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Figure 1: Our coordinated visualizations of inertial particle motion give insights into size-dependent separation, clustering and attraction.
The left image shows the individual particle trajectories of a continuous range of differently-sized particles in space-time, which can become
cluttered. Thus, the second visualization displays the trajectory density, which reveals clustering regions and easier conveys an impression of
the general motion. The trajectories of differently-sized particles are clearly separated in the third view. The motion of inertial particles is
governed by a size-dependent attracting manifold. The last view focuses on a selection of trajectories and displays for each the distance to the
attracting manifold by connecting the trajectories to the closest curve on the manifold. As shown here, heavy particles generally converge
slower due to their momentum and inertia. Here, in the BORROMEAN flow with dp = 100µm (•), dp = 200µm (•) and dp = 300µm (•).

Abstract
In many scientific disciplines, the motion of finite-sized objects in fluid flows plays an important role, such as in brownout
engineering, sediment transport, oceanology or meteorology. These finite-sized objects are called inertial particles and, in
contrast to traditional tracer particles, their motion depends on their current position, their own particle velocity, the time and
their size. Thus, the visualization of their motion becomes a high-dimensional problem that entails computational and perceptual
challenges. So far, no visualization explored and visualized the particle trajectories under variation of all seeding parameters. In
this paper, we propose three coordinated views that visualize the different aspects of the high-dimensional space in which the
particles live. We visualize the evolution of particles over time, showing that particles travel different distances in the same time,
depending on their size. The second view provides a clear illustration of the trajectories of different particle sizes and allows
the user to easily identify differences due to particle size. Finally, we embed the trajectories in the space-velocity domain and
visualize their distance to an attracting manifold using ribbons. In all views, we support interactive linking and brushing, and
provide abstraction through density volumes that are shown by direct volume rendering and isosurface slabs. Using our method,
users gain deeper insights into the dynamics of inertial particles in 2D fluids, including size-dependent separation, preferential
clustering and attraction. We demonstrate the effectiveness of our method in multiple steady and unsteady 2D flows.

This is the authors preprint. The definitive version is available at http://diglib.eg.org/ and http://onlinelibrary.wiley.com/.

1. Introduction

Many natural physical phenomena can be described by means of
vector fields, such as the motion of gases and liquids. In flow vi-

sualization, the motion of a fluid is typically assessed by the ob-
servation of massless particles, which follow the flow perfectly
tangential [MLP∗10]. However, in many scientific disciplines, not
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the fluid itself is of interest, but the motion of finite-sized objects
immersed therein. These finite-sized objects are called inertial par-
ticles, which are investigated in engineering for safety concerns
during helicopter take-off and landing [SGL10, SBL11, KGRK14],
in automotive to estimate the soiling of cars before manufactur-
ing [RSBE01], in biology for the dynamics of plankton transport
during jellyfish feeding [PD09, SPH11], in meteorology for the
study of sediment transport in desertification [SL99], or in physics
for the calculation of spacecraft trajectories [SHT11]. While the
motion of a massless particle is governed by a first-order ODE,
the motion of a finite-sized object is described by a second-order
ODE. From a physical point of view, the second-order ODE predicts
both the position and velocity of an inertial particle (or position and
momentum). Both combined make the analysis of particle motion
a difficult high-dimensional problem, which introduces computa-
tional and perceptional challenges. For example, the current state
of an inertial particle in a steady 2D flow is described as a 4D
point, comprising not only a position (2D), but also a velocity (2D).
The set of all possible states is called the phase space, which ad-
ditionally depends on model-specific parameters, such as the size
of the inertial particles. Visualizing the evolution of particles in the
high-dimensional phase space is the key to understand, predict and
compare trajectories. The trajectory of an inertial particle depends
on multiple seeding parameters: the initial position, the initial ve-
locity, and the particle size. In the recent visualization literature,
the seeding parameters have always been restricted, assuming a
constant initial velocity [GKKT13, GT15], homogeneous particles
of the same size [GT14, GG17] or both [GT16c, GT17].

To better understand and compare inertial particle motion in
steady and unsteady 2D flows, we lift this limitation. Our goal is
to visualize trajectories for varying seed positions, seed velocities
and heterogeneous mixtures of differently-sized inertial particles.
Simply visualizing all trajectories produces significant visual clut-
ter and thus, there are several perceptual challenges to overcome.
First, the domain in which inertial particles live is high-dimensional.
In previous work [GT16a, SJJ∗17], the entire space-velocity do-
main was visualized (for one particle size) using multi-dimensional
stacking, regardless of whether particles could actually reach every
location. For inertial particles in fluid flows, however, the phase
space is sparsely populated [GT16c], since particles are attracted by
a manifold [HS08]. Further, in many practical examples, such an
in brownout during helicopter landings [SGL10, SBL11, KGRK14],
inertial particles initially rest in a sediment bed, i.e., the range of
initial positions and initial velocities is limited to a small subset of
the domain. Both properties combined reduce the dimensionality
problem considerably and pave the path towards more organized
illustrations. In this paper, we propose a combination of three co-
ordinated views that interactively visualize different aspects of the
high-dimensional phase space, including the evolution over time, a
clear comparison for different particle sizes and the connection to
the attracting manifold. Fig. 1 gives an example: In each of the three
views, we couple the 2D space with a different third dimension:
time, velocity magnitude and particle size. We utilize several key
concepts of visualization, such as abstraction in form of density
volumes to obtain overviews, linking and brushing between the coor-
dinated views and a highlighting of focus regions that are embedded
in their surrounding context. Using our visualization tool, we gain

insights into multiple inertial fluid dynamical processes, such as
the mass-dependent separation of particles, their size-dependent
clustering, the attraction and size dependence of the manifold, and
the interaction of particles and vortices. In all views, users can exam-
ine and compare the behaviour for different initial positions, initial
velocities and different particle sizes. In summary, we contribute:

• The first interactive exploration of inertial particle trajectories
that views all: varying seeding positions, seeding velocities and
heterogeneous mixtures of differently-sized particles.

