
Deep Fluids: A Generative Network for Parameterized Fluid Simulations

BYUNGSOO KIM, ETH Zurich
VINICIUS C. AZEVEDO, ETH Zurich
NILS THUEREY, Technical University of Munich
THEODORE KIM, Pixar Animation Studios
MARKUS GROSS, ETH Zurich
BARBARA SOLENTHALER, ETH Zurich

Reconstruction

Latent Space Sim.Interpolation

Input Parameters

source position
inflow speed

…
time

Generative Fluid CNN

Simulation Data

Fig. 1. Our generative neural network can synthesize fluid velocities continuously in space and time, using a set of input simulations for training and a few
parameters for generation. This enables fast reconstruction of velocity fields, continuous interpolation and latent space simulations.

This paper presents a novel generative model to synthesize fluid simulations
from a set of reduced parameters. A convolutional neural network is trained
on a collection of discrete, parameterizable fluid simulation velocity fields.
Due to the capability of deep learning architectures to learn representative
features of the data, our generative model is able to accurately approximate
the training data set, while providing plausible interpolated in-betweens.
The proposed generative model is optimized for fluids by a novel loss func-
tion that guarantees divergence-free velocity fields at all times. In addition,
we demonstrate that we can handle complex parameterizations in reduced
spaces, and advance simulations in time by integrating in the latent space
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with a second network. Our method models a wide variety of fluid behav-
iors, thus enabling applications such as fast construction of simulations,
interpolation of fluids with different parameters, time re-sampling, latent
space simulations, and compression of fluid simulation data. Reconstructed
velocity fields are generated up to 700× faster than traditional CPU solvers,
while achieving compression rates of over 1300×.
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1 INTRODUCTION
Machine learning techniques have become pervasive in recent years
due to numerous algorithmic advances and the accessibility of com-
putational power. Accordingly, they have been adopted for many
applications in graphics, such as generating terrains [Guerin et al.
2017], high-resolution faces synthesis [Karras et al. 2017] and cloud
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rendering [Kallweit et al. 2017]. In fluid simulation, machine learn-
ing techniques have been used to replace [Ladický et al. 2015], speed
up [Tompson et al. 2016] or enhance existing solvers [Xie et al. 2018].

Given the amount of available fluid simulation data, data-driven
approaches have emerged as attractive solutions. Subspace solvers
[Treuille et al. 2006], fluid re-simulators [Kim and Delaney 2013] and
basis compressors [Jones et al. 2016] are examples of recent efforts
in this direction. However, these methods usually represent fluids
using linear basis functions, e.g., constructed via Singular Value
Decomposition (SVD), which are less efficient than their non-linear
counterparts. In this sense, deep generative models implemented
by convolutional neural networks (CNNs) show promise for repre-
senting data in reduced dimensions due to their capability to tailor
non-linear functions to input data.
In this paper, we propose the first generative neural network -

the Deep Fluids network [anonymous 2018]- that fully constructs
dynamic Eulerian fluid simulation velocities from a set of reduced
parameters. Given a set of discrete, parameterizable simulation ex-
amples, our deep learning architecture generates velocity fields that
are incompressible by construction. In contrast to previous subspace
methods [Kim and Delaney 2013], our network achieves a wide va-
riety of fluid behaviors, ranging from turbulent smoke to gooey
liquids (Figure 1).
The Deep Fluids CNN enhances the state of the art of reduced-

order methods (ROMs) in four ways: efficient evaluation time, a
natural non-linear representation for interpolation, data compres-
sion capability and a novel approach for latent space simulations.
Our CNN can generate a full velocity field in constant time, contrast-
ing with previous approaches which are only efficient for sparse
reconstructions [Treuille et al. 2006]. Thanks to its 700× speedup
compared to regular simulations, our approach is particularly suit-
able for animating physical phenomena in real-time applications
such as games, VR and surgery simulators.
Our method is not only capable of accurately and efficiently re-

covering learned fluid states, but also generates plausible velocity
fields for input parameters that have no direct correspondence in
the training data. This is possible due to the inherent capability of
deep learning architectures to learn representative features of the
data. Having a smooth velocity field reconstruction when continu-
ously exploring the parameter space enables various applications
that are particularly useful for the prototyping of expensive fluid
simulations: fast construction of simulations, interpolation of fluids
with different parameters, and time re-sampling. To handle applica-
tions with extended parameterizations such as the moving smoke
scene shown in Section 5.2, we couple an encoder architecture with
a latent space integration network. This allows us to advance a
simulation in time by generating a sequence of suitable latent codes.

Additionally, the proposed architecture works as a powerful com-
pression algorithm for velocity fields, achieving up to 1300× com-
pression rates. This is at least two orders of magnitude greater than
previous works [Jones et al. 2016], while simultaneously maintain-
ing a close correspondence to the original data (Figure 2).
To summarize, the technical contributions of our work include:

• The first generative deep learning architecture that fully syn-
thesizes plausible and fully divergence-free 2-D and 3-D fluid
simulation velocities from a set of reduced parameters.
• A generative model for fluids that accurately encodes pa-
rameterizable velocity fields. Compression rates of 1300× are
achieved, as well as 700× performance speed-ups compared
to traditional CPU-based fluid solvers.
• An approach to encode simulation classes into a latent space
representation through an autoencoder architecture. In com-
bination with a latent space integration network to advance
time, our approach allows flexible interactions with flow sim-
ulations.
• A detailed analysis of the proposed approach, both when
reconstructing samples that have a direct correspondence
with the training data set as well as intermediate points in
the parameter space.

