
Monocular RGB Hand Pose Inference from Unsupervised Refinable Nets
Supplementary

Endri Dibra, Silvan Melchior, Ali Balkis, Thomas Wolf, Cengiz Öztireli, Markus Gross
Department of Computer Science, ETH Zürich

{{edibra,cengizo,grossm}@inf, {silvanm,abalkis,wolftho}@student}.ethz.ch

0.000 0.005 0.010 0.015 0.020 0.025 0.030
MSE between synthesized depth images

0

25

50

75

100

125

150

175

200

Nu
m

be
r o

f f
ra

m
es

Base (Color)
Adapted (Color)

Figure 4. MSE histogram computed over pixel (depth) image dif-
ference for the network before and after refining unsupervised. We
attach a corresponding video (ColorAdapted).

1. Introduction

In this supplementary material, we first provide further
qualitative experiments on the accuracy of our hand pose in-
ference method (including videos). Then we provide some
complementary explanation of our dataset creation and ex-
periments, where the limitations are discussed. In the end
we provide the full architecture and training details for the
detection, segmentation and inference part, along with the
gradient derivations and implementation details of our un-
supervised learning component (Sec.3.3 from the paper).

2. Real Hands Results

In Fig.2, we show further results of poses inferred from
SynthNet, with input images from the HGR dataset [4, 7,
3] and one additional individual performing various poses
in Fig.3. We would like to stress that SynthNet is only
trained with our synthetic data and has not seen any sample
from the HGR dataset.

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
MSE between synthesized depth images

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fr

am
es

 w
ith

in
 M

SE

Base (Color)
Adapted (Color)

Figure 5. ROC curve corresponding to Fig.4.

Figure 6. Error Contribution Heatmap. Shown are six images from
our dataset. For each input image, we visualize the contribution to
the mean squared error of the complete pose, arm (wrist), thumb,
pointer, middle, index and pinky (from left to right).

1



Figure 1. Three examples of segmentation improvement on StereoDS before (left) and after (right) adding our synthetic training data.
Added as a reference to Table 1 from the paper.

3. Refinement and Intersection Handling
Our method has limitations too. Firstly, since it does

not have an explicit intersection handler, at prediction time,
some intersections occur. Secondly, due to the thumb dis-
crepancy between real and synthetic data, there is a diffi-
culty of estimating closed fists (with the thumb in) directly
from synthetic data, as well as poses like in Fig.2 (1st Col-
umn, 3rd row).
Kinematic Constraints. Due to our database construction
the cases where fingers intersect are minimized, however
they exist. One way to tackle this could be to add an in-
tersection handling term as part of the loss function. This
however would help only at training time, during a potential
unsupervised refinement. In order to make sure that no in-
tersection happens during prediction, we, for completeness
and comparison (Fig.7 and video), provide a small exten-
sion of the pose prediction pipeline, by calculating a new
pose φ through minimizing the energy function in equation
1. The first norm penalizes large deviations from the pose
φ predicted by the CNN. A cylindric model is utilized to
penalize intersections in the second term, where each fin-
ger consists of three cylinders. A cylinder p is determined
by a radius rp (obtained from our hand model) and a seg-
ment sp2p1(φ) serving as axis (computed from the rotation
determined from φ). We denote with d the distance func-
tion between two segments.

E1(φ) = φ− φ2+λ

 ∑
(p,q)∈I

max{0, rp + rq − d(sp2p1, s
q2
q1)}2

2

(1)
To solve the optimization problem imposed by equation

1, we utilize the Ceres Solver [1]. Fig.8 shows qualita-
tive examples of refinements with λ = 10. The additional
step helps to correct small failures. A bit of intersection
is still allowed, in order to simulate flesh interaction with
our model. A video (BaseVsRefinedVsConstrained) is also
attached showing predictions before (base) and after refine-
ment with the kinematic constraints (constrained).
Heat Map Visualizations. In order to understand the diffi-
culty of estimating the thumb position, we visualize features

