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Figure 1: Our method takes a raster image (left) as input, and produces a semantic vectorization of this image by first segmenting it into
a likely configuration of paths given the global context of the image, and vectorizing each path separately. To do this, it leverages a neural
network trained to predict inter-pixel path similarities and overlap regions, which allows us to extract the set of vector paths shown on the
right.

Abstract
In this work, we present a method to vectorize raster images of line art. Inverting the rasterization procedure is inherently
ill-conditioned, as there exist many possible vector images that could yield the same raster image. However, not all of these
vector images are equally useful to the user, especially if performing further edits is desired. We therefore define the problem
of computing an instance segmentation of the most likely set of paths that could have created the raster image. Once the
segmentation is computed, we use existing vectorization approaches to vectorize each path, and then combine all paths into the
final output vector image. To determine which set of paths is most likely, we train a pair of neural networks to provide semantic
clues that help resolve ambiguities at intersection and overlap regions. These predictions are made considering the full context
of the image, and are then globally combined by solving a Markov Random Field (MRF). We demonstrate the flexibility of our
method by generating results on character datasets, a synthetic random line dataset, and a dataset composed of human drawn
sketches. For all cases, our system accurately recovers paths that adhere to the semantics of the drawings.

CCS Concepts
•Computing methodologies → Image manipulation; Computational photography;

1. Introduction

Vector images have many benefits over raster images, including
resolution independence and support for higher-level editing oper-
ations. Nonetheless, most images available “in the wild” are stored
in raster format. As a result, vectorizing images has been a long
standing, important problem in computer graphics.

However, the process of converting raster images into vector im-
ages is challenging, as many possible vector configurations can lead
to the same raster image. While state-of-the-art vectorization work

is able to reconstruct visually coherent vector representations of
raster images, they often do not capture the global context of the
image. This typically produces what is known as a “vector soup”, a
collection of small vector paths that make performing any edits on
the resulting vectors very difficult. Vectorization ambiguities can-
not be solved simply by looking at low level details in the image
pixels themselves, instead they require domain-specific knowledge
about the content that is being drawn. Consider the simple example
of a cross:

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



B. Kim et al. / Semantic Segmentation for Line Drawing Vectorization Using Neural Networks

The black cross on the left could be composed of four short seg-
ments, two corners, two longer segments that cross, or a few other
possible configurations. Only by understanding how people tend to
draw crosses, can we know that the last option (two longer seg-
ments) is probably the right one. One specific challenge is that at
intersection points, a single pixel can actually belong to multiple
paths, which must be explicitly handled.

In this work, we present a method that attempts to reconstruct
a semantically plausible vectorization by learning the context of a
drawing from a database of vector images. These vector images tell
us how people create different shapes, which then act as a prior for
the rest of our method. Our approach consists of three steps. We
first train two neural networks to recognize common patterns and
global relationships between paths during vectorization. The first
predicts a spatially varying probability map that describes which
pixels are likely to belong to the same path, while the second iden-
tifies regions where multiple paths overlap. We train these networks
on databases of vector images, which provide all the supervision we
need, using their corresponding rasterized versions as input. Next,
we combine all the local predictions by defining a global energy
using an MRF, on an intersection-augmented pixel graph, which
we solve efficiently using graph cuts. This procedure yields a set
of segmented paths which we then vectorize independently using
existing tools, and combine into a final vectorized image.

While our key technical approach is applicable to any applica-
tion domain for which we can acquire a database of examples of
the underlying parts that compose the final raster image, we focus
this work specifically on line drawings, including characters and
sketches. These domains are difficult for existing segmentation and
vectorization approaches due to the lack of useful appearance in-
formation in the pen strokes.

In summary, our work makes the following contributions: We
propose the concept of semantic vectorization, where the goal is
to reconstruct a set of paths that corresponds to the most likely
set of original paths that could be used to create the raster image,
yielding a more easily editable vector representation. To do this,
we present a novel graph cut energy that globally aggregates local
predictions of neural networks to compute a per-path segmenta-
tion. Unlike most work on image segmentation, our approach can
explicitly handle intersections with multiple overlapping paths by
augmenting the pixel grid with overlap regions. Finally, we demon-
strate our method on a number of datasets, including Chinese and
Japanese fonts, where the network learns the specific stroke order,
random synthetic lines, and human drawn sketches of objects. Our
method is robust and works with fixed parameters on all examples
shown.