2 RELATED WORK
Reduced-order Methods. Subspace solvers aim to accelerate sim-

ulations by discovering simplified representations. In engineering,
these techniques go back decades [Lumley 1967], but were intro-
duced to computer graphics by Treuille et al. [2006] and Gupta and
Narasimhan [2007]. Since then, improvements have been made to
make them modular [Wicke et al. 2009], consistent with widely-
used integrators [Kim and Delaney 2013], more energy-preserving
[Liu et al. 2015] and memory-efficient [Jones et al. 2016]. A related
"Laplacian Eigenfunctions” approach [De Witt et al. 2012] has also
been introduced and refined [Gerszewski et al. 2015], removing the
need for snapshot training data when computing the linear subspace.
The basis functions used by these methods are all linear however,
and various methods are then used to coerce the state of the system
onto some non-linear manifold. Exploring the use of non-linear
functions, as we do here, is a natural evolution.
One well-known limitation of reduced-order methods is their

inability to simulate liquids because the non-linearity of the liq-
uid interface causes the subspace dimensionality to explode. For
example, in solid-fluid coupling, usually the fluid is computed di-
rectly while only the solid uses the reduced model [Lu et al. 2016].
Graph-based methods for precomputing liquid motions [Stanton
2014] have had some success, but only under severe constraints,
e.g. the user viewpoint must be fixed. In contrast, we show that the
non-linearity of a CNN-based approach allows it to be applied to
liquids as well.

Machine Learning & Fluids. Combining fluid solvers withmachine
learning techniques was first demonstrated by Ladický et al. [2015].
By employing Regression Forests to approximate the Navier-Stokes
equations on a Lagrangian system, particle positions and velocities
were predicted with respect to input parameters for a next time
step. Regression Forests are highly efficient, but require handcrafted
features that lack the generality and abstraction power of CNNs. An
LSTM-based method for predicting changes of the pressure field for
multiple subsequent time steps has been presented by Wiewel et al.
[2018], resulting in significant speed-ups of the pressure solver. For
a single time step, a CNN-based pressure projection was likewise
proposed [Tompson et al. 2016; Yang et al. 2016]. In contrast to our
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Fig. 2. Ground truth (left) and the CNN-reconstructed results (right) for nine sample simulations with varying buoyancy (rows) and inflow velocity (columns).
Despite the strongly varying dynamics of the ground truth simulations, the outputs of our trained model closely reconstruct the reference data.

work, these models only replace the pressure projection stage of the
solver, and hence are specifically designed to accelerate the enforce-
ment of divergence-freeness. To visually enhance low resolution
simulations, Chu and Thuerey [2017] synthesized smoke details
by looking up pre-computed patches using CNN-based descriptors,
while Xie et al. [2018] proposed a GAN for super resolution smoke
flows. Other works enhance FLIP simulations with a learned splash
model [Um et al. 2017], while the deformation learning proposed
by [Prantl et al. 2017] shares our goal of capturing sets of fluid
simulations. However, it only partially employs CNNs and focuses
on signed distance functions, while our work targets the velocity
spaces of a broad class of fluid simulations.
Lattice-Boltzmann steady-state flow solutions are recovered by

CNN surrogates using signed distance functions as input boundary
conditions in [Guo et al. 2016]. Farimani et al. [2017] use Genera-
tive Adversarial Networks (GANs) [Goodfellow et al. 2014] to train
steady state heat conduction and steady incompressible flow solvers.
Their method is only demonstrated in 2-D and the interpolation
capabilities of their architecture are not explored. For both meth-
ods, the simulation input is a set of parameterized initial conditions
defined over a spatial grid, and the output is a single steady state so-
lution. Recently, Umetani and Bickel [2018] developed a data-driven
technique to predict fluid flows around bodies for interactive shape
design, while Ma et al. [2018] have demonstrated deep learning
based fluid interactions with rigid bodies.

Machine Learning & Physics. In the physics community, neural
networks and deep learning architectures for approximating, en-
hancing and modeling solutions to complex physics problems are
gaining new attention. A few recent examples are Carleo and Troyer
[2016] using a reinforcement learning scheme to reduce the com-
plexity of a quantum many-body problem, and Ling et al. [2016]
employing deep neural networks to synthesize Reynolds average
turbulence anisotropy tensors from high-fidelity simulation data.
Similarly, Hanna et al. [2017] use Regression Forests to enhance local
coarse grid patches with a surrogate model, Carrasquilla and Melko
[2017] model condensed matter physics with CNNs, and Paganini
et al. [2017] model calorimeter interactions with electromagnetic

showers using GANs. GANs have also been employed to generate
[Ravanbakhsh et al. 2016] and deconvolve [Schawinski et al. 2017]
galaxy images, and reconstruct three-dimensional porous media
[Mosser et al. 2017]. As we focus on generative networks for known
parameterizations, we will not employ learned, adversarial losses.
Rather, we will demonstrate that a high quality representation can
be learned by constructing a suitable direct loss function.

3 A GENERATIVE MODEL FOR FLUIDS
Fluids are traditionally simulated by solving the inviscid momentum
Du/Dt = −∇p+g and mass conservation ∇·u = 0 equations, where
u and p are the fluid velocity and pressure, Du/Dt is the material
derivative and g represents external forces. The viscosity −µ∇2u
can be included, but simulations for visual effects usually rely on
numerical dissipation instead. For a given set of simulated fluid
examples, our goal is to train a CNN that approximates the original
velocity field data set. By minimizing loss functions with subsequent
convolutions applied to its input, CNNs organize the data manifold
into shift-invariant feature maps.

Numerical fluid solvers work by advancing a set of fully specified
initial conditions. By focusing on scenes that are initially parame-
terizable by a handful of variables, such as the position of a smoke
source, we are able to generate samples for a chosen class of simu-
lations. Thus, the inputs for our method are parameterizable data
sets, and we demonstrate that accurate generative networks can be
trained in a supervised way.

