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Abstract
Vortices are commonly understood as rotating motions in fluid flows. The analysis of vortices plays an important role in numer-
ous scientific applications, such as in engineering, meteorology, oceanology, medicine and many more. The successful analysis
consists of three steps: vortex definition, extraction and visualization. All three have a long history, and the early themes and
topics from the 70s survived to this day, namely the identification of vortex cores, their extent and the choice of suitable reference
frames. This paper provides an overview over the advances that have been made in the last forty years. We provide sufficient
background on differential vector field calculus, extraction techniques like critical point search and the parallel vectors oper-
ator, and we introduce the notion of reference frame invariance. We explain the most important region-based and line-based
methods, integration-based and geometry-based approaches, recent objective techniques, the selection of reference frames by
means of flow decompositions, as well as a recent local optimization-based technique. We point out relationships between the
various approaches, classify the literature and identify open problems and challenges for future work.

This is the authors preprint. The definitive version is available at http://onlinelibrary.wiley.com/.

1. Introduction

Vortex extraction belongs to the most important and similarly most
challenging aspects of fluid flow analysis. Vortices are commonly
understood as rotational or spiraling movements of particles around
a common coreline, which can be seen only if the flow is viewed
in the right reference frame [Lug79, Rob91]. Vortices play a sig-
nificant role in many engineering problems, for instance in aircraft
navigation during nose-up or roll of a jet [KH97], where vortices
may reduce lift. Other examples are swirl and tumble motion in gas
engines [GLT∗07], and turbomachinery [RP96], where flows ex-
hibit fully developed turbulence, strong shear and are constrained
in curved channels of complex geometry. Recently, vortices have
drawn more attention in medical applications, such as in 4D PC-
MRI cardiac blood flow [KGP∗13] and in risk assessment of cere-
bral aneurysms [OJCJP16]. Vortices are explored in the oceans in
form of eddies [CSSdS07] and in the atmosphere in the search for
hurricanes [Lug83]. Also, vortices in the atmosphere of other plan-
ets such as Jupiter shifted into focus [HH16]. Fig. 1 depicts vortices
in the wake of an air plane and in the clouds behind an island.

Despite their relevance in practice, the analysis tools are lim-
ited in their capabilities. Most techniques require the flow to be
incompressible and the identification of vortices becomes particu-
larly difficult in time-dependent flows, which is in the top list of
long-standing and open challenges of flow visualization. Tradition-
ally, flow visualization is divided into four categories.

• Direct methods use primitives to directly encode properties of the
data, e.g., arrow plots pointing in the flow direction. Glyphs can
be used to encode multiple attributes [BKC∗13], which is suit-
able for multi-variate data visualization. While they are widely
and successfully applied in 2D, their utility is limited when they
are spatially embedded in 3D due to the arising occlusion.

• Geometry-based methods use geometric primitives such as flow
aligning lines and surfaces to represent a flow. A comprehensive
overview of geometry-based approaches is given by McLough-
lin et al. [MLP∗10]. Recent reports focused on surface-based
[ELC∗12] and illustrative flow visualization [BCP∗12].

• Texture-based methods are sometimes also referred to as dense
methods, since they densely encode data using textures. These
methods are predominantly used in 2D and on 2D manifolds,
again due to the occlusion problems. A famous example is the
line integral convolution (LIC) [CL93]. More details on texture-
based methods are found in [LHD∗04] and [LEG∗08].

• In feature-based methods, the term feature is often reserved for
structures that are contained in vector field topology [HH91].
The essence of these methods is to partition and compactly de-
scribe the flow as a set of areas with coherent behavior. More
information on the extraction and tracking of feature is com-
piled in [PVH∗03]. More recent reports summarize the efforts
in topology-based [HLH∗16,LHZP07] and specifically unsteady
topology-based [PPF∗11] flow visualization.

Vortex extraction resides in the area of feature-based methods,
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Figure 1: Examples of real-world air flows. Left: wake vortex study
of an agricultural plane (image from the NASA Langley Research
Center), right: clouds off the Chilean coast near the Juan Fernandez
Islands form a von-Kármán vortex street (by Bob Cahalan, NASA
Goddard Space Flight Center). Both images are in public domain.

though there are some synergies with geometry-based techniques
for integration-based extraction and visualization. Over the past
years, several new challenges emerged in the scientific disciplines
that scientific visualization supports, which led to an increased de-
mand for research on specific challenges, such as time-dependent
flows, multi-fields, higher-dimensional flows, large-scale and in-
situ visualization, ensembles and uncertainty. Vortex extraction is a
relevant subject in all of these new challenges.

This paper is aimed to be an entry point for new researchers and a
comprehensive overview for the senior ones. First, we cover in Sec-
tion 2 the basic differential properties and principles that most vor-
tex extraction techniques are based on. Further, we outline the most
relevant extraction techniques, i.e., critical point search and parallel
vectors. Section 3 introduces the concept of reference frame invari-
ance, which allows us to understand when vortex extraction tech-
niques will fail. In Section 4, we provide an overview and classify
vortex extraction techniques. Afterwards, we proceed with numer-
ous vortex definitions throughout Section 5. Topic-wise, we cover
traditional region-based and line-based techniques, geometric and
integration-based methods, objective techniques, flow decompo-
sitions and reference frame selection, including an optimization-
based approach. Afterwards, we look into topics such as the de-
termination of a vortex boundary, vorticity transport, vortex veri-
fication and vortex visualization. Finally, Section 6 concludes and
outlines directions for future research.

1.1. Notation

Throughout the paper, we denote scalars by italic lowercase letters
such as s, column vectors with bold lowercase letters such as v, and
matrices with bold uppercase letters such as J. Formally, we denote
coordinates in space as x and coordinates in space-time with a bar
as x̄. A squared bracket indicates a differences between 2D and 3D:

x =

 x
y
[z]

 ∈ D , x̄ =


x
y
[z]
t

 ∈ D×T (1)

where the spatial domain D is a subset of the n-dimensional (n =
2,3) Euclidean space IEn, i.e., D ⊂ IEn and T is a time interval.
Later, we use the space-time concept to represent the state of a par-
ticle in a time-dependent flow, including both its location in space
and in time.

We define function ap to transform the anti-symmetric part
of a matrix to a scalar/vector. In 2D, ap(M) = 1

2 (m1,2 −m2,1).
In 3D, ap(M) = 1

2 (m3,2−m2,3 , m1,3−m3,1 , m2,1−m1,2)
T where

mi, j refer to the elements of the matrix M. The inverse of ap is the
function sk that transforms a scalar/vector into an antisymmetric
matrix. In 2D and 3D, we have:

2D : sk(α) =
(

0 α

−α 0

)
, 3D : sk

α

β

γ

=

 0 −γ β

γ 0 −α

−β α 0

 (2)

Further, we denote the trace of matrix M as tr(M), the determinant
as det(M) and the Euclidean norm as ‖M‖=

√
tr(MMT).

2. Background

The following section briefly introduces the most important con-
cepts that are used in the literature on vortex extraction.

2.1. Steady and Unsteady Vector Fields

First of all, we distinguish between steady and unsteady flows.

Steady Vector Field. A steady vector field is not changing over
time and is formally given as a time-independent map v(x) =
v(x, y [, z]) : D→ D.

2D : v(x,y) =
(

u(x,y)
v(x,y)

)
3D : v(x,y,z) =

u(x,y,z)
v(x,y,z)
w(x,y,z)

 (3)

where u, v[ ,w] denote the direction components. Steady flows are
used to describe instantaneous fields, or generally fields that do not
change over time. An example for an instantaneous field is a mag-
netic field. Even though it might change over time, we are usually
interested in a single time slice.

Unsteady Vector Field. An unsteady vector field, on the other
hand, varies over time, and thus, it is given as a time-dependent
map v(x, t) = v(x, y, [z, ] t) : D×T → D. In 2D and 3D, we have:

2D : v(x,y, t) =
(

u(x,y, t)
v(x,y, t)

)
3D : v(x,y,z, t) =

u(x,y,z, t)
v(x,y,z, t)
w(x,y,z, t)


(4)

Most physical processes are subject to temporal variation, includ-
ing the motion of air and liquids. In such an unsteady flow, vortices
move. Their robust tracking over time is among the most challeng-
ing aspects of vortex extraction.

Streamlines. In a steady flow, the trajectory x(τ) of a tracer parti-
cle is called a streamline. For a given seed point x0, the streamline
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(a) Streamlines: trajectories in a single time slice.

(b) Pathlines: trajectories of tracer particles, advancing in time.

Figure 2: Examples of integral curves in unsteady flow. This illus-
tration was provided in [Gün16].

is computed as the solution to the autonomous ordinary differential
equation (ODE):

d
dτ

x(τ) = v(x(τ)) with x(0) = x0. (5)

An example for streamlines in unsteady data are the instantaneous
field lines of unsteady magnetic fields. Fig. 2a shows streamlines in
the flow around an obstacle.

Pathlines. In an unsteady flow, the trajectory x(t) of a tracer parti-
cle is called a pathline. For a given seed point x0 and seed time t0,
it is the solution to the ODE:

d
dt

x(t) = v(x(t), t) with x(t0) = x0. (6)

By interpreting a time-dependent vector field as an autonomous
system in space-time, it can be written as an (n+ 1)-dimensional
steady field:

2D : p̄(x,y, t) =

u(x,y, t)
v(x,y, t)

1

 , 3D : p̄(x,y,z, t) =


u(x,y,z, t)
v(x,y,z, t)
w(x,y,z, t)

1

 .

(7)

Here, an infinite number of pathlines passes through each point in
the spatial domain, depending on the seed time of the curve. Fig. 2b
gives an example.

2.2. Derivatives and Differential Properties of Vector Fields

Most vortex definitions are characterized by means of differential
properties of the observed vector field. This section introduces the
most relevant properties. We denote the partial derivatives of a vec-
tor field v as:

vx =
∂v
∂x

, vy =
∂v
∂y

,

[
vz =

∂v
∂z

,

]
vt =

∂v
∂t

. (8)

Note that for steady flows vt = 0.

Nabla Operator. The Nabla operator∇ is a symbol that simplifies
the notation of several derived differential quantities. It is a vector
that contains the partial derivative symbols with respect to the spa-
tial dimensions:

∇=

(
∂

∂x
,

∂

∂y

[
,

∂

∂z

])T

(9)

Divergence. The divergence ∇ · v of a steady or unsteady flow
v(x, y [, z, t]) = (u, v [, w])T is a scalar field that characterizes the
change in volume of a virtual finite-sized sphere that is advected
with the flow. The divergence is given as:

∇·v =
∂u
∂x

+
∂v
∂y

[
+

∂w
∂z

]
= ux + vy [+wz] (10)

If the volume increases the divergence is positive; if it decreases the
divergence is negative. If the volume remains constant, even though
the shape of the sphere might deform, the divergence is zero. If a
flow has zero divergence everywhere in the domain, the flow is re-
ferred to as divergence-free or incompressible. The compressibility
of a fluid depends on its molecular composition. Tightly packed
fluids such as water are often modeled as incompressible. Since
gases can easily be packed tighter under pressure, they are highly
compressible and not divergence-free.