2. Related Work

Vectorization techniques. Existing approaches for line drawing vec-
torization often roughly follow a three-step procedure. First, an in-
put image is simplified by removing needless strokes (or adding

meaningful strokes) [BTS05, BCF∗07, OK11, LWH15, SSISI16,
SISSI17]. Second, the topological structure of the drawing is iden-
tified, which includes fitting path segment and finding junction
points at which the paths intersect [Che09, NSS∗12, JF14]. Finally,
the initial topological structure is refined by locally merging or
splitting vector primitives [NHS∗13], or by means of a global opti-
mization [BLP10]. Commercial vectorization tools include Image
Trace in Adobe Illustrator, or Potrace (also used in Inkscape), or the
Vectorizer website. As opposed to these approaches, which focus
on visual fidelity, our method focuses on extracting semantically
meaningful paths learned from data by segmenting strokes prior to
vectorization.

Recent vectorization work addresses this as well, phrasing the
topological refinement step as a global optimization. This goal at-
tempts to balancing simplicity of the reconstruction with fidelity to
the input [FLB16], under the assumption that the simplest possible
vectorization is the most likely. As opposed to this, we derive an
entirely data-driven set of prior constraints, which are learned by a
neural network. This allows us to capture higher-level information
about object that is being represented, rather than operating on low
level cues.

Segmentation techniques. The crux of our method is an instance
segmentation technique for vector paths in rasterized line drawings.
Image segmentation is a classic problem in computer graphics and
vision, and we refer the reader to a recent survey [YM12] for a full
review. One common approach is to define the problem as an en-
ergy on a MRF that includes data and smoothness terms, where the
data term enforces some appearance model while the smoothness
term enforces coherent segments. This can be solved efficiently
using graph cuts [BJ01], graph partitioning [SM00], or message-
passing with high dimensional filters [KK11]. We phrase our seg-
mentation problem using an MRF, but rather than deriving similar-
ity terms from local pixel values directly, we learn them using a
neural network.

CNNs have proven to yield state-of-the-art accuracy in a number
of applications, including semantic object segmentation [CPK∗14,
LSD15, CPK∗16]. The success of these methods is driven by large
scale, manually annotated databases, such as MS CoCo [LMB∗14],
or PASCAL VOC [EEVG∗15], which consist of collections of pho-
tographs with segmented objects, such as people and cars. These
approaches often jointly predict a segmentation mask and an ob-
jectness score based on some appearance features that are spe-
cific to individual classes [PCD15]. Instead, we rely on using every
query point on the input domain to compute neighborhood similar-
ities based on the context of other similar looking paths.

Recently, a few methods have shown promise in the task of end-
to-end trained instance segmentation [DHS15,DHL∗16,LQD∗16].
These approaches consist of local, spatially varying “objectness”
estimates, with a simple global aggregation step at the end. While
these approaches have shown promising results on photos, our
problem is fundamentally different, as unlike prior work, we are
considering a challenging case with a single class (path) whose ap-
pearance defined largely by its shape and position relative to other
paths. This means that the global relationship is crucial when un-
derstanding path structure, and our proposed MRF formulation is
key to obtaining a consistent final result. In fact, it has been shown
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that the forward pass through a CNN can be though of as an ad-
vanced type of data term [WFU16], and while these approaches
achieve very high quality results due to the learned data terms, the
lack of a principled way to introduce global smoothness constraints
means that their performance on many optimization tasks is still be-
low that of traditional optimization-based techniques.

An additional motivating factor for our proposed graph-based
solution is that we actually operation on an irregular domain. We
do this by augmenting the problem space, and solving not for a sin-
gle label at each pixel, but by first identifying overlap regions, and
solving for multiple labels at these locations by adding additional
nodes to our graph. CNN’s are not well suited to this kind of mod-
ification of the problem domain, which maps to an irregular graph
structure, however MRF solutions, in particular using graph-cut op-
timizations extend trivially to such structures.