3.1 Loss Function for Velocity Reconstruction
The network’s input is characterized by a pair [uc , c], where uc ∈
RH×W ×D×Vdim is a single velocity vector field frame in Vdim dimen-
sions (i.e. Vdim = 2 for 2-D and Vdim = 3 for 3-D) with height
H , widthW and depth D, generated using the solver’s parameters
c = [c1, c2, ..., cn ] ∈ Rn . For the 2-D example in Figure 3, c is the
combination of x-position and width of the smoke source, and the
current time of the frame. Due to the inherent non-linear nature of
the Navier-Stokes equations, these three parameters (i.e. position,
width, and time) yield a vastly different set of velocity outputs.
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Fig. 3. Different snapshots showing the advected densities for varying
smoke source parameters. The top row shows the variation of the initial
position, while the bottom row shows the variation of the source width.

For fitting fluid samples, our network uses velocity-parameter
pairs and updates its internal weights by minimizing a loss func-
tion. This process is repeated by random batches until the network
minimizes a loss function over all the training data. While previ-
ous works have proposed loss functions for natural images, e.g., Lp
norms, MS-SSIM [Zhao et al. 2015], and perceptual losses [Johnson
et al. 2016; Ledig et al. 2016], accurate reconstructions of velocity
fields have not been investigated. For fluid dynamics it is especially
important to ensure conservation of mass, i.e., to ensure divergence-
free motion for incompressible flows. We therefore propose a novel
stream function based loss function defined as

LG (c) = | |uc − ∇ ×G(c)| |1. (1)

G(c) : Rn 7→ RH×W ×D×Gdim is the output of our network and uc
is a simulation sample from the training data set. The curl of the
model output is the reconstruction target, and it is guaranteed to be
divergence-free by construction, as ∇ · (∇ ×G(c)) = 0. Thus, G(c)
implicitly learns to approximate a stream function Ψc (i.e. Gdim = 1
for 2-D andGdim = 3 for 3-D) that corresponds to a velocity sample
uc. While this formulation is highly suitable for incompressible
flows, regions with partially divergent motion, such as extrapolated
velocities around the free surface of a liquid, are better approximated
with a direct velocity inference. For such cases, we remove the curl
term from Equation (1), and instead use LG (c) = | |uc − G(c)| |1,
where the output of G represents a velocity field with G(c) : Rn 7→
RH×W ×D×Vdim .
In both cases, simply minimizing the L1

distance of a high-order function approxi-
mation to its original counterpart does not
guarantee that their derivatives will match.
Consider the example shown in the inset
image: given a function (black line, gray cir-
cles), two approximations (red line, top im-
age; blue line, bottom image) of it with the
same average L1 distances are shown. On
the upper image derivatives do not match,
producing a jaggy reconstructed behavior; on the bottom image
both values and derivatives of the L1 distance are minimized, re-
sulting in matching derivatives. With a sufficiently smooth data set,

high-frequency features of the CNN are on the null space of the L1
distance minimization and noise may occur. We discuss this further
in the supplemental material.
Thus, we augment our loss function to also minimize the dif-

ference of the velocity field gradients. The velocity gradient ∇ :
RH×W ×D×Vdim 7→ RH×W ×D×(Vdim)2 is a second-order tensor that
encodes vorticity and divergence information. Similar techniques, as
image gradient difference loss [Mathieu et al. 2015], have been em-
ployed for improving frame prediction on video sequences. However,
to our knowledge, this is the first architecture to employ gradient in-
formation to improve velocity field data. Our resulting loss function
is defined as

LG (c) = λu | |uc − ûc | |1 + λ∇u | |∇uc − ∇ûc | |1, (2)

where ûc = ∇ × G(c) for incompressible flows and ûc = G(c) for
compressible flows, and λu and λ∇u are weights used to emphasize
the reconstruction of either the velocities or their derivatives. In
practice, we used λu = λ∇u = 1. The curl of the velocity and its
gradients are computed internally by our architecture and do not
need to be explicitly included in the data set.

3.2 Implementation
For the implementation of our generative model we adopted and
modified the network architecture from [Berthelot et al. 2017]. As
illustrated in Figure 4, our generator starts by projecting the initial
c parameters into anm-dimensional vector of weights m via fully
connected layers. The dimension of m depends on the network
output d = [H ,W ,D,Vdim] and on a custom defined parameter q.
With dmax = max(H ,W ,D), q is calculated by q = log2(dmax) −
3, meaning that the minimum supported number of cells in one
dimension is 8. Additionally, we constrain all our grid dimensions
to be divisible by 2q . Since we use a fixed number of feature maps
per layer, the number of dimensions ofm ism = H

2q ×
W
2q ×

D
2q × 128

and those will be expanded to match the original output resolution.
Them-dimensional vectorm is then reshaped to a [ H2q ,

W
2q ,

D
2q , 128]

tensor. As shown in Figure 4, the generator component is subdivided
into small (SB) and big blocks (BB). For small blocks, we perform N
(most of our examples usedN = 4 or 5) flat convolutions followed by
Leaky Rectified Linear Unit (LReLU) activation functions [Maas et al.
2013]. We substituted the Exponential Liner Unit (ELU) activation
function in the original method from [Berthelot et al. 2017] by the
LReLU as it yielded sharper outputs when minimizing the L1 loss
function. Additionally, we employ residual skip connections [He
et al. 2015], which are an element-wise sum of feature maps of input
and output from each SB. While the concatenative skip connections
employed by Berthelot et al. [2017] are performed between the first
hidden states and the consecutive maps with doubling of the depth
size to 256, ours are applied to all levels of SBs with a fixed size of 128
feature maps. After the following upsample operation, the dimen-
sion of the output from a BB after i passes is [ H

2q−i ,
W
2q−i ,

D
2q−i , 128].

