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Objective Vortex Corelines of Finite-sized Objects in Fluid Flows

Tobias Günther and Holger Theisel

Abstract— Vortices are one of the most-frequently studied phenomena in fluid flows. The center of the rotating motion is called the
vortex coreline and its successful detection strongly depends on the choice of the reference frame. The optimal frame moves with
the center of the vortex, which incidentally makes the observed fluid flow steady and thus standard vortex coreline extractors such
as Sujudi-Haimes become applicable. Recently, an objective optimization framework was proposed that determines a near-steady
reference frame for tracer particles. In this paper, we extend this technique to the detection of vortex corelines of inertial particles.
An inertial particle is a finite-sized object that is carried by a fluid flow. In contrast to the usual tracer particles, they do not move
tangentially with the flow, since they are subject to gravity and exhibit mass-dependent inertia. Their particle state is determined by their
position and own velocity, which makes the search for the optimal frame a high-dimensional problem. We demonstrate in this paper that
the objective detection of an inertial vortex coreline can be reduced in 2D to a critical point search in 2D. For 3D flows, however, the
vortex coreline criterion remains a parallel vectors condition in 6D. To detect the vortex corelines we propose a recursive subdivision
approach that is tailored to the underlying structure of the 6D vectors. The resulting algorithm is objective, and we demonstrate the
vortex coreline extraction in a number of 2D and 3D vector fields.

Index Terms—Vortex extraction, inertial particles, objectivity, vortex coreline

1 INTRODUCTION

Vortical motion is a key aspect of fluid dynamical processes and is
highly relevant to describe and understand many natural flow phenom-
ena. In flow visualization as well as in other disciplines, an overwhelm-
ing amount of research has been devoted to define, extract and visualize
vortices [31]. Despite these efforts, the search for new and better vor-
tex concepts remains an active field of ongoing research. Initiated by
Haller [32], the search for objective vortex measures shifted back into
focus. Objective measures guarantee a highly desirable property: they
are invariant under smooth rotations and translations of the reference
frame. This means, the vortex measure delivers the same result in
any arbitrarily moving reference frame. This allows for a clear and
unambiguous definition of vortices, which is especially challenging in
time-dependent flows. Incidentally, objectivity has another important
consequence [22]: since the movement of the observer and the move-
ment of the vortex are relative to each other, an objective method can
also robustly detect vortices that are moving on any translating and/or
rotating path. All existing objective vortex concepts were developed for
non-inertial flows, i.e., the movement of massless particles that move
tangentially with the flow.

In this work, we concentrate on the vortical motion of finite-sized
objects that are immersed in a fluid flow, for which Günther and
Theisel [25] have shown that the center of the vortex is mass-dependent.
These so-called inertial particles are a central element in many scien-
tific problems, such as sand saltation modeling [64], soiling of cars [55],
formation of rain [7], jellyfish feeding [50, 60] and spacecraft naviga-
tion [65]. Vortex structures are similarly relevant in the inertial case,
for instance during the uplift of dust and sand during helicopter landing
maneuvers [42, 70, 71] or for the detection of marine debris and plank-
ton species in the oceans [39]. Same as in the massless case, objectivity
is desirable for the vortex detection of inertial particles. However, to the
best of our knowledge, no objective vortex concepts exist for inertial
flows yet. At present, the highest class of reference frame invariance
for inertial particle motion is Galilean invariance [25], which is the
invariance under reference frame translations with constant speed in a
constant direction. Objective vortex concepts cannot straightforwardly
be extended from the massless case, since they depend on both the
particle’s mass and the particle’s own velocity. This own velocity un-
fortunately changes when observing the flow in a different reference
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frame, turning the extraction into a high-dimensional problem.
In this paper, we introduce the first approach to extract and visualize

the corelines of objective vortices in inertial flows. For this, we make
use of an important observation that was made for massless flows [22]:
vortex measures become automatically objective, if they are observed
in a reference frame that moves with the vortex [53] and in which the
observed flow incidentally becomes steady [43]. By describing the
inertial particle motion in a high-dimensional non-inertial flow, i.e.,
as a coupled first-order ODE, we derive a linear optimization based
on [22] for the extraction of the optimal as-steady-as-possible reference
frame of inertial particles. Once the frame is found, we apply vortex
coreline extractors in the high-dimensional flow. If the underlying flow
is two-dimensional, the search for inertial vortex centers gracefully
reduces to a critical point search in 2D, which is very efficient. Our
definition of vortex corelines in 3D is based on the Sujudi-Haimes [69]
method, which can be rephrased using the parallel vectors operator [49].
Unfortunately, the high-dimensional parallel vectors formulation does
not simply reduce back to 3D. Instead, an expensive parallel vectors
search in the full 6D space is required, for which we formulate a recur-
sive Bezier-based subdivision approach. Aside from being invariant
under more general motions, our objective algorithm is much more
robust than the Galilean invariant method of Günther and Theisel [25].
However, the higher reference frame invariance and the superior extrac-
tion results are bought at the expense of a much higher computational
cost, since a 6D parallel vectors search is for numerical flows in the or-
der of hours. We apply our inertial vortex coreline extraction algorithm
in multiple time-dependent 2D and 3D vector fields.

First, we discuss different classes of reference frame invariance,
existing vortex extraction algorithms for tracer particles and related
work on inertial particles in Section 2. In Section 3, we give a concise
summary of our objective vortex coreline extraction algorithm for
inertial particles in 2D and 3D. Afterwards, we derive and analyze our
method in detail in Section 4, with implementation details in Section 5.
Subsequently, the algorithms are applied in Section 6 in several 2D and
3D flows, which is followed by a conclusion in Section 7.

Notation

For notational convenience, we introduce the subscript p to denote a
multiplication with the Levi-Civita symbol: xp = εi j[k]x, which rotates
a vector (in 2D) or transforms it to an anti-symmetric matrix (in 3D):

in 2D: xp =

(
−y
x

)
in 3D: xp =

 0 −z y
z 0 −x
−y x 0

 (1)
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We use function ap [22] that transforms an anti-symmetric matrix
M = (mi, j) to a scalar/vector. In 2D, ap(M) = 1

2 (m1,2−m2,1), and in
3D, ap(M) = 1

2 (m3,2−m2,3 , m1,3−m3,1 , m2,1−m1,2)
T. We denote

the zero vector as 0, the zero matrix as 0n×n and the identity matrix as
I. Later, we denote temporal derivatives as Q̇ =

dQ(t)
dt and Q̈ =

d2Q(t)
dt2

2 RELATED WORK

Despite decades of research in scientific visualization, fluid dynamics
and continuum mechanics, feature extraction in time-dependent flows
remained a challenging problem [31], since the choice of the reference
frame greatly influences the extraction of features such as vortices [43,
53]. This led to two different approaches:

1. Extraction methods that give the same result for certain types of
reference frame motions [32, 37, 38, 79].

2. The search for an optimal reference frame, in which vortices
appear [6, 22].

In the following, we discuss both approaches in more detail and after-
wards explain the visualization of finite-sized objects in fluids.