Combining global refinement with the output of neural net-
works has been used for other tasks in segmentation, it has been
shown that by integrating a dense CRF approximation [KK11] into
a semantic segmentation network, higher fidelity results can be
achieved [CPK∗14, ZJRP∗15], especially around edge regions. Al-
ternately, an interactive approach generates object segments from
user clicks which are further refined using a traditional image seg-
mentation, with the neural network prediction serving as the data
term [XPC∗16]. Instead, our method uses the neural network to
predict the smoothness term of an atypical MRF computed over an
augmented pixel domain.

Non-photo based segmentation. Document segmentation is an
important problem, and prior work has shown high accuracy
in classifying for example different chart types and inferring
the underlying data which enables the format to be quickly
changed [SKC∗11]. We show results segmenting Chinese charac-
ters, which have been investigated in a somewhat different appli-
cation for recognition purposes, in which the authors propose a
MRF-based solution specific to Chinese characters, where the goal
is to model the topology of the character for recognition [ZL08].
Instead, we present a general purpose vectorization algorithm that
reconstructs a per-pixel segmentation.

There have been prior works that address the semantic segmen-
tation task for sketches, the main challenge being that appearance
is sparse. The work of Huang et al. [HFL14] uses a learning based
approaches, while Schneider and Tuytelaars [ST16] performs a seg-
mentation of sketch regions by looking at features such as curva-
ture point, T junction and X junctions, and then refines the result
with a CRF to compute a segmentation. These approaches generate
a high quality sketch segmentation, however their task is funda-
mentally different from ours, in that we are attempting an instance-
segmentation on the stroke level, rather than semantic classification
of a stroke or groups of strokes. Our method is designed to prevent
the vector soup effect that results from naive vectorization of the
entire sketch, or even semantically related parts.

3. Method

The main task in our approach is to compute a semantically mean-
ingful segmentation of paths, so that each path can then be vector-
ized and combined into a final image.

Our approach combines the strengths of neural networks to un-
derstand the context of images, with those of optimization tech-
niques to combine this information in a globally optimal way.
We phrase our instance segmentation as a labeling problem where
given a set of pixels P and a finite set of labels L, the goal is to
assign a label lp ∈ L to a pixel p ∈ P such that a set of assigned
labels l = (lp)p∈P minimizes an objective energy function E(l).

We define our energy function using a common image segmen-
tation formulation [BFL06, DOIB12]:

E(l) = ∑
p∈P

Dp(lp)+λs ∑
pq∈N

Vpq(lp, lq) (1)

The goal is to find the optimal label set l̂ for segmenting line
drawings that minimizes the energy function E(l):

l̂ = argmin
l

E(l) (2)

In this formulation, Dp(lp) is the data term, which measures how
likely the label assignment lp is, while Vpq(lp, lq) is the smoothness
term, which measures the penalty of assigning lp and lq, N is the
set of all neighbors, and λs is a weight that balances the terms.

While this energy appears typical, our application differs sig-
nificantly from traditional image segmentation. First, we have no
priors on label assignments, meaning that Dp(lp) = 0, i.e., each
pixel is attributed an equal score independent of its label assign-
ment. Second, the smoothness term Vpq(lp, lq) is usually driven by
image appearance, i.e. it incurs a large cost when two pixels with
similar appearance are assigned different labels, and vice versa. In
our case, all pixels have similar appearance, so instead we need to
learn to predict how likely two pixels are to occur on the same path,
which is a function of their context in the image. To achieve this,
we propose to train a neural network to compute Vpq by observing
numerous examples of plausible path configurations (Sec. 3.1).

