
hand shapes, poses, sensors, and environment conditions.

Figure 3. (Left) Rigged hand model with max 3 (rotational) ×
17 (joints) DOF (Middle) 5 samples from our dataset in 5 differ-
ent orientations (Right) Two semi-supervised refinement examples
from our own dataset (top) and Senz3D [23, 24] (bottom) - from
left to right : input, SynthNet unrefined and refined prediction.

This refinement leads to significant improvements over the
network trained purely on synthetic data, which we show
through experiments in Sec.5 and supplementary.

3.1. Hand Segmentation Nets

Before segmentation, the hand needs to be localized in
the image. Inspired by He et al. [14] that compute object
detection and segmentation operating in two stages with
Faster R-CNN [34], we adopted SegNet [2] to first pro-
pose the hand region and then compute a pixel-wise mask
of the hand. The detection is also performed via segmenta-
tion, producing a rough mask to localize the hand and crop
around it, which in turn is utilized to produce a more refined
hand mask. In order to decrease training and inference time,
without affecting accuracy, we removed some layers from
both the encoder (two convolutions and one max-pooling)
and decoder (8 convolutions and one up-sampling). We call
this architecture OurSegNet and provide details in the sup-
plementary. Segmentation is a necessary preprocessing step
of our pipeline, and not a contribution of this work, hence
throughout this paper we analyze both it‘s performance



(Sec.5) and that of HandSegNet from [62]. The expected
input RGB image and segmented output are 256× 256 pix-
els each. The latter serves as input for the next stage.

3.2. Synthetic RGB CNN Model (SynthNet)

Inspired by recent work [5] that trains a SqueezeNet [15]
based architecture purely on realistically rendered masked-
out synthetic garment images to map directly to 3D garment
vertex meshes, we also pose our problem as finding a map-
ping from masked-out images of hands to the 3D hand pose.
We start by training a SqueezeNet model (SynthNet)
adapted to regression (details in the supplementary) purely
on our synthetically generated dataset (Sec.4), which di-
rectly predicts, as in [8, 5, 61, 21], a 3D pose α from a
(masked-out) RGB image I (Sec.5). Our 3D pose α is rep-
resented in euler angles, similar to Zhou et al. [61], however
quaternions or rotation matrices can be utilized too. The
main constraint is that α must be informative enough to cal-
culate a forward kinematic chain, yielding the exact infor-
mation on how each joint transforms to the predicted pose
(Sec. 3.3). This is made possible by our rigged hand model
(Fig.3 (Left)). More specifically, α is given as an angle dif-
ference for each of the hand joints from the joint angles of a
hand in a neutral pose (open palm). Given the RGB images
of the synthetic training data, we train our SynthNet from
scratch to minimize the mean squared error (Langle) be-
tween the pose from our dataset and the predicted pose. We
noticed that by first converting the input images to grayscale
and then applying histogram normalization, with one and 99
percentile as borders to remove pixel outliers, not only made
the network converge faster, but also helped with skin-color
invariance. Since during training, all the hand masks are
centered, at test time we also center and scale the hands to
a square image of 225× 225 pixels (similar to SqueezeNet
input), when necessary padded at the borders.
Semi-Supervised Refinement on Real RGB Images. One
advantage of utilizing angles instead of joint positions, is
that they can be easily restricted to the allowed Degrees of
Freedom, reducing the large space of infeasible poses, and
constraining the latent space [4]. Given a skeleton, angles
can easily be converted to joints and hence fully determine
a pose. This might penalize accuracy on exact 3D joint esti-
mation tasks, under fixed hand skeleton model assumptions,
however it can be quite attractive for other tasks where the
hand skeleton constellation is more important than the exact
joint position, e.g. hand gesture recognition/classification.
Another advantage of utilizing angles, is that it allows any
pre-trained fully supervised network (regardless whether
real or synthetic data is used), to refine itself on easily ob-
tainable real unlabeled RGB images. Real images of hands
in various shapes, skin colors, lighting conditions and rota-
tions can be easily captured with cheap RGB sensors, under
the constraint that users perform pre-specified gestures, as