2.1 Reference Frame Invariance
There are two main classes of reference frame invariance.

Galilean Invariance. A measure that is invariant under reference
frames that move with constant speed in a constant direction is Galilean
invariant. Incidentally, such a vortex measure can find vortices that
translate with constant speed in a constant direction. Most region-
based vortex measure that are used in practice are Galilean invariant,
such as the ∆-criterion of Chong et al. [11], the λ2-criterion by Jeong
and Hussain [38], the Q-criterion of Hunt [37], vorticity ω , and the
Okubo-Weiss criterion [47, 80]. By considering the domain in polar
coordinates, Galilean invariant methods become rotation invariant [24].

Objectivity. In continuum mechanics [32], a measure is called
objective, if it is does not change under any smooth rotation and trans-
lation of the reference frame. Such a moving frame transforms a point
(x, t) in space-time to a new location (x∗, t∗) by

x∗ = Q(t) x+ c(t) , t∗ = t−a (2)

with the time-dependent rotation matrix Q(t) ∈ SO(3), the time-
dependent translation vector c(t), and constant a. Objectivity can
be formalized, cf. Truesdell [77]:

Definition 1 A scalar s is objective if it remains unchanged under any
change of the reference frame as in Eq. (2). A vector r is objective
if Eq. (2) transforms it to r∗ = Q(t)r. A second-order tensor T is
objective if Eq. (2) transforms it to T∗ = Q(t)TQ(t)T.

2.2 Vortex Corelines
Next, we introduce vortex coreline extractors of massless particles,
following the categorization of Günther and Theisel [31].

Corelines in Steady Flow. Helman and Hesslink [35] located
vortex centers as critical points u = 0 with complex eigenvalues in the
Jacobian. For 3D flows, Globus et al. [19] computed swirling critical
points and traced streamlines in the direction of the eigenvector with
corresponding real-valued eigenvalue. The reduced velocity criterion
of Sujudi and Haimes [69] finds locations at which the flow vector
u is parallel to the eigenvector with corresponding real-valued eigen-
value. This method found numerous applications [18, 40]. Peikert and
Roth [49] used the parallel vectors operator to rephrase this approach to
u ‖ Ju and extended the method to handle bent vortex corelines [56].

Corelines in Unsteady Flow. Early approaches for unsteady flow
tracked cores of swirling streamlines over time, e.g., Bauer and Peik-
ert [4], Tricoche et al. [76] and Theisel et al. [73]. This, however,
is only useful when studying instantaneous fields such as magnetic
fields. Weinkauf et al. [79] and Fuchs et al. [16] developed techniques
for unsteady flows by either considering the swirling motion in space-
time [79] or by using the unsteady acceleration in the parallel vectors
form of Sujudi-Haimes [16].

Extremum Lines. A number of vortex coreline methods have been
defined as extremal structures of region-based approaches, including
minimum lines of pressure [46] and maximum lines of vorticity mag-
nitude [67]. As shown by Peikert and Roth [49], many criteria can be
formulated with the parallel vectors operator, including extremal lines
of the normalized helicity. Using feature flow fields [74], Sahner et
al. [58] traced extremum lines of λ2 and Q. Later, Sahner et al. [59]
extracted extremal structures of Q [37] and the Mz-criterion [32] to
compute vortex and strain skeletons. The topology of λ2-based ex-
tremal structures was further studied by Schafhitzel et al. [63]. For a
general discussion of extremal structures, see Kindlmann et al. [41].

2.3 Objective Vortex Methods
Next, we revisit objective regions-based methods for massless particles.

Relative Vorticity Tensor-based Measures. The anti-symmetric
part of the Jacobian is called vorticity tensor. It captures the local
rotation behavior, but is only Galilean invariant. By viewing this tensor
in the objective strain basis, Drouot and Lucius [14], and Dresselhaus,
Tabor and Klapper [13,72] derived an objective counterpart: the relative
vorticity tensor. Its objectivity was proven by Astarita [1], who also
defined an index measure that distinguishes between extension-like
motions and rigid-body-like rotations. By using the relative vorticity,
standard measures such as λ2 and Q become objective [32, 44, 75].

Strain Tensor-based Measures. Unlike the vorticity tensor, the
symmetric part of the Jacobian is objective. Based on the strain-rate
tensor, Haller [32] proposed the Mz criterion for incompressible flows.
His approach marks regions of non-hyperbolic particle behavior, i.e.,
elliptic regions. With the assumption that vortices stay coherent over
time, the long-term residence of a particle in an elliptic region is taken
as indicator for a vortex.

Vorticity-based Measures. Vorticity itself is only Galilean invari-
ant, cf. [1, 33], but its spatial derivatives and extrema are objective [67].
By subtracting the average vorticity in the local neighborhood, Haller et
al. [33] introduced the instantaneous vorticity deviation (IVD). Integrat-
ing this measure along trajectories produces the Lagrangian-averaged
vorticity deviation (LAVD). Both IVD and LAVD depend on the chosen
neighborhood size, making their value range relative to it, i.e., these
quantities do not directly translate to (half) the angular speed of the
rotation. Robinson [53] pointed out that vorticity can produce false
positives in shear flow, which might require post-processing.

To the best of our knowledge, there are no objective measures that
are applicable to inertial flows.

2.4 Inertial Particles
Inertial Particle Motion. When considering particles with a finite

size, their trajectories are influenced by inertia and gravity. The most
accurate description of the motion of spherical objects in fluids goes
back to the seminal work of Maxey and Riley [45], see Farazmand
and Haller [15] for a recent review. Often, the equations of motion are
simplified by placing application-specific assumptions. These include
small particle sizes, a high particle density compared to the surrounding
medium and disregarding both two-way coupling and particle collisions.
These simplifications are frequently made [5, 10, 42, 51, 70] and lead to
the following equation of motion, cf. Crowe et al. [12].