Finally, traditional pixel labeling methods assume that a pixel
can have only one unique label. However, in our application, paths
can overlap, and in order to correctly vectorize paths that may have
parts under other paths, we may need to assign multiple labels to
a single image pixel. Therefore, we formulate the problem such
that the set of pixels P to be labeled consists of an augmented set
with additional pixels added at the intersection regions, which we
elaborate in Sec. 3.2. As determining where overlaps exist from
a rasterized image is again a complex function of the global con-
figuration of the drawing (overlapping vs. abutting segments are
locally ambiguous), we propose a second neural network to pre-
dict these intersection regions (Sec. 3.2). We discuss the details of
how to construct and minimize the final energy as described Eq. 1
(Sec. 3.3).

3.1. PathNet: Learning to Predict Path Similarity

In order to define the neighborhood similarity term, Vpq(lp, lq), the
first step is to compute a path-similarity measure for each path pixel
to all other pixels. We consider a set of pixels P ′ corresponding to
all path pixels in the drawing (note that P ′ does not contain dupli-
cated overlap pixels, unlike P as we define in the last section). We
train a neural network, which we call PathNet that at test time takes
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Figure 2: PathNet Architecture. The input to the network Xp is
shown with the rasterized drawing in red, and the highlighted pixel
p drawn as a green square for visualization. The network predicts
a path similarity score Yp between p and all other pixels.

a specific p ∈ P ′, and the entire image I as input and produces a
matrix Np of fixed size h×w, which is the same size of input im-
age, with values in the range of 0 to 1 corresponding to how likely
it is that the pixels p and q lie on the same path.

To do this, we use a network architecture adapted from one pro-
posed for image super-resolution [KKLML16]. This network is
inspired by residual learning, which performs better in this case
than an auto-encoder type network such as [SSISI16]. As shown in
Fig. 2, this network consists simply of 20 sequential filter blocks,
each with 64 3×3 convolution kernels, followed by a batch normal-
ization layer, and a rectified linear unit layer (ReLU). In our case,
the last layer has only a single channel output and the response is
capped to be at most 1.

Unlike the previous work [KKLML16], we provide a two-
channel input Xp, consisting of the input raster line drawing I, and
a second mask image that is black everywhere, except at a single in-
dicator pixel p (Fig. 2). The network is trained to output the single
channel image Yp, equivalent to the matrix Yp = Np, which is the
path similarity measure from all pixels to the indicator pixel p. We
train the network using L2 loss to the known path Y, i.e., the loss
is ‖Y−Yp‖2. We use the Adam optimizer [KB14] for training.

We can now use feed forward passes through this network to
predict Np(q) for all p. Note that there is no guarantee that Np(q)
and Nq(p) are equal, thus we define N′pq, how likely two pixels are
to be on the same path by averaging Np(q) and Nq(p):

N′pq =
Np(q)+Nq(p)

2
, (3)

and then we compute a final per-pixel neighbor path similarity
score as:

Kpq = e
−

(1−N′pq)
2

2σ2
k . (4)

Using this approach, the more likely two pixels p and q lie on the
same path, the closer the Kpq is to 1. Intuitively, σk controls the
falloff of the neural network output which plays an important role in
segmentation; with higher σk leading to less segments. All weights
will be defined in Sec. 4.

We now have all the pieces to define our novel smoothness term:

(a) (b)

Figure 3: An example of a prediction becoming less accurate as
the distance between p and q increases. Left: Xp, the input image
with the query point p (green square). Right: Yp, the output predic-
tion. Black represents high confidence for being on the same path.
You can see that the network erroneously classifies with low confi-
dence, a small region in the bottom part of the right line, and loses
confidence at the end of the left line as well.

V (lp, lq)
de f
=

{
1−Kpq i f lp = lq
Kpq otherwise.

(5)

Intuitively, if two different labels are assigned to a given pair of
pixels p and q, i.e. lp 6= lq, the penalty V (lp, lq) for mislabeling the
two pixels p and q is Kpq, the similarity of the two pixels. However,
if lp = lq, then the penalty is the inverse of the predicted similarity
Kpq.

Finally, we observe that the prediction of the neural network be-
comes less accurate farther from the query point p as shown in
Fig. 3, so we add a spatial weighting term onto the prediction which
decreases the confidence in the predicted similarity Kpq far from the
query point.