in [23, 24]. These gestures can be easily modeled, given a
synthetic hand model, obtaining the ground truth (angles)
without additional manual effort. Angles are advantageous
here, as various user poses would map to the same ground-
truth, regardless of the exact hand position and rotation in
the image. In this way, the input space is enriched with
multiple real images that map to the same angles, which in
turn helps to fine-tune synthetic networks and improve the
gesture recognition predictions (Fig.3 (right) and Sec.5).

3.3. Unsupervised Refinement from Depth Images

SynthNet alone gives good initial predictions on var-
ious real data ((Sec.5), Fig.1 and Fig.5), however a dis-
crepancy between synthetic and real datasets is known
in literature. Inspired by works based on differentiable
renderers [20] and differentiable offline [33, 9] and on-
line [52] depth based calibration and refinement, we extend
our network with a component that enables SynthNet to
get refined unsupervised, trained to minimize a depth loss
(Ldepth) on unlabelled depth data, that have one-to-one cor-
respondences to the input real RGB images. Let‘s assume
we have pairs of RGB and Depth images (I,D). Acqui-
sition of such pairs is very cheap with today‘s RGBD sen-
sors (Sec.5). Based on the approach from [9], we compare
the input depth image D to a synthesized depth image DI ,
which is computed from SynthNet predicted pose α, given
I as input, and a pointcloud PCL sampled from the hand
mesh model, in order to predict the accuracy on unlabelled
data. We transform the PCL points according to α, apply-
ing Linear Blend Skinning (LBS) [19], and subsequently
render them to obtain a synthetic depth image.
Pointcloud Transformation. Similar to [61], we compute
the forward kinematic chain, which yields for each joint the
transformation matrix, transforming from the model space
of a neutral pose into the model space of the skinned pose
α. What is important is that this step is differentiable, since
only matrix multiplications and trigonometric functions are
required. We denote with T (α) = [T1(α1), . . . , TJ(αJ)]
these transformation matrices, where J is the number of
joints used (see supplementary for details). In contrast
to [61], we do not just transform the joint positions, but a
bigger set of points PCL = [p1, . . . , pn] representing the
whole hand. Each point pi is associated with one or more
joints. The weightwi,j defines how much the point is bound
to the joint j. Applying LBS [19] fLBS(PCL, T ) trans-
forms each point by a linear combination of the matrices Tj
according to its weights:

p̂i := fLBS
i (PCL, T ) =

J∑
j=1

wi,jTj(αj)pi (1)

Because this formulation is not just differentiable with re-
spect to T (a very important property that allows backprop-
agation to the SynthNet model), but also with respect to



PCL, we can relax the static hand model to a dynamic one,
that gets updated during training to automatically adapt to
the hand shape. In order to give an intuitive advantage of
this approach, imagine a personalized adaption to a differ-
ent real person‘s hand shape, starting from a non-parametric
3D hand model. This becomes important since in reality,
not only the poses change but also the hand shapes.
Depth Rendering. The 3D hand shape and pose can be
adapted to the real hand shape and pose by iteratively
minimizing a difference in depth projections (Ldepth), of
points PCL and PCLD, sampled from the hand model
and the input depth image D, respectively. PCL is uni-
formly sampled from the hand mesh. In order to render
PCL in a differentiable way, we select only the points with
the lowest z-value (closest to the camera) for each of the
image coordinates (Di,j), and weight the z-value of each
point with a 2D basis function φ around its position. This
weighting (smoothing) step is important since otherwise,
only picking a depth value at each widely spaced sam-
pled point would make the method non-differentiable. Let
pi = [pi,x, pi,y, pi,z] ∈ PCL. The rendered depth image
approximation is defined as:

DI i,j := fdepthi,j (PCL) = max
k

(depthi,j(pk)) (2)

where the points are assumed to be in the [0, 1] range and
the z-values represent the depth values with respect to the
camera:

depthi,j(p) = (1− pz)φi,j(p) (3)

Let dist2i,j(p) = (j− px)2 +(i− py)2. φ ∈ C1 was chosen
to have finite spatial support of a circle with radius r, and
can be defined as:

φi,j(p) =

(
1−

(
disti,j(p)

r

)2
)2

1dist2i,j(p)<r2 (4)

Due to the discrepancy between the synthesized (DI ) and
real depth (D) images, as also motivated in [9], we do not
directly compute the loss, but instead also sample a point
cloud PCLD from the real depth image D and render it
using fdepth to obtain DS . The actual loss taken in the end
is the L1 norm of the difference between both synthesized
images, Fig.2 :

Ldepth =
∑
i,j

|fdepthi,j (fLBS(PCL, T (α)))−fdepthi,j (PCLD)|

(5)

4. Synthetic Dataset Generation
In the absence of monocular RGB labelled datasets, in

order to capture the space of pose variability already at
training time, we create a new, large, realistically rendered,
available free-hand dataset.

Figure 4. Three base poses (in boxes) with linear interpolation on
the parameter space in between.

Hand Model. We opted for a commercial rigged and tex-
tured hand model1 for Maya R©2. The skeleton consists of 21
bones with 51 degrees of freedom (DoF), see Fig.3 (Left).
Since not all the DoF are feasible for a human skeleton, we
restrict our method to 4 DoF per finger and 3 for the rota-
tion of the wrist. A real human hand has more than these 23
DoF [18], however, the additional DoF are often ignored to
simplify the problem [45].

Synthetic Dataset. Inspired by [56], we decided to use
a combination of manual and automatic sampling. We first
create some base poses. Then we linearly interpolate over
the parameters between each pair of base poses to generate
new poses, as in Fig.4, detecting intersections. This pro-
cedure allows to easily adapt the dataset to a desired pur-
pose by crafting suitable base poses and then automatically
generating the linear span between them. We end up with
399 such poses. Details on the proposed enumeration of
base poses for a general purpose system can be found in
the supplementary material, along with a heat map visual-
ization experiment demonstrating our network’s capability
to be trained on the generated poses (with minor difficulty
on typically occluded parts, such as the thumb). In addition
to the varying poses, for each view (we consider 5 views -
front, back, both sides and top, Fig.3 (Middle)) we apply
5 random rotations (45 degrees for each DoF of the wrist
joint) and illumination changes to each image. We also vary
the texture and shape.
Collision Avoidance. Since a linear interpolation within the
hand pose space can lead to self-intersection, the automatic
generation of new poses contains an intersection detection
which rejects such undesired poses. In order to detect inter-
sections, we loop over all finger vertices to find the nearest
(other) finger neighbor. By projecting the vertices differ-
ence vector onto the other finger surface normal, it can be
computed whether the vertex is inside the foreign mesh or
not. An intersection occurrence is detected when an “in-
side” threshold is passed. In order to simulate flesh interac-
tion between fingers, we relax the threshold allowing very
little intersection. Due to interpolation with collision avoid-
ance we end up with 122106 different poses.
Un-natural Poses. The linear interpolation preserves many
constraints applied to the base poses, e.g. maximal angle-
range and fixed ratio between certain angles. Thus, it suf-

1https://www.turbosquid.com/3d-models/rigged-male-hand-
max/786338

2www.autodesk.com/products/maya



fices to create the base poses with the desired constraints to
make sure that the same holds within the complete dataset.