Our experiments showed that performing these reductions to the
feature map sizes with the residual concatenation improved the
network training time without degradation of the final result.
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Fig. 4. Architecture of the proposed generative model, subdivided into small
(SB) and big blocks (BB). Small blocks are composed of flat convolutions
followed by a LReLU activation function. Big blocks are composed of sets of
small blocks, an additive skip-connection and an upsampling operation. The
output of the last layer has D channels (Gdim for incompressible velocity
fields, Vdim otherwise) corresponding to the simulation dimension.

4 EXTENDED PARAMETERIZATIONS
Scenes with a large number of parameters can be challenging to
parameterize. For instance, the dynamically moving smoke source
example (Figure 12) can be parameterized by the history of control
inputs, i.e., [p0, p1, ..., pt ] → ut , where pt and ut represent the
smoke source position and the reconstructed velocity field at time
t , respectively. In this case, however, the number of parameters
grows linearly with the number of frames tracking user inputs. As
a consequence, the parameter space would be infeasibly large for
data-driven approaches, and would be extremely costly to cover
with samples for generating training data.

To extend our approach to these challenging scenarios, we employ
an additional encoder architecture G−1(u) : RH×W ×D×Vdim 7→ Rn ,
shown in Figure 5. Conversely to our generative network, the en-
coder architecture maps velocity field frames into a parameteriza-
tion c = [z, p] ∈ Rn , in which z ∈ Rn−k is a reduced latent space
that models arbitrary features of the flow in an unsupervised way
and p ∈ Rk is a supervised parameterization to control specific
attributes [Kulkarni et al. 2015]. For the moving smoke source exam-
ple, k = 2 and p encodes x , z positions used to control the position
of the smoke source.
The combined encoder and generative networks are similar to

Deep Convolutional autoencoders [Vincent et al. 2010], where the
generative network G(c) acts as a decoder. The encoding architec-
ture is symmetric to our generative model, except that we do not
employ the inverse of the curl operator and the last convolutional
layer. We train both generative and encoding networks with a com-
bined loss similar to Equation (2), as

LAE (u) = λu | |uc − ûc | |1 + λ∇u | |∇uc − ∇ûc | |1 + λp | |p − p̂| |22 , (3)

where p̂ is the part of the latent space vector constrained to represent
control parameters p, and λp is a weight to emphasize the learning
of supervised parameters. As before, we used λu = λ∇u = λp = 1
for all our examples. With this approach we can handle complex
parameterizations, since the velocity field states are represented by
the remaining latent space dimensions in z. This allows us to use
latent spaces which do not explicitly encode the time dimension as
a parameter. Instead, we can use a second latent space integration
network that generates a suitable sequence of latent codes.

4.1 Latent Space Integration Network
The latent space only learns a diffuse representation of time by the
velocity field states z. Thus we propose a latent space integration net-
work for advancing time from reduced representations. The network
T (xt−1) : Rn+k 7→ Rn takes an input vector xt−1 = [ct−1;∆pt−1] ∈
Rn+k which is a concatenation of a latent code ct−1 at previous time
t − 1 and a control vector difference between user input parameters
∆pt−1 = pt −pt−1 ∈ Rk . The parameter ∆pt−1 has the same dimen-
sionality k as the supervised part of our latent space, and serves
as a transition guidance from latent code ct−1 to ct . The output of
T (xt−1) is the residual ∆ct between two consecutive states. Thus, a
new latent code is computed with ct = ct−1 +T (xt−1).
For improved accuracy we let T look ahead in time, by training

the network on a window ofw sequential latent codes with an L2
loss function:

LT (xt , ..., xt+w−1) =
1
w

t+w−1∑
i=t
| |∆ci−1 −T (xi )| |22 . (4)

Our window loss Equation (4) is designed to minimize not only
errors on the next single step integration but also errors accumulated
in repeated latent space updates. We found thatw = 30 yields good
results, and a discussion of the effects of different values of w is
provided in the supplemental material.

We realize T as a multilayer perceptron (MLP) network. The net-
work consists of three fully connected layers coupled with ELU
activation functions. We employ batch normalization and dropout
layers with probability of 0.1 to avoid overfitting. Once the networks
G,G−1 and T are trained, we use Algorithm 1 to reconstruct the ve-
locity field for a new simulation. The algorithm starts from an initial
reduced space that can be computed from an initial incompressible
velocity field. The main loop consists of concatenating the reduced
space and the position update into xt−1; then the latent space inte-
gration network computes ∆ct , which is used to update ct−1 to ct .
Finally, the generative networkG reconstructs the velocity field by
evaluating ct .

Algorithm 1 Simulation with the Latent Space Integration Network

c0 ← G−1(u0)
while simulating from t − 1 to t do

xt−1 ← [ct−1;∆pt−1]
ct ← ct−1 +T (xt−1)
ut ← G(ct )

end while

5 RESULTS
In the following we demonstrate that our Deep Fluids CNN can
reliably recover and synthesize dynamic flow fields for both smoke
and liquids. We refer the reader to the supplemental video for the
corresponding animations. For each scene, we reconstruct velocity
fields computed by the generative network and advect densities for
smoke simulations or surfaces for liquids. Vorticity confinement or
turbulence synthesis were not applied after the network’s recon-
struction, but such methods could be added as a post-processing
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Fig. 5. Autoencoder (top) and latent space integration network (bottom). The
autoencoder compresses a velocity field u into a latent space representation
c, which is composed by a supervised and unsupervised part (z and p,
respectively). The latent space integration network finds mappings from
subsequent latent code representations ct−1 and ct .

step. We trained our networks using the Adam optimizer [Kingma
and Ba 2014] for 300,000 iterations with varying batch sizes to max-
imize GPU memory usage (8 for 2-D and 1 for 3-D). For the time
network T , we use 30,000 iterations. The learning rate of all net-
works is scheduled by a cosine annealing decay [Loshchilov and
Hutter 2016], where we use the learning range from Smith [2015].
Scene settings, computation times and memory consumptions are
summarized in Table 1. Fluid scenes were computed with Mantaflow
using an Intel i7-6700K CPU at 4.00 GHz with 32GB memory, and
CNN timings were evaluated on a 8GB NVIDIA GeForce GTX 1080
GPU. Networks are trained on a 12GB NVIDIA Titan X GPU. 1