Vpq(lp, lq) = e
− ‖p−q‖2

2
2σ2

w V (lp, lq), (6)

where σw controls the extent of the prediction at p. This also helps
with efficiency during inference, as we can reduce the connectivity
of the graph by pruning 0-weight edges.

3.2. OverlapNet: Handling Overlapping Paths

As elaborated above, another key difference of our setting from
classical image segmentation formulations is the definition of the
augmented pixel set P to handle pixels at the intersections of paths,
which belong to more than one segment. Determining such regions
is a hard problem that requires context, as intersections can be am-
biguous (e.g., abutting vs intersecting lines). This can be seen in the
blended image of Fig. 4, (top right), the closed square-shape sym-
bol has three, shallow overlaps, which are unlikely to be simply
classified as t-junctions or x-junctions.

We thus train a second network which we call OverlapNet to in-
fer not only the location of overlaps, but also data-dependent over-
lap shapes as well. Its architecture is identical to PathNet, but the
input is only the rasterized line drawing, and the output is a sigmoid
layer, thresholded by 0.5 to get a binary overlap map as shown in
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Input X Ground Truth Y Blended Image

Figure 4: An example of training data pair for OverlapNet.
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Figure 5: Overlap augmented graph. Note that the actual graph
we use is densely connected, but we show only a reduced set of
neighbor edges for clarity. Here the blue pixels are part of one path
and the green pixels are part of another path. Pixel p in the center
is where the two paths overlap, and p̂ is a newly added node.

Fig. 4. We train this on the same datasets as PathNet, with L2 loss
to the known ground truth overlap regions as determined from the
vector images.

Once the pixels in overlaps are obtained (Fig. 4), we augment the
simple per-pixel graph P ′ with new nodes corresponding to these
overlapping pixels. Let us assume that there are pixels p and q, and
an edge epq between them. If the pixel p has been determined to be
a pixel in an overlap region by the network, we add a new node p̂,
and connect p̂ and q based on the edge epq with weight Kpq (i.e.
Kp̂q = Kpq). Figure 5 shows an example of a simple augmented
graph. In case pixel q is also an overlap pixel, we also add q̂ and
link p̂ and q̂ with an edge ep̂q̂ with weight Kp̂q̂ = Kpq. We also want
to ensure that the augmented pixel p̂ is labeled differently from the
original pixel p, so we create high cost for assigning them the same
label, e.g.,

V (lp, l p̂)
de f
=

{
κ i f lp = l p̂

0 otherwise.
(7)

in our experiments, we use κ=1000.

While our approach can handle only two paths overlapping on a
single pixel, the same idea could be trivially extended to predict the
specific number of overlaps at each pixel, and the graph could be
similarity augmented, however we did not find that this was neces-
sary in our experiments as there were very few regions where more
than two paths overlapped at the same region.

3.3. Global aggregation

We solve Eq. 1 using graph cuts [BVZ01]. This problem is highly
non-submodular, so we are not guaranteed convergence, how-

ever, similar to other work in the area we found that we of-
ten achieve good convergence nonetheless. We use the αβ-swap
algorithm [BVZ01] to handle multiple labels, which we found
performed significantly better than the commonly used alpha-
expansion approach for this task. See Sec. 4.1 for more details.
Finally, as we found the labeling can occasionally create a small
number of isolated single pixels with a unique label, we run a sim-
ple post-processing step where isolated pixels are merged with their
largest neighboring path.

4. Experiments

We have tested our method on three different datasets: characters,
synthetic random lines and hand drawn sketches.

Characters. We have first used two kinds of open-source
character datasets which include vector graphics. The first
is Make Me a Hanzi (https://github.com/skishore/
makemeahanzi) provides vector graphics for 9507 of the most
common simplified and traditional Chinese characters. Second, we
used KanjiVG (http://kanjivg.tagaini.net/index.
html), which consists of 11456 vector graphics for Japanese Kanji
characters in different fonts. An example of one character in both
Make Me a Hanzi and KanjiVG is shown in Fig. 6.