Curl. The curl ∇× v of a steady 3D vector field v(x, y, z) =
(u, v, w)T is a vector field that indicates how the flow swirls at a
certain point. It is defined as:

∇×v =

wy− vz
uz−wx
vx−uy

 (11)

When a virtual finite-sized particle is advected with the flow, it
might spin. The axis around which it spins is parallel to the curl
vector and the curl’s magnitude corresponds to half the angular
speed of the rotation. A vector field in which the curl is the zero
vector everywhere in the domain is called curl-free or irrotational.

Harmonic Flow. A vector field that is both divergence-free and
curl-free is called harmonic.

v is harmonic ⇔ ∇·v = 0 ∧ ∇×v = 0 (12)

Harmonic flows play a role in flow decompositions, such as the
Helmholtz-Hodge decomposition [BNPB13].

Jacobian. The spatial Jacobian J =∇v = (vx,vy[,vz]) is an n×n
matrix that contains a first-order description of how the flow be-
haves locally around a given location. The space-time Jacobian J is
an (n+ 1)× (n+ 1) matrix that additionally contains the temporal
derivative. It is defined as:

J =∇p =

(
J vt

0T 0

)
. (13)

In a steady flow, the eigenvalues and eigenvectors of the Jacobian
J are of great interest to characterize isolated first-order critical
points [HH89, HH91, Wei08], i.e., locations at which v(x) = 0. We
denote the eigenvectors of J as e1,e2[,e3], respectively. The eigen-
vectors will play a significant role for the definition of vortex con-
cepts. Many region-based vortex extraction methods are based on
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(a) Jacobian J (b) Strain rate tensor S (c) Vorticity tensor ΩΩΩ

Figure 3: Decomposition of the Jacobian J into symmetric part
S and anti-symmetric part ΩΩΩ. Each tensor is visualized with a
LIC [CL93], using v = Jx, v = Sx and v = ΩΩΩx, respectively.

the decomposition of the Jacobian J into J = S+ΩΩΩ, with

S =
J+JT

2
ΩΩΩ =

J−JT

2
(14)

where the symmetric matrix S is called the strain rate tensor and
the anti-symmetric matrix ΩΩΩ is called the vorticity tensor. Fig. 3 il-
lustrates the components of this decomposition for the simple linear
vector field v = (x+ y,−x− 2

5 y)T.

Jacobian Invariants. In 3D flows, the eigenvalues of the Jacobian
J satisfy:

λ
3−Pλ

2 +Qλ−R = 0 (15)

Thereby, P, Q and R are tensor invariants, since they remain the
same in any basis. Here, they are defined as:

P = tr(J) =∇·v (16)

Q =
1
2

(
P2− tr(J2)

)
(17)

=
1
2
(‖ΩΩΩ‖2−‖S‖2)+

1
2
(∇·v)2 (18)

R = det(J) (19)

using J = S+ΩΩΩ from Eq. (14), and ‖·‖ denotes the Euclidean norm
of a tensor. Some of the most-established vortex definitions are
based on the invariants of the Jacobian matrix, as we will see later.
Note that for 2D flows, there are only two invariants:

P = tr(J) =∇·v (20)

Q =
1
2

(
P2− tr(J2)

)
= det(J) (21)

Acceleration. The acceleration of a particle in space is

Dv
Dt

= a = J ·v+vt , (22)

and the acceleration in space-time is a = J p. Note that a =

(
a
0

)
.

Feature Flow Field. The feature flow field is a derived vector field
that has several fundamental properties. Originally, it was defined
in space-time as f [TS03]. The most important observations are:

1. Given an unsteady 2D flow p̄ in space-time as in Eq. (7), the fea-
ture flow field f̄ points in space-time into the direction in which
neither u nor v will change:

f̄ =∇u×∇v (23)

Note that the cross product assures that f̄ is orthogonal to both
∇u and∇v. From this, it can be shown that f̄ is divergence-free.
For n = 2, this gives [TS03]:

f =

det(vy,vt)
det(vt ,vx)
det(vx,vy)

 , f = 1
det(vx,vy)

(
det(vy,vt)
det(vt ,vx)

)
. (24)

Similarly, for n = 3 we have [WSTH07]:

f =


−det(vy,vz,vt)

det(vz,vt ,vx)
−det(vt ,vx,vy)

det(vx,vy,vz)

, f = 1
det(vx,vy,vz)

−det(vy,vz,vt)
det(vz,vt ,vx)
−det(vt ,vx,vy)

.
(25)

Note that a division by the last component of f̄ gives a variant of
the feature field that is named f, which is defined in space only,
see Eqs. (24)–(25). The feature flow field can also be computed
as, cf. [Gün16]:

f =−J−1 vt . (26)

Note that f can only be computed if J is non-singular. When
seeding a particle at a critical point, the tangent curves of f will
follow the paths of critical points in space-time [TS03].

2. Let e1, e2, [e3] be the eigenvectors of Jacobian J. The space-time

Jacobian J has eigenvectors
(

e1
0

)
,
(

e2
0

)
,
[(

e3
0

)]
,
(

f
1

)
, where

f has the corresponding eigenvalue 0. Thus, the feature flow field
is also an eigenvector with real-valued eigenvalue, which plays
a role for constructing space-time planes in which no swirling
motion occurs [WSTH07].

As shown later, the feature flow field v can be used to derive vortex
extractors for unsteady flows.

2.3. Vector Field Topology

Topology-based visualization aims for compact descriptions of
vector fields. This includes the extraction of features and the seg-
mentation of the domain into regions of coherent asymptotic be-
havior. One of the these features are centers of rotating motion, i.e.,
vortices. We briefly review vector field topology, since many vortex
extraction techniques (especially in 2D), eventually reduce to an ex-
ercise in the extraction of the vector field topology of a derived vec-
tor field. This aside, topological methods received much attention
and became a very active research area. Among others, they spurred
work to smooth [WJE01], simplify [TSH00], compress [LRR00,
TRS03], model [The02,WTHS04b] or edit [CML∗07] vector fields.
In the following, we briefly dive into the basics of vector field topol-
ogy. We refer to Heine et al. [HLH∗16], Scheuermann and Tric-
oche [ST05], and Weinkauf [Wei08] for a comprehensive introduc-
tion into topology-based methods.

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.



Tobias Günther & Holger Theisel / The State of the Art in Vortex Extraction

attracting node
R1,R2 < 0
I1 = I2 = 0

attracting focus
R1 = R2 < 0
I1 =−I2 6= 0

repelling node
R1,R2 > 0
I1 = I2 = 0

repelling focus
R1 = R2 > 0
I1 =−I2 6= 0

saddle
R1 < 0, R2 > 0

I1 = I2 = 0

center
R1 = R2 = 0
I1 =−I2 6= 0

Figure 4: Types of critical points in 2D steady vector fields (based
on [HH89]). R1 and R2 denote the real parts of the eigenvalues and
I1 and I2 the imaginary parts. Note that the presence of imaginary
parts (right half) relates to vortical behavior.

Definition of First-Order Critical Points. The most fundamental
aspect of vector field topology is the extraction of first-order criti-
cal points. In the related dynamical systems literature (where phase
spaces can be interpreted as vector fields), these points are referred
to as fixed points, stationary points or singularities. The term crit-
ical point was coined for vector fields by Helman and Hesselink
in their seminal work [HH89], which introduced vector field topol-
ogy to the visualization community. Traditionally, the term critical
point refers to a minimum, maximum or saddle in a scalar field.
Throughout the visualization literature, however, the term critical
point is also frequently used in the context of vector fields.

We follow Helman and Hesselink [HH89] and formally intro-
duce a critical point xc as a location at which the velocity vanishes:

v(xc) = 0. (27)

For their classification, we additionally require that the vector field
is non-zero in the vicinity of the point v(xc + ε) 6= 0, i.e., it is an
isolated critical point. Further, for a first-order classification, we
require that v is differentiable and that the Jacobian J = ∇v(xc)
is non-singular. If this is fulfilled, the eigenvalues and eigenvectors
of the Jacobian characterize the behavior of the flow around the
critical point.

Under certain circumstances, selected types of critical points
cannot exist. In divergence-free flows for instance, sources and
sinks never occur. Higher-dimensional flows that describe the mo-
tion of finite-sized objects do not contain sources [GT16, GG17]
and time-dependent flows do not contain any critical points in
space-time, since particles always move forward in time, cf. Eq. (7).

Classification of Critical Points. Fig. 4 gives an overview of the
types of isolated first-order critical points that may arise in 2D
steady vector fields [HH89]. Each eigenvalue characterizes the be-
havior of the flow in the direction of the corresponding eigenvec-
tor. If both eigenvalues have positive real parts, the critical point is
repelling. If both are negative, it is attracting. If the real parts of

the two eigenvalues have opposite signs, a saddle is present. If the
eigenvalues are complex, they indicate a swirling motion, which
corresponds to vortical behavior. In this case, the critical point is
called focus. A focus with zero real parts is called center. Criti-
cal points can likewise be studies in 3D, where the additional third
eigenvector always has a real eigenvalue [HH91]. When extending
topology beyond first-order, critical points may exhibit parabolic,
hyperbolic and elliptic behavior in their vicinity [SKMR98].

Extraction of Critical Points. The extraction of first-order criti-
cal points boils down to a multi-variate root finding problem, i.e.,
we are searching for the intersection of zero-level isolines of the
vector field components. In bi-/trilinear vectors fields, the search is
relatively easy. First, candidate cells can be determined by check-
ing the signs of the components at the quad vertices. If all signs of
any component are all positive or all negative, then the cell cannot
contain a critical point [GLL91]. Inside a bilinear candidate cell,
the intersections can be found by solving two bilinear equations.
Similarly in a simplex, the location can be solved for analytically
based on barycentric interpolation or by subdivision [XXLL10].
Likewise, cells can be subdivided, either iteratively with nested
intervals (2D/3D) or recursively into 4 quads (2D) or 8 volumes
(3D) in case the sign check indicated that the cell contained criti-
cal points. This numerical procedure, however, tends to produce the
same solutions multiple times, thus the result needs to be cleaned
up in a post-process to remove duplicates. To reduce this problem,
it is possible to subdivide until a certain minimal cell size is reached
and to use multi-variate Newton iterations afterwards to converge
to an accurate solution. Note that the multi-variate Newton method
only finds one solution, thus the minimal cell size must be set small
enough.

The paths of critical points can also be tracked by integration in
space-time using feature flow fields [TS03]. The selection of seeds,
however, is not trivial, as they might belong to curves that have
already been traced. Further, numerical integration errors might ac-
cumulated, which however, can be addressed by stable feature flow
fields [WTGP11] that use an additional force that pushes the nu-
merically integrated curve back onto the critical line.

Working with first-order critical points places the inherent as-
sumption that the flow is linear around critical points. Scheuermann
et al. [SKMR98] extracted higher-order critical points in non-linear
flows by using Clifford algebra. The search for higher-order criti-
cal points on non-planar surfaces received attention by Laramee
et al. [LCJK∗09] and by Li et al. [LVRL06] using polar coordi-
nate representations. Tricoche et al. [TSH00] combined piecewise
linear interpolation with a clustering of first-order critical points.
Theisel [The02] designed piecewise linear planar vectors of arbi-
trary topology. For 2D flows, Effenberger and Weiskopf [EW10]
proposed a cell-based approach that utilizes group theory.