5.1 2-D Smoke Plume
A sequence of examples which portray varying, rising smoke plumes
in a rectangular container is shown in Figure 3, where advected
densities for different initial source positions (top) and widths (bot-
tom) are shown. Since visualizing the advected smoke may result in
blurred flow structures, we display vorticities instead, facilitating
the understanding of how our CNN is able to reconstruct and in-
terpolate between samples present in the data set. Additionally, we
use the hat notation to better differentiate parameters that do not
have a direct correspondence with the ground truth data (e.g., p̂x
for an interpolated position on the x-axis). Our training set for this
example consists of the combination of 5 samples with varying
source widthsw and 21 samples with varying x positions px . Each
simulation is computed for 200 frames, using a grid resolution of
96×128 and a domain size of (1, 1.33). Hence, the network is trained
with a total of 21, 000 unique velocity field samples.

Reconstruction with Direct Correspondences to the Data Set. To
analyze the reconstruction power of our approach, we compare gen-
erated velocities for parameters which have a direct correspondence
to the original data set, i.e. the ground truth samples. Figure 6 shows

1Data sets and source code will be made publicly available.

G.t. px = 0.5 CNN px = 0.5 G.t. px = 0.5 CNN px = 0.5

Fig. 6. Vorticity plot of a 2-D smoke simulation with direct correspondences
to the training data set for two different times, at fixed position px = 0.5.
Our CNN is able to closely approximate ground truth samples (G.t.).

vorticity plots comparing the ground truth (G.t.) and our CNN out-
put for two different frames. The CNN shows a high reconstruction
quality, where coarse structures are almost identically reproduced,
and fine structures are closely approximated.

CNN px = 0.46 CNN p̂x = 0.48 G.t. px = 0.48 CNN px = 0.5

Fig. 7. Vorticity plot of a 2D smoke simulation showingCNN reconstructions
at ground truth correlated positions px = 0.46 and px = 0.5, and the
interpolated result at p̂x = 0.48. The third column shows a ground truth
simulation which is not part of the training data set for px = 0.48.

Sampling at Interpolated Parameters. We show the interpolation
capability of our approach in Figure 7. Left and right columns show
the CNN reconstructions at ground truth correlated positions px =
0.46 and px = 0.5, while the second column shows a vorticity plot
interpolated at p̂x = 0.48. The third column shows the simulated
ground truth for the same position. For positions not present in the
original data, our CNN synthesizes plausible new motions that are
close to ground truth simulations.

5.2 3-D Smoke Examples
Smoke & Sphere Obstacle. Figure 8 shows a 3-D example of a

smoke plume interacting with a sphere computed on a grid of size
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64 × 96 × 64. The training data consists of ten simulations with
varying sphere positions, with the spaces between spheres centroid
samples consisting of 0.06 in the interval [0.2, 0.8]. The left and right
columns of Figure 8 show the CNN-reconstructed simulations at
positions px = 0.44 and px = 0.5, while the second column presents
the interpolated results using our generative network at p̂x = 0.47.
Even with a sparse and hence challenging training data set, flow
structures are plausibly reconstructed and compare favorably with
ground truth simulations (third column) that were not present in
the original data set.

CNN px = 0.44 CNN p̂x = 0.47 G.t. px = 0.47 CNN px = 0.5

Fig. 8. Interpolated result (second column) given two input simulations
(left and right) with different obstacle positions on the x-axis. Our method
results in plausible in-betweens compared to ground truth (third column),
even in the presence of large discrepancies between the input flow states.

Smoke Inflow and Buoyancy. A collection of simulations with
varying inflow speed (different columns) and buoyancy (different
rows) is shown in Figure 2 for the ground truth (left) and our gener-
ative network (right). We generated 5 inflow velocities (in the range
[1.0, 5.0]) along with 3 different buoyancy values (from 6 × 10−4 to
1 × 10−3) for 250 time frames. Thus, the network was trained with
3, 750 unique velocity fields. Figure 9 demonstrates an interpolation
example for the buoyancy parameter. The generated simulations
on the left and right (using a buoyancy of 6 × 10−4 and 1 × 10−3,
respectively) closely correspond to the original data set samples,
while the second simulation is reconstructed by our CNN using an
interpolated buoyancy of 8 × 10−4. We show the ground truth simu-
lation on the third image for a reference comparison. Our method
recovers structures accurately, and the plume shape matches the
reference ground truth.

CNN b = 6 × 10−4 CNN b̂ = 8 × 10−4 G.t. b = 8 × 10−4 CNN b = 1 × 10−3

Fig. 9. Results for a rising plumewith different buoyancy values. The left and
right images show reconstructions for simulations present in the training
data set. The second image shows a reconstruction for an interpolated
buoyancy value (b̂ = 8 × 10−4), while the third image shows the ground
truth for comparison.

Rotating Smoke. We trained our autoencoder and latent space
integration network for a smoke simulation with a periodically
rotating source (period equals to 100 frames) in the XZ -plane for
500 frames. This example is designed as a stress test for extrapolating
time using our latent space integration network. In Figure 10, we
show that our approach is able to correctly capture the periodicity
present in the original data set. Moreover, the method successfully
generates another 500 frames, resulting in a simulation that is 100%
longer than the original data.

G.t., last frame +20% +60% +100%

Fig. 10. Simulation results illustrating the effect of time extrapolation using
our latent space integration network. The left image shows the last frame
of the ground truth simulation. The subsequent images show results with
time extrapolation of +20%, +60% and +100% of the original frames.