Synthetic random lines. As the second line drawing dataset, we
have trained our PathNet and OvelapNet on a dataset consisting of
a randomly generated mix of four straight lines and/or cubic Bézier
curves with four control points, as shown in Fig. 6.

Sketches. The last dataset we use is the The Quick, Draw!
Dataset (https://github.com/googlecreativelab/
quickdraw-dataset). It includes 50 million sketches of 345
categories drawn by different people with various drawing styles,
as shown in Fig. 6. We perform two experiments. We first train and
test our method on individual classes (BASEBALL, CAT). Second,
we train a single network on a set of classes (BASEBALL, CAT,
CHANDELIER and ELEPHANT), which we call the MULTI-CLASS

dataset. We then compute the testing error on a set of unseen
classes (BACKPACK and BICYCLE). We chose a subset of classes
that have challenging, overlapping lines and distinct structure,
which makes correct vectorization more challenging.

4.1. Implementation

We have conducted several experiments in order to understand how
our networks are trained and how they work with different design
parameters and types of data. We implemented our networks us-
ing Tensorflow, and CairoSVG for rasterizing and converting SVG
files. In each dataset, we trained both networks for 50,000 itera-
tions with a batch size of 8 and the image size of 64× 64 (16 and
128×128 for sketch dataset) using a PC with Intel Core i7-4790K
at 4.00GHz with 4 cores and NVIDIA GeForce GTX 1080. Train-
ing lasts approximately 2 hours. All experiments are carried out
with fixed training parameters using Adam [KB14], with a gradient
clipping value of 0.1, initial learning rate of 0.01, decaying factor
of 0.1, 30,000 iterations per decay, and momentum of 0.9999 for
training.

For segmentation, we used the GCO libary for multi-label opti-
mization [DOIB12]. In addition, we tested α-expansion, αβ-swap
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Figure 6: Examples of images from the different datasets: characters (left), random lines (middle), sketches (right). Individual strokes are
color coded.

Accuracy on Test (Train) Splits
CHINESE KANJI RANDOM MULTI-CLASS BASEBALL CAT

PathNet 0.947 (0.948) 0.957 (0.959) 0.922 (-) 0.919 (0.920) 0.909 (0.909) 0.934 (0.935)
OverlapNet 0.949 (0.961) 0.944 (0.956) 0.871 (-) 0.607 (0.651) 0.677 (0.676) 0.705 (0.713)

Table 1: Accuracy of individual networks from training and testing
splits. The similar accuracy scores in training and testing indicate
good generalization capabilities of our networks

and Fusion move algorithms based on Quadratic Pseudo-Boolean
Optimization (QPBO) minimization but found that there was no
significant difference in terms of accuracy, and much longer exe-
cution time. Each pixel label is randomly initialized, the maximum
number of labels is fixed as 128, and we find that it is sufficient
to use 3 iterations of the αβ-swap algorithm with fixed parameters
σk = 0.7 and σw = 8. In the final stage, the per-path vectorization
is computed using Potrace [Sel15].

We found our approach to be robust to parameter selection, and
all results shown here were computed with the same fixed set of
parameters.

4.2. Results and Analysis

Label count. We investigated the number of unique labels in the
ground truth data compared to our segmented results. Most datasets
have similar statistics, from a minimum of 4-5 paths per image to
a maximum of 20-25, and an average of 9 paths. The average dif-
ference in the label count of our segmented images is roughly 0.7
labels, across all datasets. This is somewhat surprising, and implies
that our PathNet is trained well enough to follow the semantics of
its dataset. Therefore, while 128 labels is sufficiently higher than
the maximum of number of paths in any specific dataset, we use
a high number as it does not degrade performance, and choosing a
high maximum number of labels gives flexibility to support datasets
with more strokes.