Extensions of Critical Points and Further Reading. Helman and
Hesselink extended the topological methods to 3D [HH91], in-
cluding the classification of first-order critical points, separatri-
ces starting at saddles and attachment/detachment points at no-
slip boundaries. Further elements of the topological skeleton in-
clude boundary switch points [dLvL99], closed streamlines [WS01,
TWHS04], saddle connectors [TWHS03] and boundary switch
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connectors [WTHS04a]. The topology in two-parameter depen-
dent vector fields was studied by Weinkauf et al. [WTHS06]. Fur-
ther examples of vector field topology in 3D can be found in
[GLL91, LDG98, MBS∗04]. For further reading we refer to the
reports of Heine et al. [HLH∗16], Laramee et al. [LHZP07] and
Pobitzer et al. [PPF∗11], Scheuermann and Tricoche [ST05], and
Weinkauf [Wei08].

2.4. Parallel Vectors Operator

As we will show later in Section 5.2, many vortex coreline defini-
tions can be expressed as the union of points at which two vector
fields are parallel. Peikert and Roth [PR99] introduced the Parallel
Vectors Operator (PV), which returns the set of points at which two
given vector fields v(x) and w(x) are parallel:

v(x) ‖ w(x) = {x : v(x) = 0}∪{x : ∃λ,w(x) = λv(x)} (28)

The solutions to this operator are curves that are either closed or
connected with the boundary. It should be noted that PV curves can
intersect. The PV operator can be used to define numerous features,
including vortex corelines, separation lines, ridge lines and valley
lines. Several methods have been proposed to extract PV curves,
which can be categorized into local and integration-based methods.

Local Methods. Local methods subdivide the domain into cells
(or operate on the cells on which the data set is given), solve for PV
points on each cell boundary independently and connect the results
afterwards in a post-process. Peikert and Roth [PR99] discussed
several approaches to extract PV curves. In 3D, PV curves can be
found as the intersection of zero-level isosurfaces of two compo-
nents of the cross product: v(x)×w(x). The third component must
be checked for being zero as well. When the vector field is given on
grids, the intersections of the PV curves with the grid faces can be
found by Newton iterations. Further, for triangular faces they de-
rived an analytic solution based on barycentric coordinates. Once
the intersection points on the cell boundaries are found, line seg-
ments are formed within the cells and adjacent cells are connected.
For cell-based extractions, Ju et al. [JCWD14] recently proposed
a robust parity test to determine the number of PV points per cell
face. When it comes to vortices, we are usually only interested in
PV curves that exist in areas, where eigenvalues of the Jacobian are
complex, i.e., areas in which swirling motion is present. To speed
up the PV extraction, cells that only contain real-valued eigenval-
ues can be skipped.

Integration-based Methods. Local PV extraction as described
above typically produces rather spurious results. There are a num-
ber of alternatives for closed PV line extraction including the curve-
following predictor-corrector method of Peikert and Roth [PR99],
the PVsolve algorithm of van Gelder and Pang [VGP09], the use
of stable feature flow fields as in Weinkauf et al. [WTGP11], or the
extractor of Pagot et al. [POS∗11] for higher-order data.

PV Curve Filtering. Once PV curves are extracted, filtering is of-
ten required to clean up the result [WSTH07, GST16]. When us-
ing local methods, corelines are often spurious, i.e., several points
might have been missed. To fill in gaps, lines can be merged if
their end points are nearby and if the tangents at the end points

pilot view: standing still pilot view: linear path pilot view: swinging path

Figure 5: Most flow visualization techniques depend on the move-
ment of the observer. Here, a line integral convolution (time slice)
and pathlines (black) are shown for three different reference frame
movements: standing still, linearly translating and swinging along a
sine curve–unfortunately, all give different results. The illustration
is courtesy from [GGT17].

are aligned. Often, lines are filtered by length by a user-defined
threshold. When it comes to vortex corelines, curves are frequently
rejected if the coreline tangent is not aligned with the flow, since
ideally, vortex corelines should be pathlines, cf. Section 5.10 on
vortex verification.

3. Reference Frame Invariance

Vortex measures can be categorized by the types of reference frame
motion under which the result of the vortex measure does not
change. When we observe physical properties in the real world,
for instance the temperature in a room, we want the measurement
reading to be independent of the way how the measurement de-
vice moves. For scalar attributes, such as temperature, this is triv-
ially fulfilled. When we observe vector- or tensor-valued proper-
ties, however, the observer’s movement usually influences the re-
sult. This is also true for scalar measures that are derived from vec-
tor fields or tensor fields, such as velocity magnitude. An example
for reference frame dependence is shown in Fig. 5, where a vector
field is observed from the view of several pilots, moving in different
ways over the domain. Each pilot sees the vector field differently.

The choice of an adequate reference frame is of highest im-
portance for the successful characterization of a vortex [Lug79,
Rob91]. Fig. 6 illustrates the two conceptually different approaches
to vortex tracking in unsteady flows:

1. Some techniques estimate a suitable reference frame, e.g., by
subtraction of some ambient flow, which is followed by an appli-
cation of standard vortex extraction techniques in the resulting
vector field, see Figs. 6b and 6c. Examples of such techniques
follow in Sections 5.6 and 5.7.

2. Other techniques are invariant under certain types of reference
frame motion, i.e., the result is the same, regardless of whether
an ambient flow was subtracted or not, see Fig. 6d. The invari-
ance of a measure under a certain type of reference frame mo-
tion directly translates to the ability to track vortices that per-
form this specific type of motion.
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(a) Unsteady vector field u(x, t), shown using LIC (streamlines). Vortices
are not apparent.

(b) Subtraction of the “right” ambient flow, reveals vortices, extracted
with Sujudi-Haimes [SH95].

(c) Extracted vortex corelines in (b) are indeed centers of rotating particle
motion.

(d) Galilean invariant methods find vortices without subtraction of ambi-
ent flow. Here, λ2 isosurfaces [JH95] and pathline corelines [WSTH07].

Figure 6: Overview of the two approaches to vortex tracking: sub-
tracting a suitable ambient flow (b)–(c) or the invariance to certain
types of vortex motion (d). Illustration from [Gün16].

In the following, we introduce the most important classes of refer-
ence frame invariance.

3.1. Galilean Invariance

Galilean invariance is the invariance of a measure under equal-
speed translations of the reference frame of the form:

x∗ = x+ c0 + t c1 , t∗ = t−a (29)

where c0 and c1 are constant vectors. All measures that are derived
from the spatial derivatives of the vector field, i.e., the Jacobian J,

are Galilean invariant. Among the derived quantities that include
temporal derivatives, there are only few quantities that are Galilean
invariant, namely acceleration a in Eq. (22) and the subtraction of
the feature flow field (v− f). The proof of their Galilean invari-
ance was privately communicated by Ronald Peikert and was ac-
knowledged and documented by Sahner [Sah09]. Since J and a are
Galilean invariant, the Galilean invariance of (v− f) also follows
from the relation [Gün16]:

v− f = J−1 a (30)

All Galilean invariant vortex extractors are able to track vortices
that perform equal-speed translations. If a vortex performs any
other type of movement, Galilean invariant methods will not pro-
duce the correct solution. Nevertheless, Galilean invariant methods
are currently the most-spread approaches in practice.

3.2. Rotation Invariance

A vortex measure is rotation invariant if it is invariant under any
equal speed rotation of the reference frame around a known center
of rotation x0 [GST16]:

x∗ = Q(t)(x−x0)+x0 , t∗ = t−a , (31)

where Q(t) is an equal-speed rotation matrix and a is a constant.
Rotation invariant methods are able to track vortices that perform
equal-speed rotations. The main disadvantage of this formulation
is that the rotation center x0 (and in 3D the rotation axis) must be
known by the user in advance.

3.3. Objectivity

Current state-of-the-art feature extractors aspire to be objective,
[Hal15, HHFH16, GGT17]. In continuum mechanics, objectivity
refers to the invariance of a measure under a change of the ref-
erence frame that transforms a point (x, t) in space-time to a new
point (x∗, t∗) by

x∗ = Q(t) x+ c(t) , t∗ = t−a (32)

where Q ∈ SO(3) is a rotation matrix, c is a translation vector,
and a is a constant. We assume Q and c to be smooth functions
of t, cf. [TN65]. This means, objective measures are invariant un-
der any smooth rotation and translation of the reference frame and
thus, objective techniques are able to track vortices that perform
any smooth rotation and translation in the domain. The definition
of objectivity can be formalized [TN65]:

Definition 1 A scalar s is objective if it remains unchanged under
any change of the reference frame as in Eq. (32). A vector r is
objective if Eq. (32) transforms it to r∗ = Q(t)r. A second-order
tensor T is objective if Eq. (32) transforms it to T∗ = Q(t)TQ(t)T.

Generally, v, vt , J, a and ΩΩΩ are not objective, as they do not ful-
fill Definition 1, cf. [GGT17]. The divergence ∇· v and the strain
rate tensor S are some of the few objective first-order differential
properties of a vector field, which may be used to characterize a
vortex in an objective way, cf. [Hal05, GGT17]. The objectivity
of divergence is easily seen, since it can be computed from S as
∇ · v = tr(S). It should be noted that every measure that is only
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Region-based Line-based Geometry-/integration-based Vortex boundary

N
o

in
va

ri
an

ce

helicity [Mof69]
norm. helicity [LSD90]

majority voting [BHD∗15]
Reynolds decomp. [Rey94]

Helmholtz-Hodge [BNPB13]
vector potential [TLHD03]

combinatorial topo [JMT02b]

reduced velocity [SH95]3D

bent coreline [RP98]
track CP [BP02, TSW∗05]

Fuchs et al. [FPH∗08]

focus saddle line [GLL91]3D,L

skeleton growing [VV92]
curvature center [SP99]

winding angle [Por98, SP99]
streamline sector [XXLL10]

closed streaml. [WS01, TWHS04]

Rankine model [GTS∗04]
Max nested streaml. [Lag75]2D

Nested vortices [PKPH09]2D

G
al

ile
an

in
va

ri
an

ce

vorticity ω

Nk [Tru53]
λ2-criterion [JH95]

∆-criterion [CPC90]
Q-criterion [Hun87]

Γ2-criterion [GMG01]2D

Okubo-Weiss [Oku70, Wei91]2D

High-ord. OW [HK98, HMK98]2D

λci [ZABK99]
λcr/λci [CBA05]

acceleration a [KRHH11]

reduced velocity [SH95]2D

Weinkauf et al. [WSTH07]
vanishing a [KRHH11]

λ2 min [SWH05a, SVG∗08]
det(J) extrema [BHJ16]2D

predictor-corrector [BS95]P,L

vorticity line [MK85]L

rel. particle dist [CQB99]L

ω / pressure thresh. [BS95]

O
bj

ec
tiv

ity

pressure [HWM88, Rob90]P

Astarita [Ast79]
rel. vorticity tens. [DL76, TK94]

Mz-criterion [Hal05]3D,L

IVD [HHFH16]
LAVD [HHFH16]L

near-steady frame [GGT17]

pressure minimum [MK97]P

vorticity maximum [SKA99]
Mz extrema [SWTH07]

near-steady frame [GGT17]

density estimate [WCW∗09]L

streakline density [WT10]L
elliptic LCS [Hal15]L

Eulerian variational [SH16b]

O
th

er rotation inv. [GST16] rotation inv. [GST16]

P: pressure required, L: Lagrangian / integration-based, 2D: only for 2D, 3D: only for 3D

Table 1: Classification of vortex definitions. Techniques without an invariance work only for steady flows. Extremum lines of any region-
based methods are by definition line-based and inherit the invariance of the region-based approach (the only exception is vorticity, which
becomes objective). Lagrangian smoothing [FPS∗08, STH∗09] turns any Eulerian measure into a Lagrangian. Several more vortex measure
can be derived by applying an existing technique in a certain reference frame [GGT17] or by replacing one of the building blocks of the vortex
measure, such as the vorticity tensor by an objective counterpart [DL76, TK94, Hal05]. From any region-based method, vortex boundaries
may be derived by thresholding. These additions are discussed in the remainder of the paper.

based on second-order spatial derivatives is also objective. Care
should be taken, though. Not every objective measure automati-
cally proves useful to be a good characterization of a vortex.