• Comparisons of the particle density for various particle sizes
using direct volume rendering and isosurface slabs.

• Visualizations of inertial particles in space-time, as well as in
the space-velocity domain in which we depict the distance to the
attracting manifold using ribbons.

• A dedicated view that distinguishes the motion of discrete sets or
continuous ranges of differently-sized inertial particles.

2. Background

This section introduces into the modeling of inertial particle motion
and reviews the recent visualization work.

2.1. Inertial Particles

Inertial particles are finite-sized objects that are carried by fluids.
Let u(x, t) be a two-dimensional time-dependent vector field that
describes the motion of the underlying fluid, with x ∈ D⊆ IR2 and
t ∈ T ⊆ IR. Next, we describe the equations of motion of inertial
particles, as well as the attracting manifolds that govern their motion.

Equations of Motion. To this date, the Maxey-Riley equa-
tions [MR83, FH15] are considered to be the most accurate de-
scription for the motion of spherical finite-sized objects in fluids.
In practice, the model is often simplified, placing several assump-
tions, such as that the particles are very small, the density of the
particles is much higher than the density of the surrounding air
and that the particles do not collide and have no effect on the fluid,
cf. [SGL10, CGP∗10, PSGC11, BBC∗11, KGRK14]. Under these
assumptions, the model simplifies to the following autonomous cou-
pled first-order ODE, as described by Crowe et al. [CST98] and also
cf. Günther and Theisel [GT14]:

d
dt

x
v
t

=

 v
u(x,t)−v

r +g
1

 with

x
v
t

(0) =

x0
v0
t0

 (1)

where x0, v0 and t0 are seed position, seed velocity and seed time. In
dynamical systems, the space of all particle states (x,v, t) is called
the phase space. The time-dependent path of inertial particles is
described by tangent curves of Eq. (1). Parameter r is the particle re-
sponse time, which depends on particle diameter dp, particle density
ρp and the viscosity of the surrounding air µ:

r =
d2

p ρp

18 µ
(2)

Throughout all experiments, we set as particle density ρp the density
of dry sand, i.e., ρp = 1600kg/m3. The diameter dp was set between
40µm and 500µm and the surrounding medium was assumed to be
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Figure 2: Convergence of an inertial particle with dp = 100µm, and
seed (x0,v0) = (0,1.2) toward the attracting manifold in the space-
velocity plot. The underlying flow u(x) = 1−3x2 +2x3 is shown in
black. Note the shallow extremum of the manifold at 0.054.

air. Thus, the viscosity was set to µ = 1.532×10−5 kg/(m ·s). If not
mentioned otherwise, a gravity-free environment is assumed, i.e.,
g= (0,0)T. Since particle density ρp and air viscosity µ are constant,
we interchangeably use response time r or particle size dp to describe
the mass dependence. For simplicity, we refer to inertial particles as
light or heavy, which is common in the literature [BBC∗11,SBR16].

Attracting Manifold. The velocity term dv
dt of Eq. (1) shows that

depending on response time r and gravity g, particles strive to align
their own velocity v with the underlying flow u(x, t). This gives rise
to an asymptotic behaviour that is unique for inertial particles in
fluids and is not generally found in other second-order ODEs, such
as gravitational systems [SBHH15, SJJ∗17] or general dynamical
systems [WLG97]. Thus, for inertial particles, each point (x, t) in
space and time is associated with a fluid velocity u(x, t) and an
asymptotic inertial particle velocity w(x, t). In the phase space of
the inertial particle motion, the asymptotic inertial particle velocity
forms a slowly attracting manifold, cf. Haller and Sapsis [HS08]:

Mr = {(x,v, t) : w(x, t) ,(x, t) ∈ D×T} (3)

A first-order approximation of the asymptotic velocity of inertial
particles on the attracting manifold is:

w(x, t) = u(x, t)+ r
[

g− Du(x, t)
Dt

]
(4)

A derivation is given in Appendix A. Eq. (4) shows that the man-
ifold depends on the response time r, and that for massless parti-
cles the asymptotic velocity approaches the underlying flow, i.e.,
limr→0 w(x, t) = u(x, t). To this date, the interaction of inertial parti-
cles with the manifold has not been visualized for ranges of different
response times. A part of our visualizations is dedicated to this as-
pect of the phase space. To illustrate the concept of slowly attracting
manifolds, Fig. 2 gives a 1D example for a single inertial particle.

2.2. Related Work in Visualization

The trajectory of an inertial particle depends on its initial parameters,
i.e., seed location, seed velocity, seed time and the particle size
itself. In the following, we briefly review the visualization work and
discuss the initial parameter variations that were studied.