For an unsteady n-D velocity field u(x, t) with n ∈ {2,3} and the Ja-
cobian J = ∇u, the state of an inertial particle x̃ = (x,v)T with position
x and velocity v evolves over time according to the 2n-D vector field:

ũ(x̃, t) = ũ(x,v, t) =
(

v
u(x,t)−v

r +g

)
with r =

d2
p ρp

18 µ
. (3)

The above equation is parameterized by the response time r, which
comprises particle diameter dp, particle density ρp and the viscosity of
the surrounding air µ . The gradient and the temporal derivative are:

J̃ = ∇ũ =

(
0n×n I

1
r J − 1

r I

)
and ũt =

(
0

1
r ut

)
. (4)
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Visualization of Inertial Particles. The study of inertial parti-
cle motion is a relatively young field in the visualization community.
In an early work, Roettger et al. [55] visualized the soiling of cars
via heat maps before the cars were manufactured. Günther et al. ex-
tended several visualization concepts to the inertial case, including
integral geometry [23], separation behavior [26], steady vector field
topology [21, 27] and Galilean invariant vortex corelines [25]. In the
latter, they applied Sujudi-Haimes to the high-dimensional 2n-D flow,
which eventually reduced to an n-D parallel vectors problem. In the
high-dimensional phase space, inertial particles are attracted by a slow
manifold. Haller [34] calculated the asymptotic velocity, and defined an
ODE for the movement on the manifold. Baeza Rojo et al. [3] used mul-
tiple coordinated views to visualize heterogeneous mixtures of inertial
particles and their interaction with the attracting manifold. Günther and
Theisel [28, 29] developed additional techniques for inertial backward
integration, which were applied to the calculation of attracting material
lines [30]. Hyperbolic inertial Lagrangian coherent structures (ILCS)
have also been identified in [50, 61]. Sudharsan et al. [68] observed
Lagrangian coherent structures of tracer particles in the context of
preferential particle settling. Inertial finite-time Lyapunov exponents
were not only calculated based on spatial separation, but also on the
separation in the spatio-velocity domain [17] or its subspaces [57].

3 INERTIAL OBJECTIVE VORTICES IN A NUTSHELL

For the inertial particle model in Crowe et al. [12], the motion of a finite-
sized object is dependent on the underlying n-D air flow u(x, t) with
Jacobian J and temporal derivative ut , gravity g and particle response
time r. First, we briefly summarize the main steps of our extraction
algorithm in form of a recipe, since the computation of objective vortex
corelines of inertial particles follows a sequence of steps, including the
computation of a reference frame in which the high-dimensional flow
becomes steady and the subsequent feature extraction. The explanation
and the detailed derivation follow later in Section 4. For each point x
on a discrete grid, covering the spatial domain:

1. Compute system matrix M for particle velocity v = 0, which
linearly separates the flow properties from the reference frame:

M =
1
r

(
−Jxp +up , J , xp ,−I , 0p , 0n×n

)
+
(
gp , 0n×n , 2vp , 0n×n , xp ,−I

)
(5)

2. After summing in a neighborhood region U , solve a linear prob-
lem to obtain vector p, containing the reference frame parameters:

M̂p = ŷ (6)

with M̂ =
∫

U
MTM dV +E , ŷ =

∫
U

MTut dV (7)

and E is a diagonal matrix with the last 3n−3 entries being set to
1. The solution p = (ap(Ṡ), ḋ, . . .) contains parameters Ṡ and ḋ.

For a 2D flow:

3. Using the obtained Ṡ and ḋ, repeat steps (1) and (2) for v =
−Ṡx− ḋ, which gives p = (ap(Ṡ), ḋ,ap(S̈), d̈, . . .) and thus the
remaining required reference frame parameters S̈ and d̈.

4. To find vortex cores search for critical points in:

u(x, t)−v
r

+g+2 Ṡv+(S̈+ ṠṠ)x+ d̈+ Ṡ ḋ = 0 (8)

For a 3D flow:

3. In p = (ap(Ṡ), ḋ,ap(S̈), d̈, . . .) , only d̈ is linear in v:

d̈ = d̈0−ap(q) v (9)

Linearly solve for d̈0 and q by sampling d̈ at two more arbitrary
v by repeating steps (1) and (2) twice. Given d̈0 and q, the
parameter d̈ can be computed for a given v.

4. To find vortex corelines, extract the locations (x, v) at which the
two 6D vector fields ũ∗ and w̃∗ are parallel, i.e., ũ∗ ‖ w̃∗ with

ũ∗ =
(

v+a
B v+b

)
, w̃∗ =

(
B v+b
C v+ c

)
(10)

and a = Ṡx+ ḋ, b = u
r + g+(S̈+ ṠṠ)x+ d̈0 + Ṡ ḋ, B =

2 Ṡ− 1
r I−ap(q), H1 =

1
r J+ 1

r Ṡ− ṠṠ+ S̈, H2 =− 1
r I+2 Ṡ,

C = H1 +H2 B, and c = H1 a+H2 b.

The derivation of the above algorithm and the description of the 6D
parallel vectors extraction follow in the next section.

4 DERIVATION AND ANALYSIS

Lugt [43] and Robinson [53] proposed to identify vortices by closed or
spiraling streamlines that can be seen in a reference frame, in which the
flow field is steady. In this paper, we search for this optimal reference
frame for the high-dimensional vector fields of inertial particles. In
the following, we derive the algorithm in Section 3 for the objective
computation of vortex corelines of inertial particles.

4.1 Reference Frame Transformation for Inertial Particles
When applying a smooth rotation Q(t) and translation c(t) as in Eq. (2)
to the reference frame of an inertial particle, its position and velocity in
the spatio-velocity domain become:

x̃∗ =
(

Q x+ c
Q
(
v+QTQ̇ x+QTċ

) ) . (11)

In addition, we can calculate the high-dimensional tangent vector field
ũ∗ that describes the motion of the inertial particle in the new reference
frame. For notational convenience, we first introduce the abbreviations
Ṡ and ḋ, which are the derivatives of the reference frame rotation Q and
translation c under the inverse reference frame rotation QT. Further,
we introduce their derivatives by differentiation using the chain rule:

Ṡ = QTQ̇ (12)

S̈ = Q̇TQ̇+QTQ̈ (13)
...
S = Q̈TQ̇+2Q̇TQ̈+QT...