learned by our network, by relating image positions to error
contributions. We adopt a technique introduced by Zeiler
et al. [8] to regression. A black box is moved over differ-
ent poses. For each position, the increase of error compared
to the original image is measured and finally visualized as
heatmap. We calculate the mean squared error over differ-
ent sets of parameters. Fig.6 shows heat-map examples for
a variety of poses. As it can be noticed, most of the fin-
gers demonstrate a high error throughout the whole finger
when that part is missing (as we would expect), except for
the thumb, that shows a high error in its lower part, how-
ever the upper part is not picked by the network. We be-
lieve this is due to the discrepancy between synthetic and
most real thumbs, which could be alleviated by providing
the network with real examples, based on Sec.3.2 from the
paper, and demonstrated below.
Refinement Video. We attach a video that shows the input
image, the prediction from SynthNet (base), the prediction
after a semi-supervised refinement as in Sec.3.2 from the
paper (SynthNet which has seen real RGB unlabelled data
(Refined)), and the prediction after the inter-penetration
constraint handling (Constrained). Fig.7 contains a frame
from the video, where it is observed how the fist closing is
handled for all the cases. As it can be noticed, refining the
network produces the most plausible results, demonstrat-
ing the advantage of the model. (Please note that temporal
smoothing is applied to the video).

4. Unsupervised Refinement Curves and Video
We attach two videos (ColorAdapted and ColorVs-

Depth). The first one compares the network trained only
synthetic data SynthNet (top) to the one adapted unsuper-
vised to real unlabelled pairs of monocular RGB and depth
data from an individual, RefNet (bottom). This refers to
Sec.3.3 and Sec.5.3 in the paper as well as Fig.6. Please
note that not only the pose prediction quality is enhanced,
but also jitter is removed significantly (we apply no tempo-
ral smoothing to the video). We additionally show in Fig.4
and Fig.5 the MSE error computed over pixel (depth) image
difference for the network before and after refining unsuper-
vised, and notice a considerable improvement.
A second video is provided where our method is compared



Figure 2. Qualitative results on various hand poses, shapes and color.



Figure 3. Qualitative results on one individual in various hand poses.

Figure 7. One frame from the attached video. From left to right : input image, SynthNet prediction, SynthNet refined semi-supervised.
SynthNet with interpenetration constraint handling prediction.

to a method based on depth images only [2] (our input is
monocular RGB while theirs is depth), and a similar predic-
tion accuracy is noticed. For the reader courtesy, we addi-
tionally provide the per-frame MSE over the entire video,
the MSE histogram and ROC curve in Fig.9,10 and 11.
Please note that what is important to be compared from the
graphs, except for the increased accuracy due to adaptation,
is Base (Depth) vs Adapted (Color). Base (Depth) can be
thought of as a CNN method from the literature trained on
depth images while Adapted (Color) is our method that has
been trained on our synthetic RGB images, and has only
seen depth images and utilized them in an unsupervised
manner, at little capturing cost. We believe that this ex-

ample shows the potential of CNN RGB based methods to
work on par with Depth-based ones.

5. Base Poses
As mentioned in the paper we create our synthetic

dataset by starting from base poses, which are later inter-
polated. We enumerate the thumb poses separately and
firstly focus on the other four fingers. We fix three possi-
ble opening states of a finger: fully open, partially closed
(metacarpophalangeal joint still stretched) and fully closed.
Furthermore, we assume that if some fingers are not fully
stretched, they are closed the same way (either all of them
partially closed or fully closed). The side-movements are



Figure 8. Kinematic Constraints Demonstration. The left image of each pair shows an initial prediction, the right image a refined version
using kinematic constraints.

Maxpool/2

Conv
(64,3x3,ReLu)

Conv
(64,3x3,ReLu)

Conv
(128,3x3,ReLu)

Conv
(128,3x3,ReLu)

Conv
(256,3x3,ReLu)

Conv
(256,3x3,ReLu)

Conv
(256,3x3,ReLu)

Conv
(512,3x3,ReLu)

Conv
(512,3x3,ReLu)

Conv
(512,3x3,ReLu)

Conv
(512,3x3,ReLu)

Conv
(512,3x3,ReLu)

Conv
(2,1x1) Bilinear

UpSampling
SoftmaxMaxpool/2 Maxpool/2

Hand Detection CNN

Figure 12. CNN architecture of the detection part.

0 200 400 600 800 1000
Frame index

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

M
SE

 b
et

we
en

 sy
nt

he
siz

ed
 d

ep
th

 im
ag

es

Base (Color)
Base (Depth)
Adapted (Color)
Adapted (Depth)

Figure 9. MSE variation per frame of our (Color) and [2] method
(Depth) both before (Base) and after (Adapted) after unsupervised
refinement.

combined with the opening state of a finger, e.g. they are
ignored when the fingers are partially or fully closed, due
to the human hand limitations [6]. A further simplifying
assumption we made was to enumerate side-movements by
counting the gaps between the fingers as explained below:

• If all four fingers are fully open, there are three gaps in
between. Each gap can be either open or closed, giving
a total of 23 = 8 combinations.