4. Classification of Vortex Extraction Techniques

Vortices are among the most important features in fluid flows and
for this reason much research was devoted to their quantification,
extraction and tracking. As there is no universal definition that cap-
tures all desired properties, a number of different vortex measures
have been proposed in the literature. Table 1 gives an overview of
the most important and most recent approaches. The rows distin-
guish between different degrees of reference frame invariance and
the columns categorize the techniques into region-based, line-based
and geometry-/integration-based methods, as well as boundary ex-
traction methods.

The first row contains techniques that have no frame invariance,
which means that these are techniques that are only applicable
when either the flow is steady or when the flow is observed in the
exact right reference frame in which it appears to be steady. The

next two rows contain the two most important classes of reference
frame invariance: Galilean invariance (from Section 3.1) and objec-
tivity (from Section 3.3). The last row contains an additional class
of reference frame invariance, i.e., rotation invariance.

The first column considers region-based methods, which iden-
tify regions of vortical behavior by deriving a scalar field that
can be thresholded. Section 5.1 will explain these techniques in
more detail. The second column lists line-based methods that seek
for the coreline that particles are rotating around. These meth-
ods are detailed later in Section 5.2. The third column collects
geometry-based (Section 5.3) and integration-based methods (Sec-
tion 5.4), which derive vortex structures from the shape of stream-
lines or by observation of particles over time. The last column
shows approaches that can be used to extract vortex boundaries
(Section 5.8).

Table 1 identifies some additional properties that are relevant for
the applicability: Superscripts tell whether a pressure field is re-
quired, numerical integration is necessary, or whether the methods
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1.8× 10−2

2.7× 10−2

(a) Magnitude of vorticity |ωωω|, cf. Eq. (35).

3.8× 10−4

9.3× 10−4

(b) Helicity criterion, cf. Eq. (36).

1× 10−3

6× 10−3

(c) Swirling strength in Eq. (42) by [ZABK99].

4× 10−5

1.4× 10−4

(d) Q-criterion in Eq. (38) by Hunt [Hun87].

−1.5× 10−4

−2× 10−5

(e) λ2 criterion in Eq. (44) by Jeong and Hussain [JH95].

Figure 7: Comparison of the most-common region-based methods in the turbulent flow behind a wall-mounted cylinder [FWT08]. Vorticity
(a) produces false-positive near the obstacle. Helicity (b) is not Galilean invariant and does not produce nicely-connected vortex tubes.
Swirling strength (c) conservatively shows too many regions, Q (d) and λ2 (e) are known to give fairly similar results.

are applicable in 2D or 3D only. In the remainder of this paper, the
techniques listed in Table 1 are explained in more detail.

5. Vortex Extraction Methods

The foundations of many formal vortex definitions were laid out
between the late 70s and early 90s. For instance, Lugt [Lug79] de-
fined vortices as follows:

“Any mass of fluid moving around a common axis con-
stitutes a vortex. Mathematically, such motion can be de-
scribed by closed or spiraling streamlines (or pathlines) if
a reference frame exists for which the flow field becomes
steady.”

Robinson [Rob91] proposed the following definition:

“A vortex exists when instantaneous streamlines mapped
onto a plane normal to the vortex core exhibit a roughly
circular or spiral pattern, when viewed from a reference
frame moving with the center of the vortex core.”

Aside from being rather vague and not formal, both definitions
include two subjects that are still actively researched to this day.
Both require a definition of a vortex coreline, i.e., a line that par-
ticles rotate around, and they require that an appropriate reference
frame is chosen, in which the velocity field becomes steady. The
literature contains several other characterizations of a vortex, e.g.,
Blackwelder and Swearingen [BS90], and Portela [Por98].

In the following decades, these ideas were further formalized,
which led to a wide range of vortex definitions. To this date, the
problem of defining a general and precise vortex definition is not
considered solved. In the following sections, we cover the exist-
ing work on region-based methods, vortex corelines and reference
frames.

5.1. Region-based Methods

Region-based methods determine a volume of vortex-like behavior.
In the following, we cover the most important approaches.

Pressure. In steady inviscid 2D flows, a pressure minimum can
be found at the center of each rotating motion. Thus, a vortex
can be identified as an area of low pressure by simple threshold-
ing [HWM88]:

p≤ pthresh , (33)

which led to the search for elongated low-pressure regions in
3D [Rob90]. If the flow is unsteady, viscous or three-dimensional,
a pressure minimum need not exist [CQB99].

Vorticity. The curl is also known as vorticity ωωω = ∇× v, which
is a Galilean-invariant quantity that can also be computed from the
vorticity tensor ΩΩΩ in Eq. (14). Thereby, it can be defined in both 2D
and 3D:

2D: ΩΩΩ =
1
2

(
0 ω

−ω 0

)
, 3D: ΩΩΩ =

1
2

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0


(34)

In 2D, vorticity is a signed scalar ω, where the sign determines
the rotation direction. In 3D, it is a vector-valued quantity ωωω =
(ω1, ω2, ω3)

T, and its magnitude |ωωω| is twice the absolute angular
velocity. Vorticity found numerous applications [KMM87, SPP04]
and Fig. 7a gives an example. Simple thresholding, however,

|ωωω| ≥ ωthresh (35)

might produce false-positives in shear flow [Lug79,Rob91]. To ad-
dress this problem, Sadlo et al. [SPP04] filtered vorticity isosur-
faces based on the distance to boundaries or helicity. The latter is
described next.
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Helicity. To alleviate some of the shortcomings of vorticity, a
threshold on helicity h [Mof69, Hus86] can be used instead:

h = (∇×v) ·v , |h| ≥ hthresh (36)

which excludes the shear flow false-positives, unless the shear
layers are curved. Unlike vorticity, helicity is not Galilean-
invariant [Hus86]. In fact, it heavily depends on the reference frame
in which v is observed. Therefore, its usability in unsteady flows is
limited. An example of helicity is shown in Fig. 7b. An extension
is the normalized helicity hn [LSD90], in which both velocity and
vorticity are normalized before the dot product is computed.

hn =
∇×v
|∇×v| ·

v
|v| , |hn| ≥ hthresh (37)

The advantage of this measure is that it is normalized to the range
[−1,1]. The sign indicates the swirling direction relative to the flow
direction v.

Q-criterion. In a three-dimensional divergence-free flow, the
Galilean-invariant Q-criterion of Hunt [Hun87] considers a con-
nected region to be a vortex if the second invariant of the Jacobian
is positive. Using Eq. (18) with ∇ · v = 0 (divergence-free), the
condition becomes:

1
2
(‖ΩΩΩ‖2−‖S‖2)> 0 (38)

Eq. (38) shows that this criterion considers a vortex to be a region
in which the Euclidean norm of the vorticity tensor ΩΩΩ is stronger
than the Euclidean norm of the strain rate tensor S. Fig. 7d gives
an example. In addition, Hunt [Hun87] required that the pressure is
lower inside the vortex than at its boundary. Note that Q > 0 does
not guarantee a pressure minimum [JH95], but often the additional
pressure condition is neglected [DD00, CBA05]. Truesdell [Tru53]
defined the kinematic vorticity number Nk =

‖ΩΩΩ‖
‖S‖ . It should be

noted that Nk > 1⇔ Q > 0 [JH95].

Okubo-Weiss criterion W . In a divergence-free 2D flow, the Ja-
cobian J can be equivalently expressed as:

J =

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
=

1
2

(
s1 s2−w

s2 +w −s1

)
(39)

with s1 = −2 ∂v
∂y , s2 = ∂v

∂x +
∂u
∂y and w = ∂v

∂x −
∂u
∂y . Okubo [Oku70]

and Weiss [Wei91] independently identified a vortex as a region
with elliptic flow movement by the parameter:

W = uyvx + v2
y =

1
4
(s2

1 + s2
2−w2) =−det(J)< 0 (40)

Since W =−det(J) and Q = det(J) in 2D, cf. Eq. (21), the Okubo-
Weiss criterion is considered as the 2D version of the Q-criterion.
Hua and Klein [HK98], and Hua et al. [HMK98] proposed higher-
order extensions of Okobu-Weiss by including acceleration terms.

∆-criterion. Another Galilean-invariant criterion is the ∆-criterion
of Chong et al. [CPC90]. This method determines when the charac-
teristic equation of the Jacobian in Eq. (15) has complex solutions,
see also Hunt et al. [HWM88]. Or in other words: it determines
whether the Jacobian has complex eigenvalues. For a divergence-
free flow, we have P = 0 in Eq. (15), and thus the discriminant of

the characteristic equation is for 3D flows:

∆ =

(
Q
3

)3

+

(
R
2

)2

> 0 (41)

Generally, ∆ > 0 is less restricting than Q > 0, thus the ∆-criterion
identifies larger vortex regions, cf. [CBA05].

Related to the ∆-criterion is the swirling strength criterion. Let
λcr ± iλci be the complex-conjugate eigenvalues of J, Zhou et
al. [ZABK99] characterized a vortex as region with sufficiently
strong imaginary parts by

λci > ithresh. (42)

This criterion is often too conservative, see Fig. 7c for an example.
Chakraborty et al. [CBA05] extended this by additionally restrict-
ing the inverse spiraling compactness λcr

λci
< cthresh, which favors

streamline orbits.