Q , (14)

where Ṡ, S̈,
...
S are skew symmetric matrices with vanishing main diago-

nals. Further, we use the following abbreviations for the translations:

ḋ = QTċ (15)

d̈ = Q̇Tċ+QTc̈ (16)
...
d = Q̈Tċ+2Q̇Tc̈+QT...c . (17)

Then, the transformed high-dimensional tangent vector field ũ∗ is:

ũ∗ =
(

Q
(
v+ Ṡx+ ḋ

)
Q
( u−v

r +g+2 Ṡv+(S̈+ ṠṠ)x+ d̈+ Ṡ ḋ
) ) (18)

The gradient J̃∗ = ∇ũ∗ is a 2n× 2n matrix and contains the partial
derivatives with respect to particle position x and particle velocity v:

J̃∗ =
(

0n×n I
Q
( 1

r J+ 1
r Ṡ− ṠṠ+ S̈

)
QT Q

(
− 1

r I+2 Ṡ
)

QT

)
(19)

4.2 Linearity of Temporal Derivative
Since we search for a reference frame, in which the flow field becomes
steady, we are particularly interested in the temporal derivative of the
transformed flow ũ∗. Fortunately, the temporal derivative depends
linearly on the reference frame transformation parameters Q and c:

ũ∗t =

(
0

Q
( 1

r ut −Mp
) ) (20)
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where the frame parameters Q, c are with Eqs. (12)–(17) stored in p:

p =


ap(Ṡ)

ḋ
ap(S̈)

d̈
ap(

...
S)...

d

 (21)

Matrix M only depends on the underlying air flow u, Jacobian J = ∇u,
the inertial particle velocity v, gravity g and response time r:

M =
1
r

(
−Jxp +up , J , xp ,−I , 0p , 0n×n

)
+

(
gp , 0n×n , 2vp , 0n×n , xp ,−I

)
(22)

Thus in this notation, matrix M and vector p linearly separate the flow
properties from the reference frame parameters. Note that in 2D, M is
a 2×9 matrix and p is a 9-vector, while in 3D M is a 3×18 matrix and
p is an 18-vector. This can be seen by considering that the subscript p
produces in 2D a vector and in 3D a matrix, cf. the definition in Eq. (1).

4.3 Finding the Optimal Frame
As discussed by Lugt [43] and Robinson [53], the optimal frame is
the one in which the observed flow becomes steady. However, it is
generally not possible to find a single global reference frame, in which
the entire flow appears steady everywhere [43], since vortices might
move at different locations in different directions. For this reason, we
search at each point (x, t) in the domain for a local reference frame
(Q,c) in which a neighborhood region U appears steady:∫

U
‖ũ∗t ‖

2 dV →min (23)

Following Günther et al. [22], we assume that Q(t) and c(t) are
spatially-constant in a small neighborhood U around (x, t), which
makes Eqs. (18)–(20) applicable. By waving the spatial and tempo-
ral connection of neighboring points, the search for optimal reference
frames is local and easily parallelized. For this, we set Q= I, c= 01 and
locally solve for the derivatives Q̇, Q̈, ċ and c̈. Due to the linearity of
ũ∗t in Eq. (20), the local reference frame in which the high-dimensional
flow becomes steady is found by linearly solving:

M̂ p = ŷ (24)

with system matrix M̂ and right hand side ŷ

M̂ =
∫

U
MTM dV (25)

ŷ =
1
r

∫
U

MTut dV. (26)

After computing the optimal reference parameters in Eq. (21), we
apply Eqs. (18)–(20) to obtain the high-dimensional vector field and
its derivatives in the optimal frame. In Appendix A, we show that the
Galilean invariant method of Günther and Theisel [25] is a special case.

4.4 Regularization

Unfortunately, Eq. (25) does not give a full-rank matrix M̂. With
Eq. (22), we can see that the rows of MTM have linear dependencies,
no matter where MTM is sampled. In the following, we show this for
the 3D case. The expressions are analogue for 2D. For brevity, we
denote only in this section 0 = 03×3 as the zero matrix and use as usual
I for the identity matrix. Since r is a constant, the first dependency is:

MTM (0,0,0,r · I,0,0)T = MTM (0,0,0,0,0,I)T . (27)

1By setting Q= I and c= 0, we select the solution at x. During the derivation,
the symbols are still required to incorporate their derivatives correctly.

Further, if we sample neighborhood U in space only (i.e., vp is constant
for all samples), another dependency in MTM has the form

MTM (0,0,0,0,I,0)T−MTM (0,0,r · I,0,0,0)T (28)

= MTM (0,0,0,0,0,2r ·vp)
T. (29)

We cope with this by regularization. Instead of Eq. (25), we use

M̂ =
∫

U
MTM dV +E (30)

where E is a diagonal matrix with the last 3n−3 entries being set to 1.
The regularization in Eq. (30) enforces that the last 3n−3 components
of the optimal p are zero.

4.5 Dependence on Particle Velocity

We now study how the solution of Eqs. (24), (26) and (30) depends on
the particle velocity v. The optimal reference frame parameters in p
have the following properties: ap(Ṡ), ḋ, ap(S̈), ap(

...
S) and

...
d do not

depend on v. In fact, the regularization in Eq. (30) gives ap(
...
S) = 0 and...

d = 0. Only d̈ depends linearly on vp, which follows from Eq. (22).
To see this, consider the Maple sheet in the additional material. Next,
we discuss how v is chosen to compute the correct parameter d̈. For
this, we look at the vortex core in both 2D and 3D, since the vortex
criterion gives us another condition to pin down the linear dependence.

2D Case. To find vortices in 2D, we search for locations where
ũ∗ in Eq. (18) vanishes in the optimal frame. The vanishing spatial
subspace in ũ∗ = 0 gives for our local Q = I:

v =−Ṡ x− ḋ . (31)

Since Ṡ and ḋ are the same for all v, we can solve Eqs. (24), (26) and
(30) for an arbitrary v to obtain Ṡ, S̈ and ḋ from Eq. (21). Without
loss of generality, we set v = 0 and insert the resulting Ṡ and ḋ into
Eq. (31) to obtain the particle velocity v, for which ũ∗ in Eq. (18)
vanishes. After computing d̈ by solving Eqs. (24), (26) and (30) again
with Eq. (31), we insert Eq. (31) into the velocity subspace of Eq. (18).
With the critical point condition ũ∗ = 0, we arrive at a local criterion
that can be conveniently searched in the spatial domain:

u(x, t)−v
r

+g+2 Ṡv+(S̈+ ṠṠ)x+ d̈+ Ṡ ḋ = 0 , (32)

which gives the vortex centers of inertial particles in the 2D case.

3D Case. In 3D, we similarly determine the dependence of d̈ on
v. Instead of solving for v directly, we insert the linear dependence into
the vortex criterion. First, d̈ depends on v as follows:

d̈ = d̈0−ap(q) v. (33)

In order to obtain d̈0 and q, we solve Eqs. (24), (26) and (30) twice
with two different v.