• If three fingers are fully open, the number of gaps de-
pends on the (partially) closed finger, being either two
or one. Since the closed finger can be either fully or
partially closed, we get a total of 2(22+21+21+22) =
24 poses.

0.000 0.005 0.010 0.015 0.020 0.025 0.030
MSE between synthesized depth images

0

50

100

150

200

250
Nu

m
be

r o
f f

ra
m

es
Base (Color)
Base (Depth)
Adapted (Color)
Adapted (Depth)

Figure 10. MSE histogram of our (Color) and [2] method (Depth)
both before (Base) and after (Adapted) after unsupervised refine-
ment.

• If two fingers are fully open, we get a total of 2(21 +
20 + 21 + 20 + 20 + 21) = 18 poses with the same
considerations as in the previous case.

• If only one finger is fully open, we do not have side-
movements with our assumptions, giving a total of
2(20 + 20 + 20 + 20) = 8 poses.

• If all fingers are closed, they can be either partially of
fully closed, giving a total of 2 poses.

Having in mind the interpolation to be performed, we fixed
six different poses of the thumb, giving a total of 6× 60 =
360 base poses. Additionally, we added four poses where
the thumb touches one of the remaining fingers each, since



Encoder:

OurSegNet

Conv
(512,3x3,ReLu)

Conv
(512,3x3,ReLu)Maxpool/2

Conv
(64,3x3,ReLu)

Conv
(64,3x3,ReLu)

Conv
(128,3x3,ReLu)

Conv
(128,3x3,ReLu) Maxpool/2

Conv
(256,3x3,ReLu)

Conv
(256,3x3,ReLu)

Conv
(256,3x3,ReLu)

Conv
(512,3x3,ReLu)

Conv
(512,3x3,ReLu)Maxpool/2 Maxpool/2

Decoder:

Upsample/2
Conv

(512,3x3,ReLu)
Conv

(256,3x3,ReLu)
Conv

(128,3x3,ReLu)
Conv

(64,3x3,ReLu)
Conv
(2,1x1) SoftmaxUpsample/2 Upsample/2 Upsample/2

Figure 13. CNN architecture of OurSegNet.

Maxpool/2
conv1 fire2 fire3 fire4 Maxpool/2 fire5 fire6 fire7 fire8 Maxpool/2 fire9 conv10

96 128 128 256 256 384 384 512 512 23 (parameters)

Figure 14. CNN architecture for pose inference SynthNet.

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
MSE between synthesized depth images

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fr

am
es

 w
ith

in
 M

SE

Base (Color)
Base (Depth)
Adapted (Color)
Adapted (Depth)

Figure 11. ROC curve corresponding to Fig.10.

the above setting of separating the thumb from the remain-
ing fingers does not handle this. We also added 6 poses
with crossed fingers, because the focus on the gap between
the fingers does not capture this. In the end, 29 base poses
were created inspired by the HGR dataset, giving a total of
399 base poses.

6. Architectures

We illustrate in Fig. 12, Fig. 13 and Fig. 14 the hand
detection, segmentation and pose inference model in more
detail.

6.1. Training Details

We train HandSegNet with Adam optimizer [5] and an
initial learning rate of 10−5 with decay 5× 10−4, changed
to 10−6 and 10−7 over 10 epochs, and OurSegNet with
Stochastic Gradient Descent and the same initial learning
rate for 30 epochs. SynthNet was trained utilizing Adam op-
timizer, with an initial learning rate of 10−4 over 10 epochs
with a batch size of 100, while RefNet with Adam optimizer
and learning rate of 4×10−3 for over 40 epochs with a batch
size of 1000.

7. Depth Loss Details
Here we provide implementation details for the linear

blend skinning (LBS) and the depth renderer part. We im-
plement custom operations of the form f : A 7→ B in Ten-
sorflow, with a given gradient g(f) and g : B 7→ R an
arbitrary loss function.
Linear Blend Skinning. Let J be the number of joints
and T = [T1, . . . , TJ ], where Ti ∈ R4×4, the matrix that
transforms from joint space of joint i to view space of the
hand pose α. Let PCL = [p1, . . . , pn] with pi ∈ R4 a
point cloud with points in homogeneous coordinates and
wi,j ∈W ∈ Rn×J the weights that define the boundness of
point pi to a joint j ∈ [J ]. We derivate w.r.t. T by first writ-
ing f in terms of scalar values with coordinate axis c ∈ [4]:

fi,c(PCL, T ) =

4∑
d=1

J∑
j=1

wi,jTj,c,dpi,d (2)

and its derivative f := f :