Individual network accuracy. We next evaluate the training of the
individual networks by splitting our datasets into training and test
sets. In each case we use 90% of the data for training, and 10% for
testing. Our OverlapNet converges to roughly 0.961 training and
0.949 testing accuracy measured by commonly used Intersection-
Over-Union criteria. PathNet converges to a loss of roughly 45,
which indicates on average 0.947 prediction accuracy per pixel,
where prediction accuracy is computed as 1 - L2 loss to the ground
truth prediction, normalized by the size of prediction window. For

Testing Accuracy (IoU)
CHINESE KANJI RANDOM MULTI-CLASS BASEBALL CAT

Potrace 0.577 0.534 0.523 0.570 0.608 0.638
Fidelity vs. Simplicity 0.161 0.284 0.128 0.319 0.350 0.322
Our method 0.958 0.917 0.872 0.753 0.827 0.811

Table 2: Accuracy for the experiments. Please see the text for the
definition of IoU.

CHINESE KANJI SYNTHETIC RANDOM LINES

MULTI-CLASS BASEBALL CAT

Figure 7: Histograms of the segmentation accuracy (IoU) for dif-
ferent datasets. We can see that most strokes are well segmented in
each dataset, showing rightmost peak.

example, the prediction accuracy of Fig. 3 is 0.968. The accuracy
of both networks is shown over different datasets in Table 1.

Final segmentation accuracy. Finally, we evaluate our full
pipeline, including segmentation. For a quantitative evaluation, we
use IoU as the measure of Overlap accuracy. For each segmented
pixel path, we find the closest path in the ground truth (i.e. the in-
tersection area between them is the largest among all paths), and
compute the ratio of the number of pixels in the intersection di-
vided by the number in the union. We show quantitative results
with this metric in Table 2 and Fig. 7. The two character datasets
follow strict stroke rules, and we see our method scores much bet-
ter as a result. On sketch datasets, our IoU scores drop, but this is
expected given the inherent variance in how different people sketch
common objects. We note that this quantitative evaluation is one
way to gauge quality, but it is not the final goal as judging a “good”
segmentation is somewhat subjective. Instead, we desire a plausi-
ble vectorization which is more editable than a pure vector soup.
For this, we present a subset of results for qualitative evaluation
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Input Without OverlapNet With OverlapNet

Figure 8: The effect of the OverlapNet. We can see examples where
a curve brushes against a straight line or abutts it.

in Fig 9 and Fig. 12, and in the supplementary material, where we
observe that these results are often vectorized in a meaningful and
useful way.

One question is how well do networks trained on one dataset
work on a different dataset. To test this, we trained using the
BASEBALL, CAT, CHANDELIER and ELEPHANT classes. The test-
ing accuracy on the multi-class dataset is 0.753, and on the unseen
classes, BACKPACK and BICYCLE, 0.729 and 0.716 respectively. In
addition, PathNet trained on CHINESE shows 0.836 on KANJI com-
pared to 0.917. This is encouraging as neither of these classes were
seeing during training, so we observe reasonable generalization to
different domains. However, as expected, training and testing on
the same class shows a slight improvement over cross-class testing.

Secondly, by using OverlapNet to handle overlaps between
strokes, we see an improvement in accuracy by 2-5% approxi-
mately, and much qualitatively better results in Fig 8.

We compare our method to the state-of-the-art method of
Favreau et al. [FLB16], as well as a commercial technique Po-
trace [Sel15]. While Favreau et al. can take drawings with vary-
ing stroke width as input, it skeletonizes the strokes and outputs
constant-width vector curves. In Fig. 9, we show an example cor-
rect segmentations and vectorizations generated with our method,
compared to other approaches. In all comparisons, we used the soft-
ware provided by the authors. We searched across all stroke thick-
nesses, and chose the one that performs best with their method. In
Fig. 10, we show that our method can be combined with a sketch
clean-up method such as [SSISI16] as a preprocessing step to han-
dle rough line drawings. In general, we can see the importance
of semantic information in the vectorization process, in that our
strokes better correspond to individual instances.