λ2-criterion. The pressure-minimum requirement fails under
strong unsteady irrotational straining and viscous effects, thus
Jeong and Hussain [JH95] neglected these effects. By taking the
gradient of the reduced incompressible Navier-Stokes equation and
by decomposing the Jacobian into symmetric and anti-symmetric
parts they derived the reduced strain rate transport equation:

S2 +ΩΩΩ
2 =− 1

ρ
∇(∇p) , (43)

where ∇(∇p) is the Hessian matrix of the pressure. A pressure
minimum inside a plane is present, if the Hessian has two positive
eigenvalues. Let λ1 ≥ λ2 ≥ λ3 be the eigenvalues of S2 +ΩΩΩ

2, this
is equivalent to requiring that the second largest eigenvalue λ2 is
negative, which is called the λ2-criterion:

λ2(S
2 +ΩΩΩ

2)< 0 . (44)

Jeong and Hussain [JH95] noted that the eigenvalues of S2 +ΩΩΩ
2

and Q are related by:

Q =−1
2

tr(S2 +ΩΩΩ
2) =−(λ1 +λ2 +λ3) (45)

They have shown that the Q criterion determines areas in which the
vorticity tensor dominates the strain rate tensor over all directions,
whereas λ2 determines this excess only in a specific plane. Often,
Q and λ2 give fairly similar results, see Fig. 7e for an example. In
fact, for incompressible 2D flows, Jeong and Hussain [JH95] have
shown that Q > 0, λ2 < 0 and ∆ > 0 give the same vortex region.

The λ2 criterion neglects unsteady irrotational straining and vis-
cous terms, and it is unclear how this affects the actual pressure
distribution [CBA05]. Further, Cucitore [CQB99] emphasized that
the pressure Hessian concept as defined above is not applicable
for compressible flows. For more details on the relationships be-
tween these traditional vortex concepts, we refer to Chakraborty et
al. [CBA05].

Γ2-criterion For a 2D flow, Graftieaux et al. [GMG01] proposed
the Γ2-criterion. At each point x, they defined a rectangular area S
around it. They sampled area S with points y and define Γ2 as:

Γ2(x) =
1
|S|

∫
y∈S

√
1−

(
(v(y)−vavg(y))T(y−x)
‖v(y)−vavg(y)‖ · ‖y−x‖

)2

dS (46)
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(a) In steady flows, vortex corelines
are not moving. Standard critical point
search is applicable, see Section 2.3.

(b) When vortices translate, Galilean
invariance is required, Weinkauf et
al. [WSTH07] in Eqs. (53) and (55).

(c) When vortices rotate, rotation
invariance is necessary, Günther et
al. [GST16] in Eqs. (62) and (63).

(d) When vortices rotate and trans-
late, objectivity is required, Günther et
al. [GGT17] in Eq. (95).

Figure 8: Overview of line-based methods that handle different types of vortex movements. In each example, a LIC slice depicts the vector
field in the respective optimal reference frame, in which the flow appears steady. As can be seen, the streamlines rotate around the corelines.

Thereby, vavg(y) is the average velocity in a stencil around y,
which is used to make the velocity relative to the neighborhood and
thereby Galilean invariant. The selection of the size of both region
S and the stencil radius for vavg are both not trivial. This method
determines whether the flow goes around point x by averaging the
sine (with sin(x) =

√
1− cos(x)2) of the angle between the (mean-

free) flow direction at y and the direction toward the sampled point
y inside region S. If x happens to be on the coreline of an axis-
symmetric vortex (e.g., a perfect center), Γ2 goes up toward 1.

Problems of Region-based Methods. Many of the vortex con-
cepts above require a threshold to be set that is not necessarily con-
stant along the vortex. Further note that all Q, ∆, λ2 and Γ2 are
defined for divergence-free (incompressible) flows and that neither
of them considers the unsteadiness of the flow [CBA05, Kol07].

Recent Developments. Biswas et al. [BHD∗15] combined the
four aforementioned local region-based vortex detectors via major-
ity voting, namely Q, ∆, λ2 and Γ2. A region-based method finding
nested vortices was developed by Petz et al. [PKPH09]. Kasten et
al. [KRHH11] extracted Galilean invariant vortex regions by using
the acceleration. Further, Kasten et al. [KHNH12] tracked vortex
merging events over time by use of combinatorial scalar field topol-
ogy. Combinatorial topology was also of concern in the vortex core
region detection of Jiang et al. [JMT02b]. More region-based meth-
ods will follow in Section 5.5, which covers objective methods.

5.2. Line-based Methods

Line-based methods search for lines that particles rotate around.

Corelines in Steady Flow. In 2D steady flows, vortices can be
found as critical points with complex eigenvalues, see Section 2.3.
For steady flows in 3D, Globus et al. [GLL91] proposed to seed
streamlines near focus saddle points in order to trace the vortex
corelines. The streamlines are seeded a numerical epsilon away
from the critical point in direction of the eigenvector that corre-
sponds to the real-valued eigenvalue.

For a 3D steady flow v, Sujudi and Haimes [SH95] defined the
reduced velocity criterion, which considers the eigenvalues and
eigenvectors of the Jacobian J. A vortex coreline is present if two
conditions are fulfilled. First, a pair of complex-conjugate eigenval-
ues exists, which is the necessary condition for swirling. Their two
corresponding eigenvectors span the swirling plane, i.e., the plane
in which the rotating motion occurs. Second, the eigenvector e to
the remaining real eigenvalue fulfills:

v− (vTe)e = 0 . (47)

That is, the projection of the flow vector v onto the swirling plane
gives zero. This means that precisely on the coreline, the particles
only move forward and are not rotating. This method extracts the
coreline of swirling streamlines in 3D flow and has found many ap-
plications [KH97, GLT∗07]. When applied in 2D space-time, this
method is Galilean invariant. Peikert and Roth [PR99] formally de-
fined the parallel vectors (PV) operator, which returns the set of
points at which two vector fields are parallel. Using the PV opera-
tor, Sujudi-Haimes is equivalently expressed as:

v ‖ Jv, (48)

i.e., v is parallel to an eigenvector of J.

For steady flows, acceleration a can be expressed as a = Jv, cf.
Eq. (22), and thus Eq. (48) is equivalent to v ‖ a. The curvature
vector c of a streamline can be computed as [RP98]:

c = v×a
‖v‖3 (49)

If v and a are parallel, i.e., if we are on a vortex coreline, then
Eq. (49) suggests that the streamline passing through this point
is straight [PR99]. Thus, standard Sujudi-Haimes [SH95] favors
straight corelines. Based on this observation, a higher-order method
was described by Roth and Peikert [RP98] to extract bent vortex
corelines. Using the parallel vectors operator, they proposed to find
places where the derivative of the acceleration is parallel to the
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flow:

Da
Dt
‖ v (50)

In steady flows, this simplifies to (∇a)v ‖ v. Fuchs et al. [FPH∗08]
recommended to try traditional Sujudi-Haimes first and experiment
with the higher-order method only if Sujudi-Haimes does not pro-
duce the desired results, since the higher-order method amplifies
numerical difficulties and involves a higher computation cost.

Another topological structure are bifurcation lines, which can be
found with Eqs. (48) and (50), with the requirement that all eigen-
values are real-valued [PC87, Rot00, MSE13, MBES16].

Corelines in Unsteady Flow. For unsteady data, Bauer and Peik-
ert [BP02], Tricoche et al. [TWSH02] and Theisel et al. [TSW∗05]
tracked the corelines of swirling streamlines over time. This makes
sense for vortex tracking in instantaneous vector fields, such as in
magnetic fields or when the vector field is transformed into a refer-
ence frame, in which the flow appears steady.

However, Weinkauf et al. [WSTH07] and Fuchs et al. [FPH∗08]
pointed out that the temporal derivative needs to be taken into ac-
count when studying particle motion in unsteady flows. In fact,
Weinkauf et al. [WSTH07] and Fuchs et al. [FPH∗08] found that
pathlines swirl around a different coreline than streamlines and thus
extended the method of Sujudi and Haimes in different ways to find
corelines of swirling pathlines, i.e., the corelines of particles in un-
steady flow. Weinkauf et al. [WSTH07] observed the four eigen-
vectors of the 4D space-time Jacobian J̄:(

e1
0

)
︸ ︷︷ ︸

real

,

(
e2
0

)
,

(
e3
0

)
︸ ︷︷ ︸

complex

,

(
f
1

)
︸︷︷︸
real (0)

(51)

Below the vectors, we denote whether the corresponding eigen-
values are real-valued or complex. W.l.o.g., we assume the vector
containing e1 to be the eigenvector with real eigenvalue. Recalling
from Section 2.2, we remind that one of the eigenvectors contains
the feature flow field f from Eq. (26) and that the corresponding
eigenvalue is 0. Following the idea of Sujudi and Haimes [SH95],
Weinkauf et al. [WSTH07] searched for space-time locations at
which the flow is in the plane that is spanned by the two eigen-
vectors that correspond to the two real eigenvalues, i.e., the flow is
in the non-swirling subspace of the space-time domain. For n = 3,
this leads to the following equivalent conditions for a non-singular
Jacobian [WSTH07]:(

v
1

)
,

(
e1
0

)
,

(
f
1

)
are coplanar ⇔ v− f ‖ e1 (52)

⇔ v− f ‖ J(v− f) (53)

In Eq. (53) one might be tempted to ask, whether J should be com-
puted from v or (v− f). If and only if the assumption of Galilean
invariance is valid, i.e., if vortices perform equal-speed translations,
then:

v− f ‖ ∇(v− f)(v− f) ⇔ v− f ‖ ∇(v)(v− f). (54)

since∇f = 0. The two approaches differ only when∇f 6= 0, which

Figure 9: Comparison of vortex corelines that were extracted using
the method of Fuchs et al. [FPH∗08] in Eq. (56) with corelines ex-
tracted using Sujudi-Haimes [SH95] in Eq. (48). With the method
of Fuchs et al. [FPH∗08], the vortex coreline stays better inside the
pressure isosurface, indicating that the extracted coreline is closer
to the pressure minimum. This illustration is from [FPH∗08].

is relevant in different coordinate systems, e.g., in polar coordi-
nates [GST16], or when vortices do not move with equal speed in
a constant direction.

For n = 2, we have the following Galilean invariant conditions
that are all equivalent in areas of non-vanishing Jacobian:

a = 0 ⇔ v− f = 0 ⇔ f ‖ p ⇔ J p ‖ p. (55)

The equivalence of the four expressions in Eq. (55) follows directly

from Eq. (30), J p =

(
a
0

)
and p =

(
v
1

)
. As a side note, it means

that for n = 2 the corelines of swirling particle motion [WSTH07]
and vortices by vanishing acceleration [KRHH11, KHNH11] are
identical. Fig. 8b shows a 2D vortex that is moving with equal speed
in a constant direction, which was extracted using Eq. (55).

Fuchs et al. [FPH∗08] based their extension of Sujudi-Haimes to
the unsteady case on the acceleration. In the steady case, Sujudi-
Haimes can be interpreted as v ‖ a. The acceleration of an unsteady
flow is a = Jv+ vt , cf. Eq. (22). In order to include the temporal
derivative in unsteady flows, Fuchs et al. [FPH∗08] used the un-
steady acceleration in the parallel vectors condition: v ‖ Jv+ vt .
Since J(v− f) = a from Eq. (30), their method is equivalently ex-
pressed by:

v ‖ a ⇔ v ‖ Jv+vt ⇔ v ‖ J(v− f) . (56)

Note that these conditions are not Galilean invariant. The last con-
dition differs only by the subtraction of f on the left side from
Weinkauf et al. [WSTH07] in Eq. (53).
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(a) Galilean invariant [WSTH07] (b) Rotation invariant [GST16]

0.93
(good)

0.83
(bad)

Figure 10: Vortex corelines in a centrifugal pump that is viewed in
a rotating reference frame in space-time. Galilean invariant vor-
tex corelines (a) have a poorer tangent alignment than the rota-
tion invariant corelines (b). The tangent alignment is color-coded
and measures the angle between coreline tangent and the flow, see
Eq. (100). The illustrations were provided by [GST16].