In 3D, we search for the locations (x,v) with J̃∗ ũ∗ ‖ ũ∗, which is
the direct extension of Sujudi-Haimes [69], which was shown to work
well for massless particles in their optimal frame [22]. The condition
J̃∗ ũ∗ ‖ ũ∗ is a parallel vectors operation in 6D. By locally setting Q= I,
Eq. (18) and Eq. (19) give

ũ∗ =
(

v+a
B v+b

)
, J̃∗ ũ∗ = w̃∗ =

(
B v+b
C v+ c

)
(34)
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x1
a1,b1,c1
B1,C1

x2
a2,b2,c2
B2,C2

x3

a3,b3,c3
B3,C3

v1 v2

v3

v4(a,b,c)

(d,e, f ,g)

Fig. 1: Setup for the barycentric interpolation: Given the vectors ai, bi,
ci and the matrices Bi and Ci on a triangle, and four velocities vi on a
tetrahedron, the 6D vectors ũ∗ and w̃∗ can be linearly interpolated.

where Eq. (33) is inserted, giving

a = Ṡx+ ḋ (35)

B = 2 Ṡ− 1
r

I−ap(q) (36)

b =
u
r
+g+(S̈+ ṠṠ)x+ d̈0 + Ṡ ḋ (37)

H1 =
1
r

J+
1
r

Ṡ− ṠṠ+ S̈ (38)

H2 = −1
r

I+2 Ṡ (39)

C = H1 +H2 B (40)
c = H1 a+H2 b . (41)

Note that all quantities from Eq. (35)–(41) are independent of v and can
thus be discretized in the spatial domain. We search for the locations
(x,v) where the two 6D vector fields ũ∗ and w̃∗, defined in Eq. (34),
are parallel. Next, we describe the 6D parallel vectors extraction.

4.6 Parallel Vectors in 6D
Aside from the usual 3D parallel vectors (PV) extractors [49, 78], a
5D parallel vectors operator of Oster et al. [48] exists in the context
of eigenvector analysis. We are not aware of any existing 6D parallel
vectors approach. In the following, we derive an extraction algorithm
that is tailored to our two 6D vector fields in Eq. (34).

Since all elements in Eqs. (35)–(41) are independent of v, we can
discretize them onto a piecewise linear tetrahedral grid and interpolate
them only in the spatial domain. Thus, at three spatial grid points xi
with i∈ {1,2,3}, we have computed ai,bi,ci,Bi,Ci. Inside the triangle,
we assume a linear interpolation with the barycentric coordinates a,b,c:

a = a a1 +b a2 + c a3 (42)
b = a b1 +b b2 + c b3 (43)
c = a c1 +b c2 + c c3 (44)
B = a B1 +b B2 + c B3 (45)
C = a C1 +b C2 + c C3 (46)

with a+b+ c = 1. Further, we consider v to be linearly interpolated
between 4 vectors v1,v2,v3,v4:

v = d v1 + e v2 + f v3 +g v4 (47)

with d + e+ f +g = 1. Fig. 1 illustrates the setup. Inserting Eqs. (42)–
(47) into Eq. (34) gives ũ∗ and w̃∗ in barycentric coordinates (a, . . . ,g).
To search for locations of parallelity, we consider the 6×6 matrix X̃
defined by

X̃i, j = ũ∗i w̃∗j − w̃∗i ũ∗j (48)

for the element indices i, j ∈ {1, . . . ,6}. Note that X̃ is a skew sym-
metric matrix with vanishing diagonal that can be interpreted as 6D
generalization of the 3D cross product. With Eq. (48), we have:

ũ∗ ‖ w̃∗ ⇔ X̃ = 06×6 . (49)

x
x

x

no intersection maybe intersection maybe intersection

Fig. 2: Recursive root finding principle by Bezier subdivision in 2D.
If all control points are positive (or all are negative), the Bezier curve
cannot intersect the x-axis, since the curve is always inside the convex
hull of the control points (left). If there are control points above and
below the x-axis, the curve might intersect (center and right).

Thus, the search for parallel vectors becomes a search for roots in all
entries of matrix X̃. Since X̃ is skew-symmetric, only the upper (or
lower) triangular matrix needs to be tested. Matrix X̃ is a quadratic
function in the barycentric coordinates (a, . . . ,g). We use a Bezier-
based subdivision to find the roots [36, 54]. Thus, we represent the
matrix in Bernstein-Bezier form, as:

X̃(a,b,c;d,e, f ,g) = ∑
i+ j+k=2

∑
l+m+n+o=2

B2
i, j,k B2

l,m,n,o B̃i, j,k;l,m,n,o

(50)
where B̃i, j,k;l,m,n,o are 60 Bezier matrices (in generalization of the usual
concept of Bezier points) and

B2
i, j,k =

2!
i! j! k!

ai b j ck , B2
l,m,n,o =

2!
l! m! n! o!

dl em f n go (51)

are the Bernstein polynomials of degree 2. We obtains the unknown
Bezier matrices by sampling X̃ at 60 points:

X̃i, j,k;l,m,n,o = X̃
(

i
2
,

j
2
,

k
2

;
l
2
,

m
2
,

n
2
,

o
2

)
(52)

for all i, j,k, l,m,n,o ∈ {0,1,2} with i+ j+k = l+m+n+o = 2. The
points are placed on the vertices and edge mid-points of the spatial
triangle and the velocity tetrahedron, respectively. Then, the Bezier
matrices are obtained by

B̃2,0,0;2,0,0,0 = X̃2,0,0;2,0,0,0 (53)

B̃1,1,0;2,0,0,0 = 2 X̃1,1,0;2,0,0,0−
X̃2,0,0;2,0,0,0 + X̃0,2,0;2,0,0,0

2

B̃2,0,0;1,1,0,0 = 2 X̃2,0,0;1,1,0,0−
X̃2,0,0;2,0,0,0 + X̃2,0,0;0,2,0,0

2
B̃1,1,0;1,1,0,0 = 4 X̃1,1,0;1,1,0,0− X̃2,0,0;1,1,0,0− X̃0,2,0;1,1,0,0

− X̃1,1,0;2,0,0,0− X̃1,1,0;0,2,0,0

+
1
4
(X̃2,0,0;2,0,0,0 + X̃0,2,0;2,0,0,0

+ X̃2,0,0;0,2,0,0 + X̃0,2,0;0,2,0,0) . (54)

The remaining Bezier matrices follow by symmetry considerations.
Then, a subdivision-based search for parallel vectors locations is based
on the following observation: if an entry (i, j) of all 60 Bezier matrices
is positive (or if all 60 entries are negative), then – due to the convex
hull property of Bernstein-Bezier representations – X̃ cannot vanish
for barycentric coordinates between 0 and 1. Contrary, if all entries
have both positive and negative values in the 60 Bezier matrices, no
statement about the existence of parallel vectors locations is possible,
see Fig. 2 for a 2D illustration. In this case, a recursive subdivision of
the spatial triangle or the v tetrahedron is done. For this, we alternate
between a subdivision in the spatial domain and the velocity domain.