Roettger et al. [RSBE01] visualized particle distributions on car
surfaces to estimate their soiling. Günther et al. [GKKT13] extracted
integral curves of inertial particles, which visualize the outcome

when varying one initial parameter, with the others remaining con-
stant. Günther et al. extracted local information, including vortex
corelines [GT14] and critical points in steady flows [GT16a, GG17],
which only depend on the particle size. These structures have been
extracted everywhere in the domain, regardless of whether parti-
cles can reach the locations. Stable sets were shown by Günther
and Theisel [GT16a] with multi-dimensional stacking for variations
of both the initial position and the initial velocity. However, the
particle size was assumed to be constant throughout the domain.
For inertial particles in unsteady flow, separation is frequently stud-
ied with the finite-time Lyapunov exponent [Sha05, HY00], which
measures the separation due to a small perturbation of the seed posi-
tion [PD09, SH09]. Garaboa-Paz and Pérez-Muñuzuri [GPPMn15]
studied separation in the full phase space, and Sagristà et al. [SJJ∗17]
viewed the separation in the position and velocity subspace using
multi-dimensional stacking. They studied n-body problems and did
not observe the influence of the variation of the particle size, which
was studied by Günther and Theisel [GT15], keeping the seed ve-
locity constant. The backward integration of inertial particles is
challenging, since the attraction to the aforementioned manifold
during forward integration leads to a repelling nature during back-
ward integration, which amplifies numerical errors exponentially.
Günther and Theisel [GT16c, GT16b] proposed alternative methods
for backward integration, which they used to compute attracting
structures [GT17]. In their experiments, the initial velocity and the
particle size were kept constant. Günther and Theisel [GT16c] found
that the phase space of inertial particles is sparsely populated. For
a constant initial velocity, they visualized for discrete points in the
domain all velocities with which inertial particles pass by, showing
that velocities assemble curves. In this paper, we utilize the sparsity
and aim to visualize the particle trajectories in the phase space.

None of the above papers visualized the influence of seed po-
sitions, seed velocities, seed time and the particle size together.
Most previous work only depicted trajectories in the space-time
domain, except for the multi-dimensional stacking [GT16a, SJJ∗17].
An early illustration of the space-velocity domain for single par-
ticles was shown by Haller and Sapsis [HS08]. In this paper, we
extend the space-velocity domain and visualize the interaction with
the attracting manifold. Additionally, we propose a coordinated
space-response view to clearly separate size-dependent effects.

3. Heterogeneous Inertial Particles in Phase Space

Inertial particle motion is high-dimensional, comprising position,
velocity, time and particle size. To deal with this complexity, we pro-
pose to combine multiple coordinated views that illuminate different
aspects of the various dimensions. Next, we set the goals for the
visualization, provide a general overview and afterwards elaborate
on the individual views and the user interaction in more detail.

3.1. Goals

To obtain an effective visualization of inertial particle trajectories in
both steady and unsteady 2D flows, the visualization system should:

• Seeding (G1). Compare inertial particle trajectories for ranges
of seed positions, seed velocities and varying response time. Vi-
sualize heterogeneous mixtures of inertial particles using either
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Figure 3: Schematic illustrations of our three coordinated views. Each view maps one aspect of the inertial phase space into a 3D subspace.

a discrete number of particle sizes (which mimics experimental
setups), or a continuous spectrum of varying particle sizes.

• Temporal Evolution (G2). Compare the temporal evolution of
inertial particle trajectories and visualize how far differently-sized
particles travel in the same amount of time.

• Particle Size (G3). Effectively visualize and compare the dif-
ferences in particle trajectories among differently-sized particles.
Very often, the trajectories intersect in space, which makes the dif-
ferences difficult to see. Thus, a comparative visualization needs
to be designed that specifically supports this task.

• Phase Space (G4). Visualize inertial particle trajectories in the
high-dimensional space-velocity domain in which the particles
live, i.e., the phase space. Further, visualize the interaction of
inertial particles with the slow attracting manifold in phase space.
Show for various particle sizes how and where the trajectories
cross the manifold and how far they are away from it.

• Interactivity (G5). Allow for an interactive exploration of the
seeding parameters, as well as the visualization parameters. Inter-
activity is crucial in exploratory visualizations. Especially here,
since the space of seeding configurations is large.

To achieve these goals, we develop an interactive visualization tool
that consists of three coordinated views, each of them specifically
tailored to fulfill certain aspects of our goals. In the design of the
visualization, we follow common visualization patterns: overview
& detail, focus & context, as well as linking & brushing [Kei02].

3.2. Overview

Fig. 3 gives a schematic overview of our three coordinated views. In
the following, we briefly summarize them and afterwards elaborate
on their design in Sections 3.3–3.5.

Space-Time View. The space-time view in Fig. 3a compares the
evolution of particles over time by mapping the time to the third di-
mension. In this view, users can compare the trajectories of particles
for different ranges of initial positions, initial velocities and particle
sizes (G1), observe their temporal evolution (G2) and interactively
navigate and explore the seeding parameters (G5).

Space-Response View. Since inertial particle trajectories intersect
in space-time, the comparison of differently-sized particles can be
significantly hindered due to occlusion. The space-response view in
Fig. 3b separates the trajectories of inertial particles by their size
by mapping the particle response time to the third dimension. For
varying seeding configurations (G1), the size-dependent behaviour
of inertial particles (G3) can be explored interactively (G5).

Space-Velocity View. Finally, we use the space-velocity view in
Fig. 3c, which maps the particle’s velocity magnitude onto the third
dimension. This view visualizes the interaction of inertial parti-
cles with their corresponding size-dependent attracting manifold.
For this, we draw ribbons that connect the trajectory itself with
its projection onto the manifold, which provides deeper insights
into the attraction and interaction with the manifold in the phase
space, including manifold intersections and the convergence rate.
The seeding configurations can be explored (G1) and the motion in
the space-velocity domain (G4) is visualized interactively (G5).