Moving Smoke. A smoke source is moved on the XZ -plane along
a path randomly generated using Perlin noise. We sampled 200
simulations on a grid of size 48× 72× 48 for 400 frames - a subset is
shown in Figure 11 - and used them to train our autoencoder and
latent space integration networks. In Figure 12, we show a moving
smoke source whose motion is not part of the training data and was
computed by integrating in the latent space. We extrapolate in time
to increase the simulation duration by 100% (i.e., 800 frames). The
network generates a plausible flow for this unseen motion over the
full course of the inferred simulation. Although the results shown
here were rendered offline, the high performance of our trained
model would allow for interactive simulations.

5.3 3D Liquid Examples
Spheres Dropping on a Basin. We demonstrate that our approach

can also handle splashing liquids. We use a setup for two spheres
dropping on a basin, which is parameterized by the initial distance of
the spheres, as well as by the initial drop angles along theXZ−plane
relative to the basin. We sample velocity field sequences by combin-
ing 5 different distances and 10 different angles; Figure 13 shows
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Fig. 11. Example simulations of the moving smoke scene used for training
the extended parameterization networks.

t = 380 t = 400 t = 420 t = 440 t = 460

Fig. 12. Different snapshots of a moving smoke source example simulated
in the latent space. The smoke rises realistically for the new motion of the
smoke source.

d = 0.15, θ = 0◦ d = 0.25, θ = 0◦ d = 0.15, θ = 90◦ d = 0.25, θ = 90◦

Fig. 13. Training samples for the liquid spheres example, varying distances
and angles relative to the basin. We use 5 distances and 10 angles, yielding
a total of 50 simulation examples.

4 of the training samples. With 150 frames in time, the network is
trained with 7, 500 unique velocity fields. We used a single-phase
solver and extrapolated velocities from the liquid to the air phase be-
fore training (extrapolation size = 4 cells). Figure 14, middle, shows
our result for an interpolated angle of θ̂ = 9◦ and a sphere distance
of d̂ = 0.1625, given two CNN-reconstructed input samples on the
left (θ = 0◦,d = 0.15) and right (θ = 18◦,d = 0.175). Our results
demonstrate that the bulk of the liquid dynamics are preserved well.
Small scale details such as high-frequency structures and splashes,
however, are particularly challenging and deviate from the reference
simulations.

Viscous Dam Break. In this example, a dam break with four differ-
ent viscosity strengths (µ = 2×[10−5, 10−4, 10−3, 10−2])was used to
train the network. Our method can reconstruct simulations with dif-
ferent viscosities accurately, and also interpolate between different
viscosities with high fidelity. In Figure 15, the CNN-reconstructed,
green-colored liquids have direct correspondences in the original

d = 0.15, θ = 0◦ d̂ = 0.1625, θ̂ = 9◦ d = 0.175, θ = 18◦

Fig. 14. Parameter interpolation for the liquid spheres example. All three
results shown here were generated by our CNN. While the far left and right
simulations employ parameter settings that were part of the training data,
the middle example represents a new in-between parameter point which is
successfully reconstructed by our method.

dataset; the pink-colored simulations are interpolation results be-
tween the two nearest green samples. Additionally, it is also possible
to increase the viscosity over time as shown in Figure 16. The results
show that this works reliably although the original parameterization
does neither support time-varying viscosities nor do the training
samples represent such behavior.

Fig. 15. Snapshots of a CNN reconstructed dam break with different viscos-
ity strengths for two different frames. Green liquids denote correspondences
with ground truth (µ = 2×[10−4, 10−3, 10−2], back to front) while pink ones
are interpolated (µ̂ = 2 × [5−3, 5−2], back to front).

Frame 23, µ̂ = 1.04 × 10−3 Frame 64, µ̂ = 7.14 × 10−3

Fig. 16. Reconstruction result using a time varying viscosity strength. On
the first few frames the liquid quickly breaks into the container. As the sim-
ulation advances, the viscosity increases and the liquid sticks to a deformed
configuration.

Slow Motion Fluids. Our supplemental video additionally shows
an interesting use case that is enabled by our CNN-based interpola-
tion: the generation of temporally upsampled simulations. Based on
a trained model we can create slow-motion effects, which we show
for the liquid drop and dam break examples.
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6 EVALUATION AND DISCUSSION

6.1 Training
Our networks are trained on normalized data in the range [−1, 1].
In case of velocity fields, we normalize them by the maximum ab-
solute value of the entire data set. We found that batch or instance
normalization techniques do not improve our velocity fields output,
as the highest (lowest) pixel intensity and mean deviation might
vary strongly within a single batch. Frames from image-based data
sets have a uniform standard deviation, while velocity field snap-
shots can vary substantially. Other rescaling techniques, such as
standardization or histogram equalization, could potentially further
improve the training process.

Convergence of the Training. The presented architecture is very
stable and all our tests have converged reliably. Training time highly
depends on the example and the targeted reconstruction quality.
Generally, 3-D liquid examples require more training iterations (up
to 100 hours of training) in order to get high quality surfaces, while
our smoke examples finished on average after 72 hours of training.
Figure 17 shows a convergence plot of the 2-D smoke example,

with training iterations on the x-axis and error on the y-axis. The
superimposed images show clearly how quality increases along with
training iterations. After about 180, 000 iterations, the smoke plume
is already reconstructed with good accuracy. This corresponds to
roughly 3 hours of training on our hardware.

Fig. 17. Convergence plot of the L1 loss for the 2-D smoke sequence from
Figure 7.