5 IMPLEMENTATION

We implemented the reference frame extraction, the 2D critical point
search and the 6D parallel vectors extraction in C++ with dynamically
scheduled multi-threading using OpenMP.

5



Numerical Optimization. The reference frame extraction is based
on the open source implementation for the massless case by Günther et
al. [22]. The least squares problem in Eq. (24) is numerically solved
using a Householder QR decomposition with full-pivoting, using the
linear algebra library Eigen. The critical point search for the 2D case fol-
lows the common recursive subdivision algorithm of Globus et al. [19].

Recursive Subdivision in 6D PV. The numerical data sets were
initially given on regular grids and the analytical flows were sampled
onto regular grids. The resolutions are later given in Table 1. For the
6D parallel vectors extraction, we first tetrahedralize the given data
sets. Since we search for line structures, we compute PV points on the
triangle faces of the spatial tetrahedra mesh and connect the PV points
on the faces with line segments. In the spatial domain, triangles are
split into four equally-sized triangles, as illustrated by Oster et al. [48].
In the velocity domain, we search inside the tetrahedra for the velocity
that corresponds to the PV solution. For the recursive subdivision of a
tetrahedron in the velocity domain, we follow the subdivision scheme of
Schaefer et al. [62], which results in four tetrahedra and an octahedron
in the middle. The latter is further subdivided into four tetrahedra. In
all examples, we terminated the subdivision after 30 recursive steps.

6 RESULTS

Next, we apply the above inertial vortex coreline extraction algorithms
in 2D and 3D vector fields. In all example, we set as particle density
ρp = 2650kg/m3, which corresponds to Quartz glass. The particle
diameter dp varies in the range from 90 µm to 150 µm. As viscosity we
set µ = 1.532×10−5 kg/(m · s), which equates to air. If not mentioned
otherwise, the gravity vector is set to g = (0,1,0)T.

6.1 Elliptic Beads

Our first synthetic test case contains an analytic unsteady 2D vector
field, in which two vortices rotate around each other. The vector field
is defined as the co-gradient of a stream function s(x,y, t):

v∗ =

(
− ∂ s

∂y
∂ s
∂x

)
with s(x,y, t) = (a+b)(1−a−b) , (55)

a(x,y, t) = (3xcos(t)+3ysin(t)−1)2

36 and b(x,y, t) = (xsin(t)− ycos(t))2.
In this flow, the vortices move on circular paths, and thus Galilean
invariance does not apply. Fig. 3 shows the vortex corelines that
were extracted with the Galilean invariant approach of Günther and
Theisel [25] and our new objective method using a neighborhood size
of U = 112. To test the quality of the vortex corelines, we release iner-
tial particles with diameter dp = 90 µm in the vicinity of the corelines
and observe whether they stay close to the coreline and rotate around
it. Our objective method passes this test, while the Galilean invariant
method returns several incorrect answers.

6.2 2D Cylinder

Next, we compare our objective method with the Galilean invariant
approach in a numerically simulated flow, in which the vortices move
with almost constant speed in a constant direction. In this case, Galilean
invariance is a valid assumption and the results are hypothesized to be
similar. Using Gerris flow solver [52], we simulated a von-Kármán vor-
tex street with Reynolds number 160 in a channel with no-slip boundary.
Fig. 4 displays the vortex cores that were extracted for inertial particles
with diameter dp = 100 µm, and with a neighborhood size of U = 212.
Due to the inherent smoothing in Eq. (30) by neighborhood U , the
objective method is less sensitive to noise. The overall vortex locations
are identical as expected. The LIC visualizations in the background
show the vector fields, in which the critical points were searched, i.e.,
Eq. (59) (Galilean invariant) and Eq. (32) (our objective method). The
LIC visualization of the Galilean invariant approach is more noisy, as
this approach is completely local, whereas our approach is more robust
due to the fitting of the reference frame to a small neighborhood.

x

y

z

(a) Galilean invariant vortex corelines

x

y

z

(b) Objective vortex corelines

Fig. 3: Space-time visualizations in the ELLIPTIC BEADS. If vortices
move on rotating paths, Galilean invariance is insufficient. Inertial
pathlines stay near the objective coreline, indicating a rotating motion.

Fig. 4: Vortex cores in the 2D CYLINDER flow. Top: Galilean invariant
method and bottom: our objective technique. Due to the inherent
smoothing within neighborhood U , the objective technique is less
senstive to noise. The swirling strength [81] is mapped to transparency,
showing that near the end of the domain vortices become weaker. The
LIC visualization shows the fields u−f+rg (top) and Eq. (32) (bottom).

6.3 Boussinesq

Our next example contains a more turbulent scenario. Using Gerris
flow solver [52], we performed a convection simulation around a heated
cylinder. In the wake of the cylinder, a fast jet stream induces vortical
motion. As shown in Fig. 5, the Galilean invariant method produces
numerous false positives, while the objective method finds less but more
stable vortices, which is apparent in the supplemental video. Since
LIC does not encode the vector magnitude, differences are seen at the
beginning of the video in areas, where the flow is standing almost still.
The vortex cores were extracted for inertial particles with diameter
dp = 100 µm, and we used a neighborhood size of U = 112. The
transparency of the extracted vortex cores corresponds to the swirling
strength, which is a measure for the strength of the rotating motion.

6.4 Chimera

Our last 2D case was numerically simulated using the cut-cell method
of Azevedo et al. [2]. This simulation contains an oscillating rod that
stirs a fluid flow in a 2D domain into motion. The rod itself interacts
with the vortices, creating more complex motions for which Galilean
invariance is not always an adequate assumption. As shown in Fig. 6
for dp = 100 µm, the vortex locations differ in the fast moving areas
of the domain, which occur close to the obstacle. In addition, our
objective method contains less noise. As neighborhood size we selected
U = 212. Other choices are discussed later in Section 6.8.1. As in the
example above, the swirling strength is mapped to transparency, which
emphasizes the clear and strong vortices.
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(a) Galilean inv. vortex corelines (b) Objective vortex corelines

Fig. 5: Galilean invariant and objective vortex cores in the BOUSSI-
NESQ flow. Aside from the sensitivity to noise, differences can be seen
close to the jet core, in which vortices move with higher speed. Here,
for dp = 100 µm and with a neighborhood size of U = 112.