3.3. Space-Time View

Our first view visualizes the inertial particle trajectories in space-
time. Formally, this view maps the position x ∈ D⊆ IR2 and time
t ∈ T ⊆ IR of each inertial particle into a 3D domain, using:

f : D×T → IR3 , with f (x, t) =
(

x
t

)
(5)

Trajectory Plot. As detail view, Fig. 4a shows the trajectories of
inertial particles that were seeded from a single seed position with
varying initial velocity. While in this example two discrete particle
sizes have been used, we also support the display of continuous
ranges of particle sizes, as shown in Fig. 1a. Same as in all remain-
ing views, the colour of the trajectories encodes the particle size.
The lines are shaded with illuminated streamline shading [ZSH96]
and drop shadows are added to improve the depth perception. To
emphasize the temporal evolution and to encode the flow direction,
we animate the trajectories over time by adjusting the line width
through a sawtooth wave. Alternatively, transparency may be used,
though this would require an order-dependent image compositing.
While the direct plotting of trajectories provides a detailed view onto
the individual particle behaviour, plotting all trajectories directly
may result in dense line sets that exhibit a significant amount of oc-
clusion, which could be reduced by opacity optimization [GTG17].

Density Plot. To obtain an overview of the flow and to encode the
line density, we progressively voxelize trajectories into a density
volume, as shown in Fig. 4b, using direct volume rendering. The
volumes are either constructed for a discrete number of particle
sizes or for a continuous range as in Fig. 1b, which is encoded by
an interactively adjusted transfer function. For one particle size, we
color-code the density and for multiple particle sizes, we color-code
the particle size. The density volume computation is similar to Ferstl
et al. [FBW16], but is deferred over multiple frames to obtain fast
interactive feedback. The progressive computation and the volume
rendering are detailed in Section 4. In addition to direct volume
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Figure 4: The four components of the space-time view, here shown
for the BORROMEAN data set for two particle sizes dp = 100µm (•)
and dp = 300µm (•), and a range of initial velocities.

rendering, we use isosurfaces, shown in Fig. 4c. Since isosurfaces
of different particle sizes may be nested and therefore occluded, we
alternatively display equidistant isosurface slabs, see Fig. 4d.

The trajectory plots and the density plots are available in all
coordinated views, as they provide a detail & overview mechanism.

3.4. Space-Response View

In the previous space-time view, trajectories of different particle
sizes may intersect and overlap, which can hinder the study of size-
dependent differences. To address this issue, we provide a space-
response view, which is dedicated to the comparison of possibly
many differently-sized particles. The view is given by a mapping of
particle position x ∈ D⊆ IR2 and response time r ∈ R⊆ IR as:

g : D×R→ IR3 , with g(x,r) =
(

x
r

)
(6)

where the response time domain R is spanned by the minimum
diameter dmin and maximum diameter dmax using the relationship
in Eq. (2). The user can choose to visualize a continuous or discrete
range of particle sizes, as well as abstractions of the trajectories in
form of density plots or a detailed view with individual trajectories.

Fig. 5 displays the space-response view for the seeding configura-
tions, used in Fig. 4. In Fig. 5a, a continuous range of differently-
sized inertial particles is displayed, and in Fig. 5b the differences
of two discrete particle sizes are shown. Since the size of inertial
particles remains constant over time, the particles move horizontally.

3.5. Space-Velocity View

The space-velocity view explores the relationship between particle
position and velocity. Formally, the view is obtained by a map from
particle position x ∈ D⊆ IR2 and particle velocity v ∈V ⊆ IR2 to a

x

y

t

(a) Continuous range of sizes dp

x

y

t

(b) Two particle sizes

Figure 5: Space-response view of the BORROMEAN data set. Left:
continuous heterogeneous mixture of inertial particles. Right: dp =
100µm (•) and dp = 300µm (•).

3D space, using the velocity magnitude as the third dimension:

h : D×V → IR3 , with h(x,v) =
(

x
|v|

)
(7)

where |v|=
√

vTv denotes the L2 norm of a vector.

Manifold. In Section 2, we determined that the motion of finite-
sized objects is heavily influenced by an attracting manifold in phase
space, cf. Eqs. (3) and (4). The strong attraction leads the particles
onto a manifold with velocity magnitude |w(x, t)|, cf. (4), and thus
towards less visual clutter. Since the attracting manifold is size-
dependent, the visualization of a range of differently-sized particles
entails several different manifold surfaces that intersect with each
other. For clarity, we visualize the manifold of only one interactively
specified particle size with a transparent surface for one time step.
In Figs. 6a and 6b inertial particle trajectories and their manifold are
shown for two different particle sizes. These views give an overview
of the manifolds and it becomes apparent that trajectories dive up
and down, oscillating around their manifold. However, comparing
distances to the manifold among multiple trajectories remains a
difficult task, especially for differently-sized particles.

Ribbons. To compare the interaction of differently-sized inertial
particles with their attracting manifold, we introduce an alternative
visualization. Projecting a particle trajectory onto its corresponding
manifold gives an offset curve. Triangulating the space between
the trajectory and its offset curve results in a ribbon that efficiently
encodes the distance to the manifold through the surface area. Since
each particle trajectory is projected onto its own manifold, hetero-
geneous mixtures of inertial particles can easily be shown together.
Moreover, in unsteady flows, particles are projected using their cur-
rent time, enabling the time-dependent exploration of the manifolds.
Fig. 6c gives an example of the ribbon visualization for two different
particle sizes. It is directly apparent that lighter particles are attracted
by the manifold faster and generally stay closer to it, as visible by
the difference in ribbon surface area. Heavier particles on the other
hand frequently oscillate around the manifold, never reaching the
manifold in places where its velocity changes quickly. The density
volume in Fig. 6d reveals the main pathways of the inertial particles.

