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Abstract

We present a deep generative model that learns disentangled static and dynamic repre-
sentations of data from unordered input. Our approach exploits regularities in sequential
data that exist regardless of the order in which the data is viewed. The result of our fac-
torized graphical model is a well-organized and coherent latent space for data dynamics.
We demonstrate our method on several synthetic dynamic datasets and real video data
featuring various facial expressions and head poses.

1. Introduction

Unsupervised learning of disentangled representations is gaining interest as a new paradigm
for data analysis. In the context of video, this is usually framed as learning two separate
representations: one that varies with time and one that does not. In this work we propose a
deep generative model to learn this type of disentangled representation with an approximate
variational posterior factorized into two parts to capture both static and dynamic informa-
tion. Contrary to existing methods that mostly rely on recurrent architectures, our model
uses only random pairwise comparisons of observations to infer information common across
the data. Our model also includes a flexible prior that learns a distribution of the dynamic
part given the static features. As a result, our model can sample this low-dimensional latent
space to synthesize new unseen combinations of frames.

2. The Model

Let x1:T = (x1, . . . ,xT ) be a data sequence of length T and p (x1:T ) its corresponding
probability distribution. We assume that each sequence x1:T is generated from a random
process involving latent variables f and z1:T . The generation process, as illustrated in
Figure (1a), can be explained as follows: (i) a vector f is drawn from the prior distribution
pθ (f), (ii) T i.i.d. latent variables z1:T are drawn from the sequence-dependent but time-
independent conditional distribution pθ (z | f), (iii) T i.i.d. observed variables x1:T are drawn
from the conditional distribution pθ (x | z, f).
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(a) generator (b) encoder

Figure 1: Graphical Models Figure 2: Model visualization

Generative Model: The generative model that describes the generation process above
is given by

pθ (x1:T , f , z1:T ) = pθ (f)

T∏
t=1

pθ (xt | f , zt) pθ (zt | f) ,

where f and zt are the latent variables that contain the static and dynamic information of
each element, respectively. The parameters of the generative model are denoted as θ, and
the RHS terms are formulated as follows:

pθ (f) = N (f | 0,1) ,

pθ (z | f) = N
(
z | hµz (f) , diag

(
hσ2

z
(f)
))

pθ (x | f , z) = Berp (x | hx (f , z)) ,

where pθ (f) is a standard normal distribution and pθ (z | f) is a multivariate normal distri-
bution, parameterized by two neural networks hµz and hσ2

z
. The likelihood pθ (x | f , z) is a

Bernoulli distribution parameterized by a neural network hx. Experimentally, this leads to
sharper results than using a Normal distribution.

Inference Model: To overcome the problem of intractable inference with the true pos-
terior, we define an approximate inference model, qφ (f , z1:T | x1:T ) . We train the generative
model within the VAE framework proposed by Kingma and Welling (2013).

To successfully separate the static from the dynamic information, the model needs to
know which information is common among x1:T . While a sequence could be arbitrary long,
we randomly sample N frames, xS = (xs1 , . . . , xsN ) , from the sequence, whose pairwise
comparison helps us compute the encoding for the static information f .

We now consider the factorized inference model as depicted in Figure (1b):

qφ (f , zs1:N |xS) = qφ (f | xS)

N∏
i=1

qφ (zsi | f ,xsi)

qφ (f | xS) = N
(
f | gµf (xS) ,diag

(
gσ2

f
(xS)

))
qφ (z | f ,x) = N

(
z | gµz (f ,x) , diag

(
gσ2

z
(f ,x)

))
,
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Figure 3: Visualizations of learned dynamic data manifold of the two-dimensional latent
space z for the MMNIST and Sprite dataset.

where the posteriors over f and z are multivariate normal distributions parameterized by
neural networks gµz (f ,x) and gσ2

z
(f ,x). The inference model parameters are denoted by φ.

In the inference model q (f | xS) we learn the static information of xS . We achieve this
by using the same convolutional layer for every concatenated pair of frames

(
xsj ,xsi

)
∈ xS .

Through this architecture, the encoder learns only the common information of frames xS .1

Learning: The variational lower bound for our model is given by

L = Eqφ(f | xS)

[∑
x∈xS

Eqφ(z | f ,x) [log pθ (x | f , z)−DKL (qφ (z | f ,x) || pθ (z | f))]

]
−DKL (qφ (f | xS) || pθ (f)) ,

which we optimize with respect to the variational parameters θ and φ.

3. Related Work

Unsupervised learning of disentangled representations can be related to modeling context
or hierarchical structure in datasets. In particular, our approach invites comparison to
the “neural statistician” of Edwards and Storkey (2016), whose context variable closely
corresponds to our static encoding, although our model has a different dependence structure.

On sequential data, Hsu et al. (2017) propose a factorized hierarchical variational auto-
encoder using a lookup table for different means, while Li and Mandt (2018) condition a
component of the factorized prior on the full ordered sequence. Denton and Birodkar (2017)
use an adversarial loss to factor the latent representation of a video frame in a stationary
and temporally varying component. Tulyakov et al. (2017) introduce a GAN that produces
video clips by sequentially decoding a sample vector that consists of two parts: a sample
from the motion subspace and a sample from a content subspace. In video generation, other
directions can also be explored by decomposing the learned representation into deterministic
and stochastic (Denton and Fergus (2018)).