Rotation Invariant Vortices. Galilean invariant methods (both
region-based and line-based) can be turned into rotation invari-
ant methods by observing the flow in polar coordinates instead
of Cartesian coordinates, since a rotation in Cartesian coordinates
equals a translation in polar coordinates [GST16]. The transfor-
mation into polar coordinates can be performed analytically by a
non-isometric domain deformation, which eventually leads to a re-
placement of Jacobian J by its rotation invariant counterpart Jr in
the standard vortex measures. The rotation invariant Jacobian Jr
has a simple closed-form [GST16]:

Jr = J+ 1
d

R H RT (57)

In 2D, the matrices R and H are computed as:

d = ‖x−x0‖ , r = x−x0
d

, rp =

(
0 1
−1 0

)
r (58)

R = (rp,r) , H =

(
−uTr −uTrp

uTrp 0

)
(59)

In 3D, a normalized rotation axis n needs to be specified as well.
Let b be the point on the rotation axis with shortest distance to x,
i.e., (x−b)Tn = 0. Then, R and H can be computed using:

d = ‖x−b‖ , r = x−b
d

, rp = r×n (60)

R = (rp,r,n) , H =

−uTr −uTrp 0
uTrp 0 0

0 0 0

 . (61)

The main disadvantage of this method is that it requires the rotation
center (and the axis in 3D) to be known by the user.

Using ar = Jr v+ vt and fr = −J−1
r vt , Günther et al. [GST16]

defined rotation invariant vortex measures by replacing the Galilean
invariant differential properties with their rotation invariant coun-
terparts. For n = 2, they proposed the equivalent conditions:

ar = 0 ⇔ v− fr = 0 ⇔ fr ‖ p ⇔ Jr p ‖ p. (62)

An example of a vortex that moves on a rotating path is shown in
Fig. 8c. In Fig. 10, rotation invariant and Galilean invariant core-
lines are compared in the numerical simulation of a centrifugal
pump. For n = 3, Günther et al. [GST16] proposed

∇(v− fr) · (v− fr) ‖ (v− fr) (63)

For the definition of rotation invariant region-based measures, the
rotation invariant Jacobian is decomposed into

Jr = Sr +Ωr (64)

with the strain rate tensor Sr =
1
2 (Jr + JT

r ) and the vorticity tensor
Ωr =

1
2 (Jr − JT

r ). Following [JH95] in Eq. (44), they defined the
rotation invariant λ2r criterion by considering the second-largest
eigenvalue of S2

r +Ω
2
r :

λ2r = λ2(S
2
r +Ω

2
r )< 0. (65)

Similarly, they followed [Hun87] in Eq. (38) and defined the rota-
tion invariant Qr criterion

Qr =
1
2

(
‖Ωr‖2−‖Sr‖2

)
> 0, (66)

which characterizes vortices as regions in which the Euclidean
norm of the rotation invariant vorticity tensor dominates that of the
rotation invariant strain rate tensor.

Section 5.7 contains several additional line-based methods that
are objective, i.e., they include Galilean invariant and rotation-
invariant measures as a special case.

Extremum Lines. Line structures can also be extracted as ex-
tremal lines of region-based methods. For instance, Miura and
Kida [MK97] identified vortex corelines as sectional extremum
lines of pressure. Strawn et al. [SKA99] searched for lines on which
the vorticity magnitude is maximized, cf. Eq. (34). As explained
later in Section 5.5, the location of vorticity extrema is objective.
Peikert and Roth [PR99] have shown that extremal lines in the nor-
malized helicity field from Eq. (37) are locations where:

v ‖ ∇×v , (67)

which are locations where the normalized helicity is +1 or
−1. Sahner et al. [SWH05a] extracted extremum lines of both
the λ2-criterion and the Q-criterion by the use of feature flow
fields [TS03]. Later, Sahner et al. [SWTH07] computed vortex and
strain skeletons as extremal structures of the Q-criterion [Hun87]
and the Mz-criterion [Hal05]. Fig. 11 gives an example of such a
vortex and strain skeleton based on the Q-criterion. Schafhitzel et
al. [SVG∗08] further focused on the topology of λ2-based vortex
corelines.

Problems of Line-based Methods. As a result of their studies
in aircraft aerodynamics, Kenwright and Haimes [KH97] formu-
lated several problems that line-based vortex methods have to
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Figure 11: Visualization of the vortex and strain skeletons of Sahner
et al. [SWTH07] based on the Q-criterion, showing lines of max-
imal strain (blue) and lines of maximal vortex activity (red). This
illustration is from [SWTH07].

this day. Local coreline extractors often fail to produce contigu-
ous lines. Integration-based methods exist, see Section 2.4, though
they require careful placement of seed points, removal of dupli-
cates and often require an additional error minimization to remove
the otherwise accumulating integration errors. Further, coreline-
based methods tend to contain false-positives, e.g., swirling can be
found in boundary layers. Kenwright and Haimes [KH97], and Van
Gelder [VG12] made aware that inaccurate results with local meth-
ods are not only attributed to (possible) lack of Galilean invariance,
but also arise when swirling occurs at different scales. Thus, if the
aerodynamics at a specific location is a sum of several effects (vor-
tices at different scales [VG12] or a general bending of the core-
line [RP96]), local methods will depend on the strongest effect and
the extracted coreline will be displaced to some degree.

5.3. Geometric Methods

Villasenor and Vincent [VV92] tracked elongated vortex tubes in
space and time by iteratively constructing a skeleton (the center
line). Given a seed point of the skeleton (manually chosen or the
location of a vorticity maximum), they probed about 100 candidate
directions on a sphere with small cylinders. Within each cylinder,
a score value was computed (e.g., average vorticity) and the skele-
ton was advanced in direction of the strongest score, which itera-
tively generated the center line of a vortex tube. To track the vortex
tube over time, they assumed that the tube moved orthogonal to
its tangent. In the tangent plane, they followed Archimedes’ spiral
outward to probe the neighborhood for high vorticity.

For 2D flows, Sadarjoen and Post [SP99,SP00] presented two ge-
ometric approaches that are based on the geometry of streamlines.
Their curvature center method computes the density of curvature
centers for a given set of streamlines. Assuming that many stream-
lines enclose the vortex core, the curvature centers are expected to
occur most frequently near the center of a vortex core. The method
works best for circular vortices, and the curvature center density is
typically thresholded.

The winding angle method of Sadarjoen and Post [SP99] is in-
spired by Portela [Por98]. Their method first accumulates along
each streamline the winding angle, i.e., the angle between two sub-
sequent polyline segments. If a streamline performs a full loop, the
winding angle is 2π. Sadarjoen and Post [SP99] only considered

Figure 12: Streamlines and vortices in the Atlantic Ocean. Vortices
are visualized by ellipses (the rotation direction is color-coded).
This illustration is from [SP00].

streamlines for which the winding angle was above a threshold and
the distance between seed point and end point of the streamline was
below a certain threshold. The resulting set of streamlines was spa-
tially clustered and ellipsis were fitted to each cluster to provide a
visual representation. See Fig. 12 for an example of vortices in the
Atlantic Ocean.

Given a set of candidate vortex cores in 2D, Xie et al. [XXLL10]
moved the origin of the coordinate system to the center of the vortex
and seeded a streamline near it. If the streamline intersects with the
x-axis and y-axis on both the positive and negative side, then the
streamline performed a full turn. Streamlines can then be filtered by
the number of turns and the distance to the center of the vortex. This
approach does not require estimation of derivatives. Actual closed
streamlines can be found using the Poincaré theorem [WS01] or as
the intersection of forward and backward integrated stream surfaces
in space-time [TWHS04].

5.4. Integration-based Measures

Aside from the geometric methods, all aforementioned automatic
extraction approaches have in common that they are local, and thus
easily parallelized. However, it was shown that there are classes
of vortices that cannot be extracted by local methods, for instance
attracting vortices that move on non-linear paths. Thus, instead,
integration-based methods were developed, such as the particle
density estimation by Wiebel et al. [WCW∗09]. They proposed to
inject a number of particles and observe their attraction behavior
over time. Weinkauf and Theisel [WT10] found attractors by ana-
lyzing the Jacobian of a derived vector field in which streaklines are
tangent curves, see Fig. 13. Globus et al. [GLL91] seeded stream-
lines near focus saddle points in order to trace the vortex corelines
in steady 3D flows, as previously detailed in Section 5.2. Banks
and Singer [BS95] suggested a curve following vorticity-predictor,
pressure-corrector method. Their method alternates between an in-
tegration step in the vorticity field ωωω and a gradient descent toward
the pressure minimum. For this, Peikert and Roth [PR99] defined a
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(a) Pathlines approach
the attracting coreline
(yellow).

(b) Stream (green)
and pathline corelines
(blue) do not match the
attractor.

(c) Streakline corelines
(red curve and surface)
match the attractor.

Figure 13: The corelines of swirling streak lines (red) detect an
attracting vortex (yellow) that moves on a rotating path. Stream-
line corelines (green, no invariance) and pathline corelines (blue,
Galilean invariance) are not invariant under rotations of the ob-
server. The streakline coreline sweeps in 4D over a surface shown
in (c) together with its intersection at the respective time, which
is a line in space-time that matches the attractor of this flow. The
illustration is provided by [WT10].

parallel vectors formulation:

∇×v ‖ ∇p, (68)

which is local and thus yields spurious solutions with potential
false-positives.

Moin and Kim [MK85] traced streamlines in the normalized vor-
ticity field, which they called vortex lines x(s):

dx(s)
ds

=
ωωω

|ωωω| (69)

Similarly, such vortex lines (or vorticity field lines) have been
placed by Sadlo et al. [SPP04], who adapted the density of the lines
to the vorticity magnitude. As shown by Robinson [Rob91], vortex
lines are difficult to seed and can be misleading even when seeded
close to an actual vortex. Another Lagrangian detector was devel-
oped by Cucitore et al. [CQB99]. They observed the evolution of
the relative distance between two nearby-released particles com-
pared to the similarity of their particle trajectories. Inside a vortex,
the relative distance is assumed to remain small. Since their method
may also respond to non-vortical flows, they propose to addition-
ally apply the ∆-criterion of Chong et al. [CPC90], i.e., to check for
the presence of complex eigenvalues.

Further, Lagrangian smoothing as proposed by Fuchs et
al. [FPS∗08] and Shi et al. [STH∗09] can be applied to any local
vortex detector, which smoothes the extraction results along path-
lines over time.

5.5. Objective Methods

The following section is entirely devoted to objective techniques.