3.6. User Interaction

Seeding. An essential aspect of the exploration is the modification
of seeding parameters. In our visualizations, users can interactively
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Figure 6: Space-velocity view of BORROMEAN data set for dp =
100µm (•) and dp = 300µm (•). First row, trajectories with their
manifold. Second row, ribbons and density volume for both sizes.

adjust the seed box, which is specified by ranges of initial positions,
initial velocities, a time range and a particle size range that are
all uniformly sampled. Other distributions that mimic real-world
scenarios in terms of sand grain distributions are imaginable as well.
The seed box is displayed in all views in orange, see for example
Fig. 3. By the specification of the seeding parameters, it is possible
to seed from a single point with a range of initial velocities and vice
versa, or with ranges of both initial position and velocity.

To specify the initial velocity, we use a velocity disc, which is
illustrated in Fig. 7. The velocity range is specified by a magnitude
range [vmin,vmax] and an angle range [αmin,αmax], which can be
areas or single points in the disc. The maximum initial velocity mag-
nitude is user-specified and is located at the border of the disc. The
selected range is highlighted in orange. If not mentioned otherwise,
we set vmin = 0, vmax = 1, αmin = 0 and αmax = 2π.

Focus & Context and Linking & Brushing. In order to focus on
specific parameter configurations without losing context of the flow
in the rest of the domain, it is possible to select certain ranges of
positions, velocities and sizes that are highlighted in the visualiza-
tion. The focus range is displayed with a magenta box. Fig. 8 shows

vmin
vmax

αmax

αmin

selected velocity range

Figure 7: Illustration of the velocity disc, which is used to select
the range of initial velocities in polar coordinates. The magnitude
range is given by [vmin, vmax] and the angle range by [αmin, αmax].
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Figure 8: Two coordinated views on the BENZENE data set. In the
center of the domain (magenta box), a focus region is applied, while
the remaining trajectories are shown semi-transparently as context.

an example of a space-time and a response-time view where only a
portion of the space is selected as focus of study, while the context is
displayed semi-transparently. Selections that are made in one view
are carried out in the other coordinated views as well, which allows
linking and brushing across all views.

4. Implementation

We calculated inertial particle trajectories by solving Eq. (1) with a
fourth-order Runge-Kutta integrator with fixed step size [PTVF96].
The trajectories are stored in two buffers: one for the trajectory
views (static) and one that is used to compute the density volumes.

Density Volumes. To compute density volumes, we extend the
method of Ferstl et al. [FBW16], who voxelized the vertices of a
fixed number of trajectories into a volume, using a certain smoothing
kernel. Since some of our paths have a low probability to be sampled,
we use Monte Carlo sampling to consider the full seeding space and
similarly rasterize the vertices of trajectories into a 3D texture with
one, two or four 32-bit float components, depending on the number
of particle sizes that are displayed. Thus, each frame the progressive
buffer is filled with new trajectories. By multiplying only the first
integration step size with a uniform random number in [0,1] (while
keeping all remaining steps constant), the vertices uniformly sample
the full integration duration, which leads to an unbiased sampling of
the complete trajectories. Distance computations between voxels and
line segments are therefore not necessary. To obtain a smooth early
solution, we similarly employ a smoothing kernel, which introduces
bias. In the spirit of progressive photon mapping [HJ09], the bias
would vanish if the smoothing kernel would shrink over time.

Volume Rendering. We employ ray marching with early ray ter-
mination for the direct volume rendering and estimate gradients for
shading using central differences. The isosurfaces are computed by
ray marching and are refined by a binary search. For an introduction
to volume rendering, we refer to Hadwiger et al. [HLSR09].

Transparency. We render semi-transparent surfaces using sub-
sampling screen-door transparency [MGvW98]. This order-
independent method approximates transparency by masking out
selected sub-samples during the 4× multi-sampling to display the
manifold and the ribbons at reduced opacity, i.e., subpixel coverage.
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Figure 9: Space-time views on the BENZENE data set for dp =
100µm (•) and dp = 500µm (•). The isosurface slabs provide a
better view on the inner nested surfaces.

5. Results

In this section, we apply our method to both steady and unsteady
2D flows and show how the proposed coordinated views provide
a deeper understanding of the inertial particle motion. The steady
flows are purely synthetic examples that exhibit complex inertial
particle dynamics. Such theoretical studies are not uncommon in the
fluid literature on inertial particles [HS08, SBR16]. Our unsteady
fluid flows, however, resemble practical scenarios and allow for a
direct interpretation of the fluid dynamical processes.

5.1. Steady Flows

Benzene Molecule. We used the central 2D slice projection of
the BENZENE data set of Zöckler et al. [ZSH96], which contains
an analytic approximation of a 3D magnetic vector potential of a
benzene molecule. Fig. 8 shows the trajectories in the space-time
and space-response view for zero initial velocity and two particle
sizes. The first view shows the strong attracting critical points in
the center of the domain, which attract light and heavy particles
alike. While light particles have a direct and short path towards
them (see lower slice Fig. 8b), heavy particles show oscillation
around the critical points. The space-response view provides an
unhindered view on the differences among the trajectories for these
two particle sizes. The oscillation of heavy particles is apparent by
the longer trajectories. Fig. 9a shows isosurfaces of the trajectory
density volumes. The nested isosurfaces of light particles become
visible with the isosurface slabs in Figs. 9b and 9c.