6.5 Rotating 3D Center
Next, we utilize an analytic time-dependent 3D flow, described by
Günther et al. [24], which contains a single vortex coreline, rotating
around the z-axis.

v(x,y,z, t) =
1√
3

 (cos(t)+ sin(t))z− y− cos(t)+ x3

1000
(cos(t)− sin(t))z+ x+ sin(t)+ y3

1000
(sin(t)− cos(t))y− (sin(t)+ cos(t))x+2+ z3

1000


(56)

In this example, Galilean invariance is not a valid assumption, since
vortices do not move in a constant direction. Thus, we can expect
different results for Galilean invariance and objectivity. Fig. 7 displays
the corelines, extracted in this vector field using the Galilean invariant
method and using our objective method with U = 93. For the small
particle size of dp = 150 µm, our objective inertial coreline approaches
the vortex coreline of the massless case. For the Galilean invariant ap-
proach this is not the case. Thus, in this flow, objectivity is a necessary
requirement to successfully extract the vortex coreline.

6.6 Square Cylinder
Next, we compute the vortex corelines in a numerically simulated 3D
SQUARE CYLINDER flow. In this vector field, vortices move with
almost constant speed in a fairly constant direction. Thus, Galilean
invariance is generally assumed to be a valid assumption [22, 25, 79].
Existing coreline extraction methods are local, which means they de-
termine vortex corelines only based on the velocity and the derivatives
at a given location. This locality allows for efficient implementations,
but it is also strongly influenced by noise and discretization artifacts of
the data. Fig. 8 shows the unfiltered inertial vortex corelines obtained
with the local method from previous work [25] (left) and our method
(right). In this example, gravity was set to g = (0,2,0)T and the di-
ameter was dp = 100 µm. The local method results in many spurious
and short vortex corelines, which may be filtered by line length. A

Fig. 6: Comparison of Galilean invariant [25] (top) and objective vortex
cores (bottom) in the CHIMERA flow for a particle size of dp = 100 µm
and a neighborhood size of U = 212 voxels. Differences between the
extraction results can be seen especially around the obstacle, since there
the fluid is moving the fastest. See the video for an animation.

x

z

Fig. 7: Vortex corelines in the ROTATING 3D CENTER flow, includ-
ing the massless case (green), Galilean invariance (orange) and our
objective method (blue), here for dp = 150 µm. For such small particle
sizes, our inertial corelines approach the coreline of the massless case,
whereas the Galilean invariant case is far off. Streamlines of tracer
particles are shown in gray as reference. See the video for an animation.

clean extraction typically requires post processing. Since our method
inherently includes a smoothing within a small neighborhood U , the re-
sulting extraction becomes much more robust. In fact, Fig. 8 shows the
extraction results without any post-processing. Here, we used U = 133.
This clean extraction result, however, is bought at the expense of a
rather high computation time, since the extraction with our method
took approximately 24 hours. The performance is discussed later in
Section 6.9 in more detail. It should be noted, however, that our method
is generally able to find vortices moving on arbitrarily rotating and
translating paths, whereas previous work [25] only worked for the
smaller class of equal-speed translations.

6.7 Buoyancy
Next, we extract inertial vortex corelines in a more turbulent BUOY-
ANCY flow. In this flow, a plume is rising at the center of the domain.
Fig. 9 shows that the plume creates a vortex ring at the ground and a
vortex rope that is lofted into the air. Here, we extracted the inertial
vortex corelines using the Galilean invariant approach [25] and our
objective method for g = (0,2,0)T, dp = 200 µm and U = 213. The
swirling strength [81] is mapped to the line radius. Again, the inherent
smoothing of our objective method produces less noisy results than
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Galilean invariant approach [25] Our objective method

Fig. 8: We propose an energy minimization to determine the rotating and translating reference frame, in which the high-dimensional flow that
governs finite-sized particle motion becomes as steady as possible. In this frame, we apply a Bezier-based recursive subdivision to extract the
vortex corelines, which are defined by parallel vectors in 6D. Compared to the Galilean invariant approach of Günther and Theisel [25], our new
objective method is far more robust and produces clean corelines. The visualizations above show the unfiltered corelines, i.e., the result directly
produced by the parallel vectors extractor in the SQUARE CYLINDER flow.

(a) Galilean invariant approach [25] (b) Our objective method

Fig. 9: In the BUOYANCY flow, a plume rises in the center of the
domain, creating a vortex ring on the ground and a vortex rope that is
carried upwards. The Galilean invariant approach [25] produces more
noisy results compared to our objective method. Here, dp = 200 µm.

the Galilean invariant approach. Typically, the vortex coreline cleanup
involves a heuristic connection of close line segments and a subsequent
filtering by length. If the heuristics fail, errors occur, which is more
likely if noisy line segments are present as in the Galilean invariant
case. Again our improvement is bought with a longer computation time
of 11 hours, as reported later in Section 6.9.

6.8 Parameters
6.8.1 Neighborhood U

The neighborhood size U determines the region around a given point to
which the local optimal reference frame transformation is fitted. We
inherit this parameter from Günther et al. [22], who discussed it already
with examples. In summary, the smaller the region, the more sensitive
is the optimization to noise and velocity discretization artifacts. Thus,
increasing the neighborhood size U , makes the method more robust.
The larger the region, however, the greater the risk to have multiple
vortices inside the region, traveling into different directions. In this
case, one estimated reference transformation cannot fit to all vortex
movements. Thus, in principle, the neighborhood size should be small
enough to contain only a single vortex, yet be large enough to be robust.
In practice, we compute the optimal reference frame for a range of
different neighborhoods and manually inspect the resulting flow in
the optimal reference frame, as shown in Fig. 10. In this example,
the smallest neighborhood size of U = 112 voxels already contains
the dominant vortex structures, but is still noisy. Increasing the size
to U = 212 makes the vortices more apparent and increasing the size
even further to U = 312 does not significantly change the main vortex
locations. Thus, in this case, a value of U = 212 seems appropriate.

6.8.2 Mass Dependence
As demonstrated by Günther and Theisel [25], the location of iner-
tial vortex corelines depends on the particle response time r and the
gravity g. The particle sizes that are studied depend on the applica-
tion. For instance, in controlled experimental setups, a finite set of
different particle sizes may be used [7]. In the modeling of real-world
scenarios, heterogeneous mixtures might be studied instead, such as
in helicopter brownout engineering [70, 71]. In the latter case, a finite
number of inertial particles sizes might be uniformly sampled from the
range of possible particle sizes, such that occlusion is tolerable and the
continuous mass spectrum is represented.