Editing. Finally, we show some edged vector images, where a
novice user was easily able to edit the output of our approach, mov-
ing around parts as desired (Fig. 11). In a traditional vector soup re-
sult, the user would have to pay more attention to the context of the
paths to maintain consistency across intersections and t-junction
ambiguities. With our result, these edits were made in just one

Input Potrace (0.67) F. vs. S. (0.14) Ours (0.99) Ground Truth

Input Potrace (0.66) F. vs. S. (0.25) Ours (0.99) Ground Truth

Input Potrace (0.62) F. vs. S. (0.14) Ours (0.97) Ground Truth

Input Potrace (0.47) F. vs. S. (0.25) Ours (0.87) Ground Truth

Input Potrace (0.71) F. vs. S. (0.33) Ours (0.91) Ground Truth

Input Potrace (0.77) F. vs. S. (0.26) Ours (0.90) Ground Truth

Input Potrace (0.33) F. vs. S. (0.47) Ours (0.99) Ground Truth

Input Potrace (0.64) F. vs. S. (0.46) Ours (0.97) Ground Truth

Figure 9: Vectorization results showing the input image, the re-
sult from Potrace [Sel15](2nd), the result from a recent global op-
timization technique [FLB16], the result from our method, and the
ground truth. Without being able to learn the stroke rules and draw-
ing conventions, previous approaches miss, split, or merge strokes
incorrectly.

or two minutes, using Vector Paint (http://vectorpaint.
yaks.co.nz/).

Timing. The runtime depends on the number of non-zero pixels
in an image and the number of iterations used for the graph-cut. As
seen in Table 3, the bottleneck is the final CRF in our (unoptimized)
implementation.

Limitations. While our solution produces good results a lot of
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Input F. vs. S. Ours

Figure 10: From left to right: vectorization results showing the
rough input image (courtesy of [FLB16]), the color coded result
from [FLB16] and the result first cleaned up by [SSISI16] then pro-
cessed by our method.

Timing Information (sec.)
CHINESE KANJI RANDOM MULTI-CLASS BASEBALL CAT

PathNet 1.51 1.21 0.88 9.59 10.3 9.81
OverlapNet 0.01 0.01 0.01 0.07 0.04 0.03
Optimization 11.3 6.76 7.57 399 415 223

Table 3: Here we show the runtime of different parts of our method.

the time, there are still times when it fails. Fig. 13 shows an incor-
rect segmentation where the vertical stroke is split into 3 separate
paths. As a purely data-driven approach, its accuracy significantly
depends on training dataset, and to achieve semantically plausible
results, it is important to select a training dataset that fits the appli-
cation domain. It would be interesting to train our approach in other
domains, such as handwriting, or architectural drawings, if such
datasets were available. In particular, what is defined as a “path” in
the original dataset can vary, for example in the ground truth data
from the sketches, it tends to be in places where people are likely
to lift the pen, which might not be the ideal vectorization target.

Secondly, as we currently support only overlaps between two
paths, occasional cases where more than two paths overlap can
cause problems as shown in Fig. 13. As we mentioned in Sec. 3.2,
our idea could be extended to handle more than two overlapping
paths. Also, the complexity of our method depends on the num-
ber of pixels, so it is still a challenge to scale the approach up to
high resolution images. In addition, we have found that our method

Ground Truth Strokes Our Result Edited Image

Figure 11: User-editing on individual strokes of our result.

works best when trained in a similar domain that it is applied to.
Hopefully with larger datasets, this restriction will be reduced in
the future. Despite these limitations, our method is able to gener-
ate more useful vectorization than prior segmentation-based tech-
niques.

5. Conclusions

We have presented a method for context-aware vectorization of ras-
terized graphics. This addresses the fundamental challenge of ex-
tracting semantically meaningful paths from line art drawings. As
this is a highly domain specific problem, we utilized data to learn
the non-trivial rules people apply to generate paths in such draw-
ings, in contrast to previous model-based approaches in the litera-
ture.

Future Work. Although we have focused on line drawings in the
scope of this work, our method is a general pixel-level segmen-
tation approach trained with vector art files. In addition to brush-
stroke style paths, we believe that a similar approach could be used
to support the full range of SVG path objects, such as patches, and
color fills.

Introducing context to segmentation when appearance informa-
tion is not relevent can be useful for many other problems. An im-
mediate application could be parsing more complex objects such as
PDF files. We are planning to investigate how our technique can be
utilized for such challenging cases.
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