Borromean Rings. The BORROMEAN data set was kindly pro-
vided by Candelaresi and Brandenburg [CB11] and contains a sim-
ulation of the topological reconnection of two magnetic rings that
initially rest in the shape of interlocked Borromean rings that decay
over time. Similar to Günther and Theisel [GT16a], we selected
a slice that contains swirling and non-swirling fixed points. As al-
ready shown in Figs. 4, 5 and 6, the differences in the behaviour
for differently-sized particles are evident in this flow. Fig. 10 shows
another example of the space-time view for a continuous range of
particle sizes in two different gravity environments.

Fig. 11 shows the space-velocity view for inertial particles seeded
all across the domain. The visualizations show the influence of

100µm 300µm
diameter dp

y

t

(a) g = (0,0)T

100µm 300µm
diameter dp

y

t

(b) g = (0,0.5)T

Figure 10: Inertial particle trajectories for different gravity vectors
in the space-time view of the BORROMEAN data set. Adding gravity
exerts a pull in a certain direction. In 10b, along the positive y-axis.

x

y |v|

(a) dp = 100µm

x

y |v|

(b) dp = 300µm

Figure 11: Space-velocity view on the BORROMEAN data set for
zero initial velocity. A focus region is selected to point out the
different flow behaviour in the vicinity of an attracting critical point.

attracting critical points on differently-sized inertial particles. The
trajectories are brushed in the vicinity of the critical point. While
light particles mostly follow the flow towards the critical point,
heavy particles are carried outwards due to their own momentum
and inertia. This behaviour is reflected in the type of the critical
point [GG17], which may vary dependent on the particle size.

Trefoil Knot. Candelaresi and Brandenburg [CB11] provided the
TREFOIL KNOT data set, which is another 3D magnetic field. This
simulation contains three interlocked magnetic rings that decay over
time. Same as Günther and Theisel [GT16a], we selected a 2D
slice that shows swirling patterns. Fig. 12a gives an overview of the
general flow motion in this data set. By subtly fading in the density
volumes, the locations of the attracting critical points become visible
as vertical structures. By releasing waves of differently-sized inertial
particles at the same time with zero velocity, it becomes apparent
that light particles approach the speed of the underlying flow faster
and therefore travel farther distances in the same time. In Fig. 12b,
a subset of the trajectories is selected and viewed in the space-
response view to shed light onto the size-dependent differences. For
the three released particle sizes, the differences are considerable due
to the swirling motion that carries the inertial particles differently
far outwards, which leads the lightest and heaviest particles into
different parts of the domain. In Figs. 12c and 12d, the particles
are released near one of the critical points with a different initial
velocity. When releasing particles from rest (v0 = 0), the swirling
motion around a critical point becomes apparent. When varying the
initial velocity in the range α ∈ [−π/2,0] and |v| ∈ [0.67,1] heavy
particles are carried away from the critical point due to their inertia.
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Figure 12: Study of swirling motion in the TREFOIL KNOT data set
with differently-sized inertial particles and initial velocities. Here,
for dp = 100µm (•), dp = 200µm (•) and dp = 300µm (•).

5.2. Unsteady Flows

Double Gyre. The DOUBLE GYRE is a commonly used benchmark
data sets for separating structures in unsteady 2D flows [SLM05]. In
the context of inertial particles, Sudharsan et al. [SBR16] used it to
study preferential particle settling, i.e., the size-dependent clustering
after advection for a certain time. The time-periodic flow is defined
in the domain D×T = [0, 2]× [0, 1]× [0, 10] as

u(x, y, t) =
(

−0.1π sin( f (x, t)π) cos(yπ)

0.1π cos( f (x, t)π) sin(yπ) d
dx f (x, t)

)
(8)

with f (x, t) = a(t)x2 +b(t)x and a(t) = 0.25sin(t π/5) and b(t) =
1−0.5sin(t π/5).

Figs. 13a and 13b show the separation of inertial particles with
different sizes for particles released both from rest (v0 = 0) and
with an initial velocity in the range α ∈ [−π/2,0] and |v| ∈ [0.67,1].
Particles are seeded in the left of the two counter-rotating vortices.
When seeding from rest, most particles remain in the left vortex.
However, when seeding with a velocity that pushes the particles
towards the right vortex, the space-time view shows that heavy
particles pass the separating material line of the underlying flow,
leading the particles into the right half of the domain, whereas light
particles quickly realign with the flow, keeping most of them in
the left vortex. The difference in the trajectories is clearly visible
without occlusions in the space-response views in Figs. 13c and 13d.

Boussinesq Flow. The BOUSSINESQ flow contains a convection
simulation around a heated cylinder. The flow was simulated with
Gerris Flow solver [Pop04] using the Boussinesq approximation.
Since the motion in this flow is driven by the small heated cylinder,
a fast jet stream occurs behind it. In Fig. 14, we released differently-
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(b) Space-time view, v0 6= 0

x

y

r

(c) Space-response view, v0 = 0
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(d) Space-response view, v0 6= 0

Figure 13: Coordinated views of the DOUBLE GYRE data set for dif-
ferent initial velocities, here dp = 100µm (•) and dp = 500µm (•).
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Figure 14: Trapping of inertial particles in the BOUSSINESQ flow.
Here, for dp = 40µm (•) and dp = 300µm (•).

sized inertial particles in the wake of the cylinder, i.e., directly in the
jet core. Fig. 14a shows four different sizes of inertial particles in
the space-response view. It can be seen very well that light particles
follow the vortices, whereas heavy particles are less affected by
such low-frequent flow features due to their inertia. In Fig. 14b, a
particle animation is viewed from the top in the space-velocity view,
which gives an impression of the rotating motion of light inertial
particles. We refer to the accompanying video for an animation.
Fig. 14c displays the attracting manifold of light particles, revealing
an interesting behavior: Light particles are dragged during their
rotating motion back into the jet core. This results in a periodic
increase and decrease of the particle velocity, which is apparent in
the space-velocity view. The attracting manifold shows the spatial
regions in which particles accelerate. Heavy particles also accelerate
in the jet, but they are carried outward into the slower regime.