5. Experiments and Results
5.1. Training and Test Datasets

Detection and Segmentation Datasets. We utilize the
method and dataset from [62], for hand bounding box detec-
tion. On the other hand, for segmentation we use both real
and synthetic data. The real hand dataset contains 19000
images, 6000 of which come from the Hand Gesture Recog-
nition (HGR) dataset [16, 27, 13], which is an augmentation
of the initial 1500 raw images (consisting of 33 individuals
and 70 gestures), that we segment, add various backgrounds
and perform in-plane rotations of the hand. The remain-
ing 13000 belong to three individuals, captured performing
various poses in front of a green screen, which is replaced
with a random background. The synthetic images are in the
100K range and come from our synthetic dataset.
Pose Inference Datasets. Many publicly available datasets
are shot with depth cameras, e.g. the recently introduced
BigHand2.2M Dataset [58]. There is a lack of proper RGB
datasets. The NYU Hand Pose Dataset [54] e.g. contains
holes in the RGB images if no depth data is available,
while the Dexter RGBD dataset [42] has incomplete hand
annotation (fingertips) [62]. We make use of the Stereo
Hand Tracking Dataset [59] (StereoDS), which contains
twelve motion sequences in front of various backgrounds
(B1 through B6, and for each set, a count and random se-
quence of 1500 images each), which provides RGB and
Depth images together with the 3D joint positions. Another
area having a rich variety of RGB datasets is hand gesture
recognition, where the ground truth is a class label. We
utilize the German Fingerspelling Database (RWTH) [10],
that provides the classes of 35 gestures from the German
sign language, for 20 people, HGR [16, 27, 13], which in
addition to the class provides visible 2D fingertip locations
and Senz3D [23, 24] containing 11 gestures performed by
4 different people repeated 30 times each. Additionally, to
demonstrate unsupervised refinement on real data, we cap-
ture our own dataset (IntelDS) utilizing the Intel RealSense
Camera. It consists of 1000 pairs of registered RGB and
depth images for testing and 30, 000 for training (in the size
of 120× 120 pixels and without GT annotations), from one
individual wearing a black wristband, that allows for a sim-
ple intensity based segmentation.

5.2. Segmentation Accuracy Improvement

We evaluate the segmentation accuracy for both Hand-
SegNet [62] and OurSegNet, when training is performed
with and without adding our synthetic dataset to the avail-
able real ones. We evaluate on B1 random and count (150
images each) of StereoDS and the complete RWTH , ob-

Dataset [62] [62]+Synth OSN OSN+Synth
B1 Random 91.5 97.7 91 95.5
B1 Count 92 98 92 96
RWTH 93.34 93.37 92.9 93,1

Table 1. Segmentation accuracy in % for HandSegNet [62] and
OurSegNet (OSN) trained with and without our synthetic dataset.

serving an accuracy increase in the latter case (Table 1).

5.3. Refinement with Unlabeled Data

Semi-Supervised on Real RGB Images. As a proof-of-
concept, we utilize the Senz3D dataset [23, 24], to fine-
tune our SynthNet on real RGB images, by splitting the
dataset in half (300 each) for training and testing for a ges-
ture classification task on 10 of the classes. We first man-
ually craft a synthetic pose for each of the classes, in order
to obtain approximate GT labels (angles) for each training
image. Then, we learn a mapping from angles to classes,
similar to [62]. We measure the accuracy utilizing a 10-fold
cross validation, and notice an increase from 94 to 96.7%,
which is enabled by representing the 3D pose in terms of an-
gles as opposed to 3D joints (Sec.3.2). Fig.3 (Right) visual-
izes this improvement along with the supplementary video.
Unsupervised on Pairs of RGB and Depth Images. We
utilize the IntelDS to refine our RefNet in an unsuper-
vised way, utilizing pairs of RGB and depth data, and com-
pare it to the results of SynthNet before refinement. We
visualize the results before and after refinement in Fig.6,
also through videos and ROC curves in the supplementary,
demonstrating a clear improvement after the refinement. By
computing MSE between the two synthesized images which
are utilized to compute the depth loss, we notice that the
error halves in the latter case. Additionally we show a
video where we compare to [9] trained on depth images and
demonstrate similar performance.