Relative Vorticity Tensor-based Measures. While strain rate ten-
sor S is objective, vorticity tensor ΩΩΩ is only Galilean invariant. To
obtain an objective vorticity tensor, Drouot and Lucius [DL76] built
the relative vorticity tensor Ω̌ΩΩ, which views vorticity in strain basis:

Ω̌ΩΩ = ΩΩΩ−W (70)

Thereby, the rate-of-rotation tensor W is given by: Dei/Dt = Wei,
with ei being the unit eigenvectors of S and D/Dt being the mate-
rial derivative. The tensor Ω̌ΩΩ was independently identified by Dres-
selhaus and Tabor [DT92], and Tabor and Klapper [TK94], who
called it effective rotation. Astarita [Ast79] proved the objectivity
of Eq. (70) and proposed an index that classifies the domain into
extension-like motions and rigid-body-like rotations. When substi-
tuting the vorticity tensor ΩΩΩ by the relative vorticity tensor Ω̌ΩΩ, tra-
ditional region-based methods can be made objective. An objective
counterpart to the Q criterion is, cf. Haller [Hal05]:

‖Ω̌ΩΩ‖2−‖S‖2

2
> 0 (71)

An objective counterpart to λ2 is, cf. Martins et al. [MPM∗16]:

λ2(S
2 + Ω̌ΩΩ

2
)< 0 (72)

which is illustrated in Fig. 14a. Martins et al. [MPM∗16] also
defined objective counterparts to the ∆-criterion [CPC90] and
the inverse spiraling compactness [CBA05]. We refer to Thomp-
son [Tho08] for a fluid mechanics perspective on recent advances
in this area.

Strain Tensor-based Measures. Haller [Hal05] proposed the Mz
criterion, which defines a vortex as a set of fluid trajectories in an
incompressible flow along which the strain acceleration tensor M:

M = SJ+JTS+
d
dt

S(x(t), t) (73)

= SJ+JTS+Sxu+Syv+Szw+St (74)

is indefinite over directions of zero strain. Here, v = (u,v,w)T,
J = ∇v, S is the strain rate tensor, cf. Eq. (14), and Sx = dS

dx ,
Sy =

dS
dy , Sz =

dS
dz and St =

dS
dt are the partial derivatives of S.

Haller [Hal05] computed a binary field that indicates whether the
tensor is indefinite, which in turn marks non-hyperbolic particle be-
havior. For this, M is considered in strain basis. Let e1, e2, e3 be the
eigenvectors of S with corresponding eigenvalues λ1, λ2, λ3 such
that sign(λ1) = sign(λ2) 6= sign(λ3) and |λ1| ≥ |λ2|. Then, M is in
strain basis:

M̂ = (e1,e2,e3)
TM (e1,e2,e3) (75)

Haller [Hal05] proposed two approaches to determine whether ten-
sor M is indefinite. One may either check whether the function

m(α) = M̂11bcos2
α+ M̂22asin2

α+ M̂33ab (76)

+
√

ab
(

2M̂13
√

bcosα+2M̂23
√

asinα+ M̂12 sin2α

)
(77)

with a = − λ1
λ3

and b = 1− a, is everywhere positive in the range
α∈ [0,2π]. For this, m(α) is sufficiently densely sampled. Sahner et
al. [SWTH07] demonstrated that the search can be accelerated by a
factor of three when a bisection approach is combined with a first-
order derivative estimation. Alternatively, Haller [Hal05] defined
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−6

0

(a) The λ2 criterion based on the relative vorticity tensor, cf. Eq. (72).

0

1

(b) The Mz criterion in Eq. (78) of Haller [Hal05].

0.25

1.5

(c) IVD in Eq. (80) by Haller et al. [HHFH16].

2.5

15

(d) LAVD in Eq. (81) by Haller et al. [HHFH16].

0.2

0.7

(e) Objective vorticity in Eq. (96) by Günther et al [GGT17].

−0.4

0

(f) Objective λ2 in Eq. (97) by Günther et al [GGT17].

Figure 14: In the SQUARE CYLINDER flow of Camarri et al. [CSBI05], objective region-based measures should be similar to traditional
Galilean invariant measures, since vortices translates with almost equal speed. λ2 based on the relative vorticity tensor (a) is not consistent
with traditional λ2, and Mz (b) produces false-positives, whereas IVD (c), LAVD (d), and vorticity (e) and λ2 (f) in the optimal reference
frames detect the von Kármán vortex street well.

the coefficients A, B, C, D of a quartic polynomial

p4 +Ap3 +Bp2 +Cp+D (78)

which has roots in the range [−1,1] if M is indefinite. Along parti-
cle trajectories, the binary value (M is indefinite or not) is averaged
to find trajectories that stay in indefinite areas for a long time, as-
suming that long-term non-hyperbolic behavior is an indicator for
a vortex. An example of the Mz measure is given in Fig. 14b. Sah-
ner et al. [SWTH07] extracted strain skeletons and extremal lines
of Mz.

Vorticity-based Measures. Some objective measures were de-
rived from vorticity. Note that vorticity itself is not objective, as
document for instance in [Ast79,HHFH16]. Haller et al. [HHFH16]
derived a method from a dynamic polar decomposition of the defor-
mation gradient. Aside from anchoring it deeply in continuum dy-
namics, it led to an interesting observation: any subtraction of two
vorticity values ωωω(x1, t)−ωωω(x2, t) will cancel out the spatially-
constant rotation rate of the reference frame, if the vorticity was
sampled at the same time t. This means, every subtraction of two
vorticity values is objective–including spatial derivatives. For this
reason, the location of vorticity extrema [SKA99] is objective, as
well. In both 2D and 3D, Haller et al. [HHFH16] subtracted the

spatial mean of vorticity ωωωavg in a local neighborhood U ⊆ D:

ωωωavg(t) =
1
|U(t)|

∫
U(t)

ωωω(x, t) dV (79)

where |U(t)| is the area or volume of U(t) and dV denotes an area
or volume element, respectively. Using Eq. (79), they defined the
instantaneous vorticity deviation (IVD) as the difference in vortic-
ity at a point to the average of its local neighborhood:

IVD(x, t) = |ωωω(x, t)−ωωωavg(t)| (80)

Fig. 14c gives an example. A Lagrangian extension that considers
the temporal evolution is the Lagrangian-averaged vorticity devia-
tion (LAVD), which is computed by integrating IVD for duration τ

along a pathline c(t) that was seeded at (x, t0):

LAVDτ
t0(x) =

∫ t0+τ

t0
|ωωω(c(t), t)−ωωωavg(t)| dt (81)

See Fig. 14d for an example. Both IVD and LAVD are objective,
see Haller et al. [HHFH16], but note that these measures are rela-
tive to their neighborhood and that their value-range depends on the
neighborhood size U(t). Even though these vorticity-based mea-
sures are gracefully objective (including the location of extrema),
vorticity may produce false-positives in shear flow [Rob91]. These
can be filtered by observing closed iso-contours with a significant

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.



Tobias Günther & Holger Theisel / The State of the Art in Vortex Extraction

maximum inside to exclude noise. Lugt [Lug79] noted that a local
vorticity extremum is not necessary for the existence of a vortex.

5.6. Reference Frame Selection by Flow Decomposition

Aside from the definition of extraction methods that are invari-
ant under certain types of reference frame motion (Galilean invari-
ance, objectivity, rotation invariance), there is a thread of research
on finding a suitable reference frame in which the flow appears
(nearly) steady.

A naïve approach is to split the unsteady flow v into a mean flow
vavg and a residual fluctuation v′, i.e.:

v = vavg +v′ (82)

and to analyze the fluctuation v′ only. We can thereby distinguish
between the computation of a temporal mean and a spatial mean.
The temporal mean is used in the Reynolds decomposition [Rey94],
which is frequently used for turbulence studies [SB90]. The ambi-
ent motion can also be estimated as the spatial mean of the velocity
around a given point. For some simple flow configurations, such as
a von-Kármán vortex street, a certain percentage of the inflow ve-
locity can be used instead, which must be known by domain experi-
ence [WSTH07]. If the value is chosen correctly, the resulting flow
becomes near-steady in most parts of the domain (though not ev-
erywhere). Note that neither temporal nor spatial mean subtraction
guarantees that the flow ends up in a near-steady reference frame.

More sophisticated reference frame choices use decompositions
of the flow to find a harmonic vector field [Wie04], cf. Eq. (12),
that can be subtracted to eliminate the general motion. The idea
behind this is that harmonic fields are divergence-free and curl-
free, and thus the subtraction of this fields preserves the local di-
vergence and rotation properties. The Helmholtz-Hodge decompo-
sition (HHD) [BNPB13] decomposes a vector field into a scalar
potential −∇φ (curl-free), a vector potential ∇×ψψψ (divergence-
free) and a harmonic vector field h:

v = −∇φ︸ ︷︷ ︸
curl-free

+ ∇×ψψψ︸ ︷︷ ︸
divergence-free

+ h︸︷︷︸
harmonic

(83)

If a harmonic part is present, the resulting components and the
uniqueness of the decomposition strongly depend on the bound-
ary conditions. Bhatia et al. [BPKB14] used their natural HHD
to extract vortices in the resulting (near-)steady flow. Note that a
harmonic part cannot capture rotational transport, as it is always
irrotational. Aside from using the HHD to perform a change of the
reference frame, vortices have also been characterized as extremal
structures of the magnitude of the vector potential, e.g., by Tong et
al. [TLHD03] and Wiebel et al. [Wie04].

Recently, Bujack et al. [BHJ16] proposed to find critical points
by locally adjusting the frame of reference to the most persistent
one. For this, they analyzed the extrema of the determinant of J by
finding critical points in its gradient field and classifying them by
the Hessian H:

∇(det(J)) = 0 ∧ H(det(J)) is positive definite (84)

Note that in 2D, Q= det(J), cf. Eq. (21), thus their method searches
for extrema in the second invariant of the Jacobian matrix, which

can be seen as searching for extrema in the 2D counterpart to the
Q-criterion, i.e., the Okubo-Weiss criterion. Unlike the previous
Galilean invariant methods, the approach of Bujack et al. [BHJ16]
does not involve temporal derivatives and is therefore not equiva-
lent to Weinkauf et al. [WSTH07] or Fuchs et al. [FPH∗08]. The
Hessian in Eq. (84) involves third-order spatial derivatives, which
has implications on the numerical robustness.

5.7. Optimal Local Reference Frames

Lugt [Lug79] noted that in unsteady flows there is no global ref-
erence frame in which the entire flow appears steady, since indi-
vidual features move at different speeds and in possibly different
directions. In a similar sense, Perry and Chong [PC94] noted that
for certain flows, e.g., jets in cross-flow, vortices accelerate and be-
come steady in different frames.

Objectivity. For these reasons, Günther et al. [GGT17] did not
seek for a global (spatially-constant) reference frame, but for a lo-
cal one. They estimated an optimal local reference frame for every
point (x, t), in which the transformed velocity field is as steady as
possible in a local neighborhood U around (x, t). In other words,
they minimized the temporal derivative of the transformed field:∫

U
‖v∗t ‖2dV →min . (85)

They have shown that the temporal derivative of the transformed
velocity field v∗t can be equivalently expressed as follows:

v∗t = Q (vt −Mu) . (86)

Thereby, the parameters of the optimal reference frame are con-
tained in vector u. In 2D, u is a 6-vector and in 3D, u is a 12-vector.
In 2D, M is a 2×6 matrix and in 3D, M is a 3×12 matrix:

2D : M = (−Jxp +vp , J , xp , I) (87)

3D : M = (−JX+V , J , X , I) (88)

with xp = (−y,x)T, vp = (−v,u)T, X = sk(x), V = sk(v). Eq. (86)
shows that the vector field and the reference frame are completely
separated: M contains only v and its derivatives, while all informa-
tion of the frame is stored in u.