6.2 Performance Analysis
Table 1 summarizes the statistics of all presented examples. In terms
of wall-clock time, the proposed CNN approach generates velocity
fields up to 700× faster than a standard fluid solver. Some care must
be taken when interpreting this number because our Tensorflow
network runs on the GPU, while the original Mantaflow code runs
on the CPU. Fluid simulations are known to be memory bandwidth-
limited [Kim 2008], and the bandwidth discrepancy between a GTX
1080 (320 GB/s) and our Intel desktop (25.6 GB/s) is a factor of 12.5.
However, even if we conservatively normalize by this factor, our
method achieves a speed-up of up to 58×. Thus, the core algorithm
is still at least an order of magnitude faster. To facilitate comparisons
with existing subspace methods, we do not include the training time
of our CNN when computing the maximum speedup, as precompu-
tation times are customarily reported separately. Instead, we include
them in the discussion of training times below. Finally, the memory
consumption of our method is at most 30 MB, which effectively

compresses the input data by over 1300×. Previous subspace meth-
ods [Jones et al. 2016] only achieved ratios of 14×, so our results
improve on the state-of-the-art by two orders of magnitude.
Contrary to traditional solvers, our approach is able to gener-

ate multiple frames in time independently. Thus, we can efficiently
concatenate CNN queries into a GPU batch, which then outputs mul-
tiple velocity fields at once. Adding more queries increases the batch
size (Table 1, 5th column, number in brackets), and the maximum
batch size depends on the network size and the hardware’s memory
capacity. Since we are using the maximum batch size possible for
each scene, the network evaluation time scales inversely with the
maximum batch size supported by the GPU. Due to the inherent
capability of GPUs to efficiently schedule floating point operations,
the time for evaluating a batch is independent of its size or the size
of the network architecture. Additionally, our method is completely
oblivious to the complexity of the solvers used to generate the data.
Thus, more expensive stream function [Ando et al. 2015] or energy-
preserving [Mullen et al. 2009] solvers could potentially be used
with our approach, yielding even larger speed-ups.

In contrast, computing the linear basis using traditional SVD-
based subspace approaches can take between 20 [Kim and Delaney
2013] and 33 [Wicke et al. 2009] hours. The process is non-iterative,
so interrupting the computation can yield a drastically inferior result,
i.e. themost important singular vectormay not have been discovered
yet. Stanton et al. [2013] were able to improve the precomputation
time to 12 hours, but only by deploying to a 110-node cluster. In
contrast, our iterative training approach is fully interruptible, and
runs on a single machine.

6.3 Quality of Reconstruction and Interpolation
Training Data. Several factors affect

the reconstruction and interpolation
quality of the vector fields. An inherent
problem of machine learning approaches
is that quality strongly depends on the
data used for training. In our case, the
performance of our generative model for
interpolated positions is sensitive to the input sampling density
and parameters. If the sampling density is too coarse, or if the out-
put abruptly changes with respect to the variation of parameters,
errors may appear on reconstructed velocity fields. These errors
include the inability to accurately reconstruct detailed flow struc-
tures, artifacts near obstacles, and especially ghosting effects in the
interpolated results. An example of ghosting is shown in the inset
image on the left where only 11 training samples are used, instead
of the 21 as used in Section 5.1.

Target Quantities. We have also
experimented with training directly
with density values (inset image, left)
instead of the velocity fields (inset im-
age, right). In case of density-trained
networks, the dynamics fail to re-
cover the non-linear nature of momentum conservation and ar-
tifacts appear. Advecting density with the reconstructed velocity
field yields significantly better results. A more detailed discussion
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Grid Simulation Eval. Time Speed Up Data Set Network Compression Training
Scene Resolution # Frames Time (s) (ms) [Batch] (×) Size (MB) Size (MB) Ratio Time (h)
2D Smoke Plume (Fig. 6) 96 × 128 21,000 0.033 0.052 [100] 635 2064 12 172 5
Smoke Obstacle (Fig. 8) 64 × 96 × 64 6,600 0.491 0.999 [5] 513 31143 30 1038 74
Smoke Inflow (Fig. 9) 112 × 64 × 32 3,750 0.128 0.958 [5] 128 10322 29 356 40
3D Liquid Drops (Fig. 14) 96 × 48 × 96 7,500 0.172 1.372 [3] 125 39813 30 1327 134
Varying Viscosity (Fig. 15) 96 × 72 × 48 600 0.984 1.374 [3] 716 2389 29 82 100
Rotating Smoke (Fig. 10) 48 × 72 × 48 500 0.08 0.52 [10] 308 995 38 26 49
Moving Smoke (Fig. 12) 48 × 72 × 48 80,000 0.08 0.52 [10] 308 159252 38 4191∗ 49

Table 1. Statistics for training data sets and our CNN. Note that simulation excludes advection and is done on the CPU, while network evaluation is executed
on the GPU with batch sizes noted in brackets. In case of liquids, the conjugate gradient residual threshold is set to 1e−3, while for smoke it is 1e−4. For the
Rotating and Moving Smoke scenes, the numbers for training time and network size include both the autoencoder and latent space integration networks.
* We optimize the network for subspace simulations rather than the quality of reconstruction, so we do not take this number into account when evaluating
the maximal compression ratio.

about the quality of the interpolation regarding the number of input
samples and discrepancies between velocity and density training is
presented in the supplemental material.

Velocity Loss. A comparison between our compressible loss, in-
compressible functions and a ground truth simulation is shown in
Figure 18. The smoke plume trained with the incompressible loss
from Equation (1) shows a richer density profile closer to the ground
truth, compared to results obtained using the compressible loss.

ûc = G(c) ûc = ∇ ×G(c) G.t. Close-up views

Fig. 18. Comparisons of the results from networks trained on our compress-
ible loss, incompressible loss and the ground truth, respectively. On the
right sequence we show the highlighted images from the simulations on
the left. We notice that the smoke patterns from the incompressible loss are
closer to ground truth simulations.