1. For more details see Appendix Figure (5).
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4. Experiments

We evaluate our model on two synthetic datasets Sprites (Li and Mandt (2018)) and Moving
MNIST (Srivastava et al. (2015)), and a real one, Aff-Wild dataset (Kollias et al. (2018)).
The detailed description of the preprocessing on these datasets is provided in appendix.

z1

z 2

z1

z 2

(a) AFF-Wild Dataset

0 10 20 30 40 50
time

z 1

(b) Encoded Video Sequence

Figure 4: (a) Visualizations of learned dynamic data manifold of the two-dimensional latent
space z for the AFF-Wild dataset (b) Plot of the first dimension of the encoded dynamics
of video frames for a single sequence with some of the corresponding frames.

Qualitative evaluation For all models in this section we use N = 3 frames and a
batch size of 120. We set the dimension of the latent space z for the dynamic information
to 2. We used ADAM with learning rate 1e−4 to optimize the variational lower bound L.
To show the learned dynamics of the sequences of the datasets, we fix f and visualize the
decoded samples from the grid in the latent space z (Fig. 3). In the case of the MMNIST,
the digits and style of the handwritten numbers are consistent over the spanned space. The
encoded dynamic can be interpreted as the position and orientation of the digits. Similar
observation holds for the sprites dataset, but this time z encode the pose of the character.
In both cases we can note the coherence of the dynamic space between different identities.

Application: Even with just two dimensions, the latent space z captures the dynamics
of faces well, suggesting that it can be used for representing and analyzing expressions in
an unsupervised way. To illustrate this concept, we plot one of the dynamic components
of a sequence (Figure 4b). A naive analysis of this dynamic plot can already extract some
meaningful facial expressions from a specific person. In this specific example, expressions
we would call smiling and astonished.

5. Discussion

In this work, we introduced a deep generative model that effectively learns disentangled
static and dynamic representations from data without temporal ordering. The ability to
learn from unordered data is important as one can take advantage of the combinatorics of
randomly choosing pairwise comparisons, to train models on small datasets. While in the
current model the same frames are used to compute both the dynamic and static encodings,
an interesting subject for future work would be to see if defining a distinct set of frames for
the dynamic part would lead to a better separation.
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Appendix A. Details of experimental setup

Moving MNIST: We downloaded the public available preprocessed dataset from their
website 2. It consists of sequences of length 20 where each frame is of size 64 × 64 × 1.
For the model we learned on the MMNIST dataset, we set the dimension for the static
information f to 64 and trained it for 60k iterations.

Sprites: To create this dataset, we followed the same procedure as described in Li and
Mandt (2018). We downloaded the available sheets from the github-repo 3 and chose 4
attributes (skin color, shirt, legs and hair-color) to define a unique identity. For each of this
attributes we selected 6 different appearances which makes in total 64 = 1296 different com-
binations of identities. Although, instead of using a single instance of an action sequence,
we used the whole sheet which consists of 178 different poses. The size of a single image is
64 × 64. For the Sprite dataset we increased the dimensions for the latent space f to 256
and trained it for 43k iterations.

Aff-Wild: The real world dataset is a preprocessed and normalized version of the Aff-
Wild dataset Kollias et al. (2018). The dataset consists of 252 sequences, of length between
20 and 450 frames. Instead of using the whole video frame, we cropped the face and resized
it to a size of 64× 64.

Appendix B. Details of the encoder for the static latent variable model

Figure 5: Visualization of the encoder for the static latent variable model

2. http://www.cs.toronto.edu/~nitish/unsupervised_video/
3. https://github.com/jrconway3/Universal-LPC-spritesheet
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Appendix C. Network Architecture

Conv : xsi → hsi
{ conv2d: kernel: 4x4, filters: 256, stride: 2x2, activation: leaky ReLU }
{ conv2d: kernel: 4x4, filters: 256, stride: 2x2, activation: leaky ReLU }
{ conv2d: kernel: 4x4, filters: 256, stride: 2x2, activation: leaky ReLU }
{ conv2d: kernel: 4x4, filters: 256, stride: 2x2, activation: leaky ReLU }

ConvC : concat
(
[hsi ,hsj ]

)
→ hsi,j

{ conv2d: kernel: 3x3, filters: 512, stride: 1x1, activation: ReLU }

ConvF : concat
(
[hs1,2 ,hs1,3 ,hs2,3 ]

)
→ [µf , σ2f ]

{ conv2d: kernel: 3x3, filters: 512, stride: 1x1, activation: ReLU }
{ dense: units: 512, activation: ReLU }
{ dense: units: 1024, activation: None }

qφ (zsi | . . . ): concat ([f ,hsi ]) → [µz, σ
2
z ]

{ dense: units: 512, activation: ReLU }
{ dense: units: 512, activation: ReLU }
{ dense: units: 4, activation: None }

pθ (zsi | f): f → [µz, σ
2
z ]

{ dense: units: 512, activation: ReLU }
{ dense: units: 512, activation: ReLU }
{ dense: units: 4, activation: None }

Deconv: concat ([f , zsi ]) → x̃si
{ deconv2d: kernel: 4x4, filters: 256, stride: 2x2, activation: leaky ReLU }
{ deconv2d: kernel: 4x4, filters: 256, stride: 2x2, activation: leaky ReLU }
{ deconv2d: kernel: 4x4, filters: 256, stride: 2x2, activation: leaky ReLU }
{ deconv2d: kernel: 4x4, filters: 3, stride: 2x2, activation: None }
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