Cylinder Flow. The CYLINDER flow was also simulated with Ger-
ris Flow solver [Pop04] and contains a von-Kármán vortex street
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Figure 15: Inertial particles in the CYLINDER flow reveal the char-
acteristic size-dependent preferential particle settling. Here with
dp = 40µm (•) and dp = 300µm (•).

in the wake of an obstacle. The viscous fluid with a Reynolds num-
ber of 160 was injected from the left into a channel bounded by
solid walls with a slip boundary condition. Taking a look at the
temporal evolution of particles in Fig. 15a reveals that light parti-
cles are trapped inside vortices, while heavy particles are pushed
outward. This behaviour is also visible by the density volumes in
Fig. 15b or the animated trajectories in the space-response view in
Fig. 15c. These observations are consistent with previous studies
and are an aspect of preferential particle settling [SBR16, GT17].
The two slowly attracting manifolds in Fig. 15d intersect and exhibit
the symmetry of the vortices that drive the particle clustering. There
is not only an inertia-dependent offset between manifolds, heavier
particles also exhibit stronger variations and thus accelerations.

5.3. Performance

For all performance measurements, we used an Intel Core i7-4790K
CPU with 4 GHz and 32 GB RAM, and an NVIDIA Quadro P6000
GPU. The image resolution was set to 1300×1000 pixels. Table 1
reports a summary of the computation timings for each element of
our three coordinated views for all data sets. We used a continuous
range of particle sizes and thus one density volume. Shading was
enabled for the rendering of the volumes and we disabled the anima-
tions in the trajectory views. Across all scenes, we obtained real-time
frame rates. The volume rendering is currently the bottleneck.

For multiple discrete numbers of particle sizes, we compute the
density for each size separately and store it in a two-component

1 frame

(a) 7.6ms

10 frame

(b) 75ms

30 frame

(c) 224ms

80 frame

(d) 603ms (e) Reference

Figure 16: Close-up of the progressive computation of a density
volume. The result converges quickly to the reference image.

texture (2 volumes) or a four-component texture (3 and 4 vol-
umes). Note that three-component textures do not support hardware-
accelerated texture filters, thus we fall back to four-component
textures. The increasing rendering and computation time are shown
in Table 2. Fig. 16 gives a close-up of the progressive density vol-
ume computation in the TREFOIL KNOT data set, showing that high
quality results are reached after a few hundred milliseconds.

5.4. Parameters

By default, we use 1000 trajectories for both the static and the
progressive line set. In the trajectory view, the choice is a matter of
acceptable occlusion. In the progressive computation, it is a trade-
off between performance and quality. With frameworks such as
the one by Frey et al. [FSME14], the parameter could be selected
automatically to adhere to a certain computation time budget. We
select as resolution of the density volume the resolution of the
underlying flow domain, which is in the order of 2–30 million voxels.
The smoothing kernel during the density volume computation has a
constant size of four voxels by default. A progressively shrinking
kernel would yield sharper structures with vanishing bias [HJ09].

5.5. Discussion

Limitations. Rendering multiple size-dependent manifolds can
lead to clutter in the space-velocity view. Thus, we show only one
manifold for a user-specified size, and introduced ribbons. In this
paper, we only focused on forward-integrated particles. A backward
integration with source inversion approaches [GT16c,GT16b] would
be interesting, though at the same time numerically and computa-
tionally more challenging. Currently, we support only up to four
density volumes, as they are encoded in a single texture. For more
than four density volumes, multiple textures could be used.

Three-Dimensional Flows. We used the third dimension to encode
particle properties, namely time, velocity magnitude and response
time. For 3D flows, other mapping strategies are required. The
derivation of the slowly attracting manifold also holds in 3D, leading
inertial particles in the limit to a certain velocity, cf. Eq. (4).

Ensemble Visualization. Inertial particles can be considered as a
special case of ensembles, in which the ensemble members (the
high-dimensional vector fields in which the particles live) are or-
dered by the response time. Obermaier and Joy [OJ14] classified
ensemble visualizations into location-based and feature-based tech-
niques. While the location-based methods display the vector vari-
ability [PWB∗09, JDKW15], feature-based techniques show the
variation of derived properties such as isolines or tangent curves
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Space-time view Space-response view Space-velocity view
Figure Data set T V I S T V I S T V I S M R
4, 5, 6, 10 BORROMEAN 1.30 9.5 6.9 7.1 1.55 9.5 3.4 3.5 1.09 11.6 10.5 11.1 0.03 0.62
12 TREFOIL KNOT 1.65 9.3 6.2 6.7 2.10 9.6 6.5 6.9 1.40 9.6 6.2 6.5 0.04 1.90
8, 9 BENZENE 0.19 5.3 2.7 3.4 0.14 5.5 3.2 3.9 0.33 5.5 3.4 3.6 0.07 3.62
13 DOUBLE GYRE 0.34 4.1 2.3 2.4 0.14 5.6 3.6 3.9 0.18 11.2 6.9 7.3 0.04 3.41
14 BOUSSINESQ 1.38 5.2 4.6 4.9 0.35 5.4 4.8 5.1 1.12 8.0 6.5 7.0 0.40 0.65
15 CYLINDER 1.32 6.1 5.6 5.8 1.25 6.0 3.9 4.8 1.25 9.1 6.8 7.2 0.22 2.70