6.8.3 Velocity Subspace
In the 3D case, we apply a full 6D parallel vectors search in both the
spatial and the velocity domain. The spatial domain is given by the
underlying data set. For the velocity domain, however, the bounding
box of all realizable particle velocities is required. The underlying
slowly attracting manifold provides the velocity that inertial particles
approach in the limit [34], from which the maximal velocity magnitude
can be inferred. However, this is only an approximate solution, as it
considers the limit case. Further, the initial velocity v0 needs to be
considered as potential maximum, in case inertial particles are released
with even higher velocity. In practice, we conservatively increase
the velocity bounding box obtained from the initial velocity and the
attracting manifold, sampled at the spatial grid coordinates, by 50%,
which worked well for us in all examples.

6.9 Performance
We compare the timings of the former Galilean invariant method by
Günther and Theisel [25] with our new objective method in Table 1.
All measurements were taken on an Intel Core i7-6700K CPU with 4.0
GHz and 32 GB RAM. We separate between the computation of the
optimal reference frame and the extraction of the vortex corelines. In
case of the Galilean invariant method, we list the timings required to
compute the derived vector field from which the vortices are extracted
afterwards. The computation of the optimal frame is with our general
method more expensive, as it involves the optimization of the reference
frame. The extraction time in 2D strongly depends on the number of
false-positives. In the Galilean invariant case, many small line segments
are found in the simple data sets, which slows down the extraction time
significantly. In the more complicated numerical flows, the extraction
time is nearly identical, since both methods ultimately rely on a critical
point search. The 3D extraction, however, is with our method far more
expensive, since a full 6D parallel vectors search is required, while the
search simplifies for Galilean invariance to a 3D PV problem.

6.10 Discussion
6.10.1 Unique Solution for Optimal Reference Frame
We inherit the uniqueness of the solution from the optimization ap-
proach for massless flows by Günther et al. [22]. The linear system
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(a) Neighborhood size U = 112 voxels. (b) Neighborhood size U = 212 voxels. (c) Neighborhood size U = 312 voxels.

Fig. 10: Comparison of different neighborhood sizes in the CHIMERA flow. Here, the flow is shown in the optimal reference frame. The dominant
structures are already present at small neighborhoods (left). By increasing the neighborhood size (middle and right), the vortices become clearer.

Optimal frame Vortex extraction
Data set Figure Galilean Objective Galilean Objective Grid Resolution

2D

ELLIPTIC BEADS Fig. 3 0.97 sec 40.47 sec 172.4 sec 0.99 sec 128×128×256
2D CYLINDER Fig. 4 19.68 sec 274.6 sec 607.8 sec 15.38 sec 640×80×1501
BOUSSINESQ Fig. 5 21.59 sec 300.4 sec 433.1 sec 440.0 sec 600×200×667
CHIMERA Fig. 6 4.20 sec 153.2 sec 138.7 sec 163.7 sec 127×63×2000

3D
ROTATING 3D CENTER Fig. 7 0.23 sec 1.83 min 0.26 sec 4.6 hrs 64×64×64
SQUARE CYLINDER Fig. 8 0.65 sec 3.78 min 1.92 sec 20.75 hrs 192×64×48
BUOYANCY Fig. 9 0.35 sec 1.42 min 0.21 sec 11.9 hrs 47×95×47

Table 1: Computation time of the optimal frame and extraction time of vortex corelines, using the former Galilean invariant approach [25] and our
more general optimal reference frame selection. In 2D, we list the extraction time for the entire space-time domain and in 3D, the extraction time
for a single time step is reported. The computation of the optimal reference frame is linear in the grid resolution and the extraction of the vortex
corelines is output-sensitive, i.e., the runtime scales with the number of features.

in Eq. (24) always has a unique solution, unless the underlying vector
field u(x, t) is either linear or rotationally-symmetric. The linear case
is irrelevant on numerical data and the perfect rotational symmetry is
structurally unstable and unlikely to occur in practice. In the analytical
case in Eq. (56), we added a small cubic term to each component in
order to make the system solvable.

6.10.2 Duplicate Roots in Bezier Subdivision
Similar to subdivision-based approaches for critical point search [19],
roots will numerically appear multiple times, which requires a removal
of duplicate solutions. Thus, we maintain a list of already found solu-
tions and reject roots if they are too close to previously found ones.

6.10.3 Practical Concerns
As shown in Section 6.9, the generality and flexibility to adapt to any
smooth rotation and translation of the reference frame, increases the
computation time especially in 3D by orders of magnitude. This step,
however, is necessary in case vortices are performing more complex
movements than mere equal-speed translations. With our approach,
users can favor quality (and correctness) over speed. For a wider
adaption in practical workflows, we would like to study other 6D PV
extraction approaches in the future, since this is currently the bottle-
neck. For instance, particle-based feature extractors have recently been
discussed by Kindlmann et al. [41], which could be extended to 6D.

7 CONCLUSIONS

In this paper, we presented the first objective vortex coreline extractor
for the tracking of inertial particles, i.e., particles with a finite mass.
The method is based on the observation that features in time-dependent
flows are best extracted in reference frames, in which the flow ap-
pears steady [22, 43, 53]. Starting from the derivation of the reference
frame transformation, we observed that the temporal derivative can be
minimized via a linear optimization. The dependence on the particle
velocity can be resolved, when considering the vortex criteria in the
optimal frame, which ultimately leads to a 2D critical point search for
underlying 2D flows and a 6D parallel vectors operation for underlying
3D flows. By using the 6D PV fields, we described a Bezier-based
subdivision algorithm that extracts the inertial vortex corelines of 3D

flows. At the moment, the 6D parallel vectors operation is quite ex-
pensive, which is why we would like to investigate faster extraction
approaches in the future. Despite the higher computation time, the ex-
traction quality is superior compared to the Galilean invariant method
and the technique is generally more flexible and able to extract vortices
of inertial particles moving on any smooth rotating or translating path.
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A GALILEAN INVARIANCE

Studying special cases with known solution gives evidence for the
correctness of a generalized method. In the following, we analyze
our solution for Galilean transformations, for which inertial vortex
corelines were studied by Günther and Theisel [25]. For the Galilean
invariance case, we have Q = I, Ṡ = S̈ =

...
S = 0n×n and d̈ =

...
d = 0.

This gives for Eq. (18) and Eq. (20):

ũ∗ =
(

v+ ḋ
u−v

r +g

)
(57)

ũ∗t =

(
0

1
r (ut −Jḋ)

)
(58)

Setting ũ∗t = 0 gives ḋ = J−1ut =−f, cf. Günther [20]. By inserting
this into Eq. (57), we obtain:

ũ∗ = 0 for u− f+ rg = 0. (59)

which is the vortex criterion that was reported by Günther and
Theisel [25]. Thus, our general method includes Galilean invariance as
a special case.
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