Boundary Conditions. The proposed CNN is able to handle im-
mersed obstacles and boundary conditions without additional modi-
fications. Figure 19 shows sliced outputs for the scene from Figure 8
which contains a sphere obstacle. We compare velocity (top) and
vorticity magnitudes (bottom). The first and last images show the
reconstruction of the CNN for px positions that have correspon-
dences in the training data set. The three images in the middle
show results from linearly blending the closest velocity fields, our
CNN reconstruction and the ground truth simulation, from left to
right respectively. In the case of linearly blended velocity fields,
the non-penetration constraints for the obstacle are not respected,
as velocities are present inside the intended obstacle positions. In
Figure 20, we plot the resulting velocity penetration errors. Here
we compute the mean absolute values of the velocities inside the
voxelized sphere, normalized by the mean sum of the velocity mag-
nitudes for all cells around a narrow band of the sphere. Boundary
errors are slightly higher for interpolated parameter regions (orange

line in Figure 20), since no explicit constraint for the object’s shape is
enforced. However, the regularized mean error still accounts for less
than 1% of the maximum absolute value of the velocity field. Thus,
our method successfully preserves the non-penetration boundary
conditions.

CNN px = 0.44 Lin. p̂x = 0.47 CNN p̂x = 0.47 G.t. px = 0.47 CNN px = 0.5

Fig. 19. Slice views of last row in Fig. 8. The color code in each row represents
the magnitude of velocity (top) and vorticity fields (bottom). The second
column shows a linear interpolation of the input data. Despite the absence
of any constraints on boundary conditions, our method (third column)
preserves the shape of the original sphere obstacle, and yields significantly
better results than the linear interpolation.

Fig. 20. Mean absolute error plot of velocity penetration for the smoke
obstacle example. Though errors in interpolated samples are a bit higher
than those of reconstructed samples, they do not exceed 1% of the maximum
absolute value of the data set.
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Liquid-air Interface. Due to the separate advection calculation
for particles in our FLIP simulations, smaller splashes can leave the
velocity regions generated by our CNNs, causing surfaces advected
by reconstructed velocities to hang in mid-air. Even though the
reconstructed velocity fields closely match the ground truth samples,
liquid scenes are highly sensitive to such variations. We removed
FLIP particles that have small velocities in such regions, which was
sufficient to avoid hanging particles artifacts.

6.4 Extrapolation and Limitations
Extrapolation with Generative Model. We evaluated the extrap-

olation capabilities for the case where only the generative part of
our Deep Fluids CNN (Section 3) is used. Generally, extrapolation
works for sufficiently small increments beyond the original parame-
ter space. Figure 21 shows an experiment in which we used weights
that were up to 30% of the original parameter range ([−1, 1]). The
leftmost images show the vorticity plot for the maximum value of
the range for the position (top), inflow size (middle), and time (bot-
tom) parameters of the 2-D smoke plume example. The rightmost
images show the maximum variation of parameters, in which the
simulations deteriorate in quality. In practice, we found that up to
ca. 10% of extrapolation still yielded plausible results.

Last +5% +10% +20% +30%

Fig. 21. Extrapolation results of the 2-D smoke plume example (from top
to bottom: position, inflow width, time) for the case where only the gen-
erative network is used. Plausible results can be observed for up to 10%
extrapolation; larger values lead to degraded results.

Limitations. Our Deep Fluids CNN is designed to generate veloc-
ity fields for parameterizable scenes. As such, our method is not
suitable for reconstructing arbitrary velocity fields of vastly dif-
ferent profiles by reduction to a shared latent representation. As
discussed in Section 6.3, there is also no enforcement of physical
constraints such as boundary conditions for intermediate interpo-
lated parameters. Thus, the capability of the network to reconstruct
physically accurate samples on interpolated locations depends on

the proximity of the data samples in the parameter space. Addition-
ally, the reconstruction quality of the autoencoder and latent space
integration networks are affected by the size of the latent space c.
We provide an extended discussion regarding the reconstruction
quality and the latent space size on our supplemental material.

7 CONCLUSION
We have presented a first generative deep learning architecture that
successfully synthesizes plausible and divergence-free 2-D and 3-D
fluid simulation velocities from a set of reduced parameters. Our
results show that generative neural networks are able to construct
a wide variety of fluid behaviors, from turbulent smoke to viscous
liquids, that closely match the input training data. Moreover, our
network can synthesize physically plausible motion when the input
parameters are continuously varied to intermediate states that were
not present during training. In addition, we can handle complex
parameterizations in a reduced latent space, enabling flexible latent
space simulations by using a latent space integration network.

Our solver is considerably faster (up to 700×) than traditional CPU
solvers, which make CNNs an attractive approach for simulating
scenarios where input interactions can be parameterized. These
performance characteristics immediately suggest applications in
games and virtual environments. Fluid simulations are also known
to demand large disk and memory budgets in movie productions, so
the compression characteristics of our algorithm (over 1300×) make
it appealing in these environments as well.
Our CNN architecture was carefully designed to achieve high

quality fluid simulations, which is why the loss function considers
both the velocity field and its gradient. Over the course of evalu-
ating many alternatives, we found that the most important factor
to simulation quality was the amount of training data. If the data
sets are too sparse, artifacts appear, and important flow structures
are missing. We address this issue by simply increasing the num-
ber of training samples, but in scenarios where data was directly
captured or the simulation times are prohibitive, this may not be
feasible. Improving the reconstruction quality of interpolated states
over sparsely sampled data sets is an open direction for future work.
Overall, we found that the proposed CNN is able to reproduce

velocity fields accurately. However, for small-scale details or near
discontinuities such as boundary conditions, the network can some-
times smooth out fine flow structures. A possible future research di-
rection is the exploration of generative adversarial networks (GANs)
or alternative distance measures to enhance the accuracy for fine
structures in the data. Our CNN-based algorithm is the first of its
kind in the fluids community, and we believe that the combined
speed, interpolation and compression capabilities of our approach
can enable a variety of future applications, such as interactive liquid
simulations [Prantl et al. 2017] or implementations of fluid databases.
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