∂fi,c(PCL, T )

∂Tk,l,j
= 1{l=c}wi,kpi,j (3)



Utilizing the chain rule we can differentiate g(f) as :

∂

∂Tk,l,j
g(f(T, PCL)) =

n∑
i=1

4∑
c=1

∂g(f)

∂fi,c

∂fi,c(PCL, T )

∂Tk,l,j
(4)

=

n∑
i=1

∂g(f)

∂fi,l
wi,kpi,T (5)

In order to update PCL, we also need to differentiate f
w.r.t. PCL, by adding the notion of the batch dimension.
Let now f ∈ Rn×4 × RB×n×4 7→ RB×n×4×4 with n the
number of points and B the batch size. Since there is a T
for each batch element now, it subsequently has four dimen-
sions. We can re-write Eq. 2 as :

fb,i,c(PCL, T ) =

4∑
d=1

J∑
j=1

wi,jTb,j,c,dpi,d (6)

For a batch index b, point index i and coordinate index c.
Taking the derivative of f := f gives:

∂fb,i,c(PCL, T )

∂pk,l
= 1{k=i}

J∑
j=1

wi,jTb,j,c,l (7)

Thus, g(f) is given by:

∂

∂pk,l
g(f(T, PCL)) =

B∑
b=1

n∑
i=1

4∑
c=1

∂g(f)

∂fb,i,c

∂fb,i,c(PCL, T )

∂pk,l

=

B∑
b=1

4∑
c=1

∂g(f)

∂fb,k,c

J∑
j=1

wi,jTb,j,c,l (8)

Depth Renderer. We have f := fdepth. The derivative
of g(f) for c ∈ {x, y, z}, and an image size H ×W (here
120× 120) is given by:

∂

∂pl,c
g(f(P )) =

H∑
i=1

W∑
j=1

∂g(fi,j)

∂fi,j

∂fi,j(PCL)

∂pl,c
(9)

with
∂fi,j(PCL)

∂pl,x
= h(l, PCL)(j − pl,x) (10)

∂fi,j(PCL)

∂pl,y
= h(l, PCL)(i− pl,y) (11)

For an efficient implementation of Eq. 9, we loop only over
a range of {bpl,x − rc, . . . , dpl,y + re} for each point pl
utilizing the finite spatial support of φ, which is defined
for some indices i, j with 1 ≤ i, j ≤ H,W fulfilling
l = argmaxk(depthi,j(pk)) :

∂fi,j(PCL)

∂pl,z
= −1{l=argmaxk(depthi,j(pk))}φ(pl) (12)

where

h(l, PCL) = 1{l=argmaxk(depthi,j(pk))∧φ(pl)>0}

4(1− pl,z)
r2

(
1− (j − pl,x)2 + (i− pl,y)2

r2

)
(13)

References
[1] S. Agarwal, K. Mierle, and Others. Ceres solver. http:

//ceres-solver.org. 2
[2] E. Dibra, T. Wolf, A. C. Öztireli, and M. H. Gross. How to

refine 3d hand pose estimation from unlabelled depth data ?
In Fifth International Conference on 3D Vision, 3DV 2017,
Qingdao, China, 2017, 2017. 4, 5

[3] T. Grzejszczak, M. Kawulok, and A. Galuszka. Hand land-
marks detection and localization in color images. Multimedia
Tools and Applications, 75(23):16363–16387, 2016. 1

[4] M. Kawulok, J. Kawulok, J. Nalepa, and B. Smolka. Self-
adaptive algorithm for segmenting skin regions. EURASIP
Journal on Advances in Signal Processing, 2014(170):1–22,
2014. 1

[5] D. P. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. CoRR, abs/1412.6980, 2014. 6

[6] J. Lee and T. L. Kunii. Model-based analysis of hand posture.
IEEE Comput. Graph. Appl., 15(5):77–86, Sept. 1995. 5

[7] J. Nalepa and M. Kawulok. Fast and accurate hand shape
classification. In S. Kozielski, D. Mrozek, P. Kasprowski,
B. Malysiak-Mrozek, and D. Kostrzewa, editors, Beyond
Databases, Architectures, and Structures, volume 424 of
Communications in Computer and Information Science, pages
364–373. Springer, 2014. 1

[8] M. D. Zeiler and R. Fergus. Visualizing and understanding
convolutional networks. In Computer Vision - ECCV 2014
- 13th European Conference, Zurich, Switzerland, September
6-12, 2014, Proceedings, Part I, pages 818–833, 2014. 2

http://ceres-solver.org
http://ceres-solver.org