5.4. Comparison to State-of-the-art

We compare to related methods working on RGB or
depth input images, and investigate generalization on var-
ious dataset, for three main tasks : gesture recognition, 2D
fingertip estimation and 3D pose estimation. Qualitative re-
sults on predictions are depicted in Fig.1 and Fig.5 as well
as in the supplementary material.

Classification on Spelling Dataset. Like Zimmermann
et al. [62], we evaluate our system on RWTH on all the
30 static gestures, by first predicting the poses and then ap-
plying a pose classifier to the respective class. Unlike [62],
we do not utilize images from this dataset to refine on and
we first segment the images utilizing OurSegNet. We uti-
lize 10-fold cross validation to estimate the accuracy since
no split specification was given by [62]. Training was done
with one hidden layer of 500 neurons with Relu activation
and dropout probability of 0.5. We achieve superior perfor-



Figure 5. SynthNet predictions on (left) HGR dataset [16, 27, 13] (middle) one individual hand (right) synthetic dataset from [62].

Figure 6. Two examples from our validation set IntelDS. SynthNet predictions before (top) and after refinement (bottom). From left to
right : RGB Input (I), Input Depth (D) , Synthesized Input Depth (DS), Prediction (DI ) and Error in depth prediction.

Method RWTH Senz3D
[10] on subset (from [62]) 63.44 -
[62] 66.8 77

Ours 73.6 94
Table 2. Classification accuracy comparison, in % of correctly
classified poses, on the RWTH [10] and Senz3D [23, 24].

Method Error
[62] (their segmentation) 804.23 px2

[62] (oracle segmentation) 483.28 px2

Ours (oracle segmentation) 361.47 px2
Table 3. Fingertip accuracy on the HGR Dataset [16, 27, 13] com-
puted as MSE over pixel errors, with image size 225× 225 pixels.

Evaluated for \Trained on Joint positions Joint angles
Joint Position MSE 0.199 0.397
Joint Angle MSE (deg) 42.829 12.763

Table 4. Joint Angles vs Positions MSE on our synthetic dataset.

mance compared to [62] and [10] as shown in Table 2. We
repeat the same experiment, however now on Senz3D over
10 classes, also achieving a better performance than [62].

Fingertip Detection Comparison. We evaluate
SynthNet predictions on the HGR dataset, which con-
tains hands from multiple people, assuming an oracle seg-
mentation (ground truth segmented by us). Fig.1 and Fig.5
(left) shows a qualitative assessment of our results, where
the predicted pose seems quite accurate, despite training
only on synthetic data. To quantitatively compare to [62],
we measure the accuracy of predicting 2D (visible) joint
positions, by computing the MSE on pixels for all front fac-

ing images (since back facing ones have almost no visible
fingertip). Zimmermann et al. [62] provide 3D joints di-
rectly, while we apply the kinematic chain on angles α to
retrieve the 3D joints. These 3D fingertips are then pro-
jected into 2D by solving a least-squares system to best fit
to the groundtruth labels (since no camera info is given).
Table 3 depicts these results, with [62] evaluated with their
and the oracle segmentation (since we trainOurSegNet on
HGR we only evaluate on oracle segmentation), where our
method achieves higher accuracy.