Table 1: Computation time in ms of trajectories (T), density volumes (V), isosurfaces (I), isosurface slabs (S), manifolds (M), and ribbons (R)
in all views. The bottleneck is in all cases the computation of the density volumes, comprising trajectory tracing, voxelization, and rendering.

Num. volumes Space-time Space-response Space-velocity
1 9.3 9.6 4.1
2 11.9 10.3 12.5

3 or 4 21.0 20.2 21.5
Table 2: Computation time (in ms) for different number of volumes
and views in the TREFOIL KNOT data set. We use RGBA textures for
both 3 and 4 volumes, since RGB textures do not support filtering.

[BFMW12, WMK13, MWK14, FBW16]. In the future, we focus on
trajectory distributions from the perspective of ensemble visualiza-
tion, as this augments the density plots with more information.

6. Conclusions

The motion of inertial particles is a high-dimensional problem, as
it involves position, velocity, time and particle size. In this paper,
we proposed a novel method to visualize the phase space of inertial
particles under all possible seeding configurations. Our three coor-
dinated views allow the user to explore the domains interactively
and to release particles of different sizes and with different initial
conditions. Each view studies different aspects, such as the temporal
evolution, the size-dependent behaviour and the interaction with the
slow attracting manifold. The first view is dedicated to the temporal
evolution, providing detailed observations of individual trajectories
and abstraction through the progressive computation of density vol-
umes that are viewed with direct volume rendering and isosurfaces.
The second view provides a clear separation by the particle size,
which greatly helps to explore the size-dependent differences in
heterogeneous mixtures of particles. The last view places the trajec-
tories in a space-velocity domain and shows the attracting manifold
as context. Since the manifold is particle size-dependent, we provide
ribbons that show the deviation from the manifold locally for each
particle. In the future, we would like to study other equations of
motion, as well as two-way coupled inertial particle systems, in
which the underlying flow itself is influenced by the particles.

Appendix A: Slow Attracting Manifold

In the following, we derive the slow attracting manifold. The deriva-
tion closely follows the more general version of Haller and Sap-
sis [HS08]. To study the manifold, we first rewrite the equation of
motion from Eq. (1). For this, we introduce the small parameter
ε = r� 1, which is used to scale the time φ = t0 + ετ of the ODE:

d
dτ

x
v
φ

=

 εv
u(x,φ)−v+ εg

ε

 (9)

In Eq. (9), we see that x now changes slowly (scaled with ε), whereas
v changes fast. This rescaling is common in singular perturbation
theory and serves two purposes: First, it implicitly scales down the
step size dφ

dτ
= ε for small particles, since in Eq. (1) the v component

would otherwise go towards infinite speed for r� 1. Second, it
completely removes any division by ε.

Fenichel [Fen79] showed that autonomous ODEs of the form in
Eq. (9) contain attracting manifolds Mε that depend on ε and that
their velocity w(x,φ) can be described by a Taylor expansion:

Mε = {(x,w,φ) : w(x,φ) ,(x,φ) ∈ D×T} (10)

w(x,φ) = u(x,φ)+
k

∑
i=1

ε
i ui(x,φ)+O(εk+1) (11)

where ui are yet unknown vector fields. Eq. (11) contains the veloc-
ity in the manifold, which we differentiate to get the acceleration:

dw
dτ

=
du
dx

dx
dτ

+
du
dφ

dφ

dτ
+

k

∑
i=1

ε
i
[

dui

dx
dx
dτ

+
dui

dφ

dφ

dτ

]
+O(εk+1)

= ε
Du
Dτ

+
k

∑
i=1

ε
i+1 Dui

Dτ
+O(εk+1) (12)

with the velocity of the underlying flow dx
dτ

= εu(x, t) and recalling
dφ

dτ
= ε. Eq. (9) gives us the acceleration of an inertial particle,

and Eq. (12) is the acceleration of the attracting manifold. The
two are equal when the inertial particle reaches the manifold. The
acceleration of the inertial particle on the manifold is found by
inserting Eq. (11) as v into the velocity component of Eq. (9):

dv
dτ |Mε

= εg−
k

∑
i=1

ε
i ui +O(εk+1) (13)

By setting dv
dτ |Mε

= dw
dτ

using Eqs. (12) and (13) we obtain:

εg−
k

∑
i=1

ε
i ui = ε

Du
Dτ

+
k+1

∑
i=2

ε
i Dui−1

Dτ
(14)

Solving for ui by comparing terms with equal powers of ε in Eq. (14)
and passing back to the original time t, we determine the ui that
define the attracting manifold, with k > 1:

u1(x, t) = g− Du(x, t)
Dt

, uk(x, t) =−Duk−1(x, t)
Dt

(15)

By inserting Eq. (15) into Eq. (11), a first-order approximation of
the asymptotic inertial particle motion on the slow manifold is:

w(x, t) = u(x, t)+ εu1(x, t) = u(x, t)+ ε

[
g− Du(x, t)

Dt

]
(16)
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