Eq. (85) is minimized using Eq. (86), which can be written as the
solution of the linear system

M̂u = ŷ (89)

with M̂ =
∫

U
MTM dV , ŷ =

∫
U

MTvt dV. (90)

Let ũ=(ũ1, ũ2, ũ3, ũ4)
T = M̂−1 ŷ be the solution of Eq. (89). Then,

the new fields in the locally optimal reference frame are

ṽ = v+ sk(ũ1)x+ ũ2 (91)

J̃ = J+ sk(ũ1) (92)

ṽt = vt −Mũ (93)

ã = J̃ ṽ+ ṽt . (94)

Note that ũ1 and ũ3 are scalars in 2D, namely the first-order and
second-order derivative of the angular velocity of the rotation of
the reference frame.
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(a) Standard λ2 [JH95]. (b) Objective λ̃2 [GGT17].

Figure 15: Comparison of the original Galilean invariant λ2 mea-
sure by Jeong and Hussain [JH95] with the objective version of
Günther et al. [GGT17]. The differences are in the details. The
dominant structures are recovered with both methods similarly.

Günther et al. [GGT17] limited the reference frame transfor-
mation to rotations and translations. For any rotation and transla-
tion of the reference frame that can be applied to the input vector
field, their method computes the same distinguished local reference
frame. All techniques applied in this frame, therefore become inde-
pendent of rotations and translations of the input. Thus, any vortex
measure that is applied in the optimal frame using Eqs. (91)–(94)
becomes objective.

Vortex Definition in the Optimal Frame. In the optimal refer-
ence frame that was described in Section 5.7, standard vortex ex-
traction methods directly become frame invariant, i.e., objective.
In 2D, optimal vortex corelines appear as paths of critical points
in ṽ and in 3D, optimal vortex corelines are extracted by parallel
vectors:

2D: ṽ = 0 3D: J̃ṽ ‖ ṽ . (95)

Note that these techniques usually only work in steady flows. Since
Günther et al. [GGT17] observe the unsteady flows in the optimal
near-steady reference frame, their method extracts vortex corelines
of pathlines. See Fig. 8d for an example.

In contrast to the relative vorticity tensor of Drouot and Lu-
cius [DL76] in Eq. (70), Günther et al. [GGT17] proposed a new
objective vorticity tensor Ω̃ΩΩ that views vorticity in the optimal ref-
erence frame. Based on this, they defined an objective counterpart
to the 2D and 3D vorticity as:

2D: ω̃ = ap(J̃) 3D: ω̃ωω = ap(J̃) . (96)

An example of the objective vorticity is shown in Fig. 14e.

They also defined a new objective λ̃2 measure, which is shown
in Fig. 14f:

λ̃2(S
2 + Ω̃ΩΩ

2)< 0 with Ω̃ΩΩ =
J̃− J̃T

2
. (97)

Aside from using λ2 and Q, other vortex measures can be similarly
applied in the optimal reference frame.

The optimization-based approaches require a linear optimiza-
tion, which has numerical consequences and higher computational

cost than traditional techniques [GGT17]. The techniques do, how-
ever, contain an inherent smoothing due to the finite neighborhood
size U , which results in more stable and smoother vortex corelines.
It should be noted, though, that higher reference frame invariances
are not always that much different compared to the results of tradi-
tional Galilean invariant techniques. Fig. 15 gives an example in a
numerical simulation of a rotating mixer. Especially, when the un-
steadiness is low (the temporal derivative has much smaller magni-
tude than the spatial derivatives) or when vortices are in fact mov-
ing with almost equal speed on nearly linear paths, such as in the
von-Kármán vortex street.

5.8. Extraction of Vortex Boundaries

Aside from finding vortex corelines, the size of vortices is also of
interest. With region-based methods, the size is determined by a
threshold, which is typically difficult to set. Line-based methods
may serve as a starting point for region growing approaches. For in-
stance, Banks and Singer [BS95] grow vortex tubes from their core-
lines in the plane that is orthogonal to the coreline until a vorticity
or pressure threshold is violated. Starting from a coreline, Garth
et al. [GTS∗04] consider a vortex tube radius optimal if the tan-
gential velocity on the circular tube boundary is maximized. This
approach is motivated by the Rankine vortex model, which mod-
els the decay of the tangential velocity. For a closed flow domain,
Lagerstrom [Lag75] considered a vortex to be the maximal set of
nested closed streamlines. Petz et al. [PKPH09] formed a hierar-
chy of closed streamlines to define vortex hierarchies. Wischgoll et
al. [WSH01] and Tricoche et al. [TWSH02] tracked closed stream-
lines over time, which has limited meaning for unsteady fluid flows,
since streamlines topology does not represent pathline behavior.
Note that all streamline-based approaches highly depend on the
chosen reference frame. Starting from an extracted coreline, Bauer
et al. [BPSS02] grew the vortex core region until the imaginary
part of the complex-conjugate eigenvalues of J fell below a certain
threshold, cf. Eq. (42). In recent years, Lagrangian Coherent Struc-
tures (LCS) [Hal15] have been computed objectively using calculus
of variations. LCSs are distinguished material curves that organize
the flow. A subclass are elliptic LCS, which preserve arc length
and area in incompressible 2D flows. Haller [Hal15] considered
the outermost elliptic LCS, of a family of nested elliptic LCSs, as
the boundary of a coherent vortex. Serra and Haller [SH16b] used
the variational framework to find objective Eulerian vortex bound-
aries as closed instantaneous (per time step) curves across which
the averaged material stretching rate shows no leading-order vari-
ability. Based on these (instantaneous) curves, they forecasted the
Lagrangian persistence of a vortex [SH16a].

5.9. Vorticity Transport

Related to the visualization of vortices is the visualization of vor-
ticity transport, which was studied in order to understand the role
of vorticity in the development and evolution of vortices. Based on
the incompressible Navier-Stokes momentum equations with uni-
form density and viscosity, the vorticity transport is described as
follows, cf. Batchelor [Bat00]:

∂ωωω

∂t
+u ·∇ωωω = ωωω ·∇v+ν∇2

ωωω (98)
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Figure 16: Iconic illustration of vortices by Sahner et al. [SWH05a],
which shows swirling strength by color and width, in addition to a
visualization of twist by spiral patterns or orbiting lines. © Euro-
graphics 2005

where ν is the kinematic viscosity. Sadlo et al. [SPS06] decom-
posed the first term on the right hand side into a parallel and an
orthogonal part:

∂ωωω

∂t
+u ·∇ωωω = (ωωω ·∇v)‖ωωω︸ ︷︷ ︸

stretching

+(ωωω ·∇v)⊥ωωω︸ ︷︷ ︸
tilting

+ ν∇2
ωωω︸ ︷︷ ︸

diffusion

(99)

and visualized the stretching, tilting and diffusion along pathlines,
which gave deeper insight into vortex dynamics, revealing how vor-
ticity and vortices are reinforced or weakened by the flow field. We
refer to [SPS06] for an extension to non-uniformly viscous flow.
To study the interaction of shear and vortices in unsteady flows,
Schafhitzel et al. [SBV∗11] extracted and visualized shear layers.

5.10. Vortex Verification and Visualization

Orthogonal to vortex definitions are the verification of numeri-
cal extraction results and their further processing for visualization.
Jiang et al. [JMT02a] presented a method to verify corelines based
on the geometry of streamlines.

Corelines should ideally be pathlines, since then they would rep-
resent particles that other particles swirl around. For unsteady 2D
flows, the tangent alignment of a coreline c(t) is a scalar line at-
tribute that is defined as the absolute value of the dot product be-
tween (space-time) vector field p and the tangent of the space-time
coreline c(t) = (c(t), t)T:∣∣∣∣ p(c(t), t)

‖p(c(t), t)‖ ·
dc(t)/dt
‖dc(t)/dt‖

∣∣∣∣ (100)

This measure can serve for comparisons between different coreline
techniques [GST16], see Fig. 10 for an example. In unsteady 3D
flows, vortex corelines sweep over a surface in space-time. Ideally,
the normal of this surface should be orthogonal to the flow direc-
tion.

Sadarjoen and Post [SP99] fit ellipses to depict streamline-
based vortices in 2D. To improve the vortex core visualization in
3D, Garth et al. [GTS∗04] computed hull surfaces around vor-
tex cores based on the Rankine vortex model, which reveals sur-

Figure 17: Illustration of rotation direction, rotation strength and
spatial extent of a vortex by Shafii et al. [SOK∗13] at the example
of a delta wing. © Eurographics 2013

faces on which the tangential velocity is maximized. Sahner et
al. [SWH05a] proposed an iconic representation to indicate vor-
tex scale and extent, which is shown in Fig. 16. Vortex core-
lines visualizations are frequently augmented with spiraling path-
lines [WSTH07]. Shafii et al. [SOK∗13] encoded rotation direction,
rotational strength and the spatial extent of vortex cores and show
the behavior of the flow in the vicinity of the vortex. An example is
shown in Fig. 17.

6. Conclusion and Future Work

In this report, we summarized the established and recent work
in the area of vortex extraction in fluid flows. We covered
common region-based and line-based approaches, geometric and
integration-based methods, recent objective techniques, flow de-
composition and reference frame selections.

Despite decades of research that were spent on this subject, there
are still a number of open problems:

• Most region-based vortex extractors are Eulerian, i.e., they only
reflect characteristics of a single time step. In order to capture
the transient effects of the fluids, Eulerian measures can be accu-
mulated along pathlines, which leads to Lagrangian scalar fields.
These fields can be expensive to compute and render.

• Many region-based standard techniques such as Q and λ2 are
based on the assumption that the flow is steady and incompress-
ible. It is not always clear how these methods can be cleanly
extended to unsteady or compressible flows.

• Vorticity produces false-positives in shear flow. At present, there
is a clear lack in techniques that handle flows that are dominated
by shear.

• Most vortex characterizations are local and are biased if the flow
is formed as a sum of turbulent motion of multiple scales. How
can vortex cascades be extracted?

• Early on, scientists emphasized the relevance of an appropriate
reference frame to observe the flow structures. Is the right ref-
erence frame found yet and are the extraction approaches the
most-suitable and efficient ones?

© 2017 The Author(s)
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• Which reference frame invariance makes sense in practice?
There is a long ongoing debate, whether Galilean invariance is
sufficient or whether the computationally more expensive objec-
tive techniques should be preferred. So far, there is no universal
answer and the choice depends heavily on the data at hand.
• Line-based vortex extractors are still not robust enough and sta-

ble enough. The line geometry is often segmented into pieces
and requires filtering and post-processing. A more stable extrac-
tor that deals with numerical problems would be very welcome.
• To achieve better adaption into practice, more standardization

and reference implementations are necessary.
• Better benchmark and testing grounds are needed to compare

and evaluate the newly-appearing vortex extractors.
• Many vortex definitions still await an extension to uncertain data.

Vortex extraction remains an active field of research. We look for-
ward to the advances that we will see in the future.
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