ROC Angle and 3D Joint Curves. We evaluate accu-
racy on 3D pose prediction for different methods by com-
puting ROC curves, that denote the fraction of frames below
a maximum 3D joint (or angle) prediction error, on the B1
set of StereoDS. We compare to [62], that assume an RGB
input as we do, and four other depth-based methods. Such
methods are trained to directly predict 3D joint positions,
unlike ours that predicts angles (Sec.3.2), and hence min-
imizes a different quantity (e.g. a slight wrist angle miss-
calculation would bring a larger error on 3D joints predic-
tion, even if the rest of the angles are correctly predicted).
Thus, we argue that a direct comparison on this dataset is
not possible, also due to the discrepancy between the GT
skeleton in StereoDS and our hand model skeleton, from
which we compute 3D joints from angles. In order to back
this up, we performed an experiment, on 300 unseen sam-
ples from our synthetic dataset, where we once trained for
3D joint positions and once for angles, and computed the
MSE for both cases. As it can be noticed in Table 4, training
for the respective task always achieves a smaller error. Nev-
ertheless, for completeness we compare on this dataset and
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Figure 7. Accuracy on the StereoDS [59] dataset. (Left) Improvement in euler angles due to refinement (Right) Comparison to state-of-
the-art methods trained to map onto 3D joints. We show our ROC curve trained on angles along with a version trained on joints.

report ROC curves for both angles and joints, in Fig.7. Due
to the lack of GT segmentation we first apply OurSegNet
to obtain the masked-out RGB images. The methods we
compare to, refine on sets B2-B6 consisting of 15, 000 im-
ages. We can not directly fine-tune on such datasets unfor-
tunately, however we apply the following procedure : we
compute the GT angles over B3-B5 (note from a differ-
ent skeleton) and utilize this as our GT for refinement on
the training set. Due to innacurate segmentation we do not
make use of B2 and B6. We then apply forward kinemat-
ics to obtain the 3D joints from angles, and learn a linear
mapping from our skeleton predicted 3D joints to those of
the StereoDS GT, in order to minimize the bias between
both skeletons. At test time, we first predict the angles on
B1, then compute joints and apply the mapping. The re-
sults are depicted in Fig.7 (Right) with [62] achieving (as
expected) a higher Area Under Curve (AUC). Nevertheless,
computing the ROC for euler angle errors, as in Fig.7 (Left),
we notice that the AUC for our method after refinement is
almost the same as that of [62]. In order to quantitatively
prove our claim for the discrepancy between training for
different tasks, we additionally train a network to predict
3D joints instead of angles, utilizing only our synthetic data
and refining on B3-B5. We already notice a boost in the
predictions, with the new curve, Fig.7 ((Right) Ours (joint
regression)), reaching similar accuracy to that of [62]. We
think that the difference between the curves can be due to
our refinement only on a part of the complete training set
that [62] was refined on.

6. Discussion and Conclusions

We could show, through quantitative and qualitative eval-
uations, that utilizing lightweight CNN-s trained purely on

our newly proposed synthetic dataset can achieve accurate
pose inference, for a variety of tasks, strongly competing
with and even outperforming existing state-of-the-art. We
additionally showed that by extending its construction with
a depth loss component, coupled with our pose representa-
tion, the accuracy further improved via semi-supervised and
unsupervised training with real unlabeled images.
At the moment, we utilize training data generated from a
single shape hand model. Despite the fact that we could
show generalization on multiple real hands, and good ac-
curacy especially on classification tasks, there is still room
for improvement, e.g. experimenting with adding a second
shape improved prediction on HGR by 10% (supplemen-
tary). Additionally, due to the joint angle parametrization,
the same parameters could represent different poses when
children and adult hands are considered. Our current opti-
mization model, though, allows an internal adaptation to a
hand shape. Coupling our method with recent more power-
ful hand shape models such as Tkach et al. [51] and Romero
et al. [36]’s has the potential to improve and personalize
hand pose estimation for a variety of human hand shapes.
Even though we could show improvements in segmentation,
based on the synthetic dataset, most of it is due to the real
GT training data we annotated. As also backed up by our
refinement experiments, further real GT datasets with seg-
mentation and pose annotations are very important. Addi-
tionally, we could avoid segmentation, by synthesizing 3D
models in front of various backgrounds, however on the ex-
pense of added training time and larger datasets.
Lastly, we envisage to apply our technique to related tasks
such as human pose estimation, with minimal changes to
the underlying representation and architecture.
Acknowledgement. We thank Niko Benjamin Huber and
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