
Volume 0 (1981), Number 0 pp. 1–12 COMPUTER GRAPHICS forum

Stylized Image Triangulation

Kai Lawonn1 and Tobias Günther2

1University of Koblenz-Landau, Germany
2ETH Zurich, Switzerland

Figure 1: Stylized image triangulations that were created with our optimization-based framework. From left to right: a still life (constant color
with hatching), river photograph (constant color with hatching), a concert (constant color with texture) and a giraffe (linear color gradients).

Abstract
The art of representing images with triangles is known as image triangulation, which purposefully uses abstraction and
simplification to guide the viewer’s attention. The manual creation of image triangulations is tedious and thus several tools have
been developed in the past that assist in the placement of vertices by means of image feature detection and subsequent Delaunay
triangulation. In this paper, we formulate the image triangulation process as an optimization problem. We provide an interactive
system that optimizes the vertex locations of an image triangulation to reduce the root mean squared approximation error. Along
the way, the triangulation is incrementally refined by splitting triangles until certain refinement criteria are met. Thereby, the
calculation of the energy gradients is expensive and thus we propose an efficient rasterization-based GPU implementation. To
ensure that artists have control over details, the system offers a number of direct and indirect editing tools that split, collapse and
re-triangulate selected parts of the image. For final display, we provide a set of rendering styles, including constant colors, linear
gradients, tonal art maps and textures. Lastly, we demonstrate temporal coherence for animations and compare our method with
existing image triangulation tools.

This is the authors preprint. The definitive version is available at https://onlinelibrary.wiley.com/ and at https://doi.org/10.1111/cgf.13526.

1. Introduction

In the arts, image triangulations have recently been celebrated
for combining raw geometry with organic hand-drawn structures
to provide abstract, yet characteristic renditions of photographs
and illustrations. As such, they raised noticeable interest in the
artistic communities, ranging from exhibitions and applications
in art galleries, several music videos, magazines and in public
places [Bry17, Puc08, Yun13]. To create an image triangulation,
the artist divides the image into triangles, which receive the average
color (or a linear gradient) that approximates the covered portion of
the image. An artist has three central goals when forming a trian-
gulation: (a) to place details where needed, (b) to approximate the
original image as best as possible, and (c) use as few triangles as

possible. Since the manual creation of such a triangulation is tedious,
a number of applications have been developed that assist in the gen-
eration of image triangulations [Ham12, Fis16, Bór17, Puc08, Oll15,
Leu15, Yun13, SM16, Con16]. However, they all have in common
that they only assist in goal (a): they automatically place vertices at
image features and allow manual editing of a subsequently created
Delaunay triangulation. To the best of our knowledge, the approxi-
mation quality (b) of an image triangulation has not been formally
assessed and optimized.

In this paper, we propose a novel method to automatically gener-
ate image triangulations, which considers both the image features
and the approximation quality in terms of the root mean squared
distance to the underlying image. We formulate the triangulation

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Kai Lawonn and Tobias Günther / Stylized Image Triangulation

process as an energy minimization problem that automatically ad-
justs the vertex positions of the triangulation. The triangulation is
iteratively refined by incrementally inserting further triangles un-
til desired approximation criteria are met. The computation of the
energy gradients is thereby an expensive calculation, for which we
propose an efficient rasterization-based GPU implementation. To
ensure artistic control over details, we provide direct and indirect
manipulation tools that allow the artist to insert triangles, remove
vertices, flip edges and re-triangulate selected regions. In our work,
we collect several rendering styles, which include constant colors,
linear gradients, as well as tonal art maps and textures. Furthermore,
we show the potential of our work by applying the method to videos.
Overall, this work comprises the following contributions:

• We formulate the image triangulation process as a minimization
problem. The triangulation is optimized by moving the vertex
positions such that the approximation error is reduced and we
adaptively insert vertices in areas of high approximation errors.

• We provide an efficient rasterization-based approach to calculate
the gradients of the approximation errors on the GPU.

• We provide interactive tools for the editing of the resulting image
triangulation to offer the artist control over details.

• We collect several rendering styles for the triangles, including
constant colors, linear gradients, tonal art maps and textures.

• We apply our method to video data and obtain frame-coherent
video triangulations.

For the first time, artists are able to improve the approximation qual-
ity of a triangulation automatically. As we show later, our method
leads to better results compared to existing work, both quantitatively
and qualitatively. We refer to Fig. 1 for several examples of image
triangulations that were generated with our tool.

2. Related Work

Much research aimed at stylization of images and videos [KCWI13],
including abstraction through stylization [DS02], stippling [Sec02],
pixel image abstraction [GDA∗12] and diffusion curves [OBB∗13].
In this paper, we focus on work that partitions an image into struc-
tures with constant colors. This comprises methods that subdivide
an image into triangles, as well as images that are modified based
on the L0 gradient minimization and image segmentation.

2.1. Image Triangulation

For different stylized image representations, Grundland et
al. [GGD08] sampled points based on image characteristics and
calculated Delaunay triangulations as an intermediate step before
applying various procedural or geometric rendering styles. The
edges of the triangulation do not match the image characteristics
and do not follow the objectives of our minimization. While the
main goal of Grundland et al. was to generate different stylized
image representations, the focus of our paper is to generate triangles
only, which approximate the overall impression of the image. A
number of image triangulation projects can be found online in form
of commercial products or open source implementations. These
projects have in common that points are placed at features and after-
wards a Delaunay triangulation is performed. First, we concentrate
on online tools that are available for free. Bórquez [Bór17] offered

three algorithms that all detect edges, place vertices on those edges
and construct a Delaunay triangulation. Two user parameters were
provided: one for Laplacian smoothing of the image and one that
indirectly adjusts the number of vertices. This method prioritizes
strong edge features, tends to generate large triangles and provides
limited artistic control. Triangulate 7 of Conceptfarm [Con16] places
feature points more uniformly, which generates more well-behaved
triangles. Their image blurring is edge preserving and they offered
the option to manually delete points. Hamamuro [Ham12] adjusted
the density of triangles to the image features, creating many small
triangles along edges and a coarse triangulation in large smooth
areas. This method is fully automatic. Fischer [Fis16] extended the
work of Hamamuro [Ham12]. The triangles produced by this exten-
sion do not follow image edges well and vertices are only placed in
regions with sufficient image features (using thresholding), which
can produce a noticeable discontinuity in gradients, as demonstrated
later. This tool provides an interesting stylization parameter, which
creates elongated triangles to purposefully resembles strokes. This,
however, produces overlapping triangles.

Polygonian by Leung [Leu15] is a mobile app that allows users to
manually move, add and remove vertices that were initially placed
automatically. Similar to Hamamuro [Ham12], the method adapts
well to image features. Trimaginator by Ollivier [Oll15] is a com-
mercial mobile app that provides editing tools and a collection of
rendering styles that change the triangle and edge color of the result-
ing image triangulation. The tool not only places vertices according
to image features, but also provides a radial layout. Polyshaper by
Marin [SM16] initializes the triangulation either from an edge sam-
pling or from a Poisson disc sampling. In addition, triangles can be
placed manually and edge and triangle colors can be color-shifted
and globally edited. Dmesh by Yun [Yun13] offers manual editing
of triangulations, a parameter for controlling the density of triangles
and an automatic placement according to image edges. Their tool
further supports batch processing for the generation of videos, which
however, are not temporally coherent. All methods above display
triangles with constant colors. Delaunay Raster by Puckey [Puc08]
also uses color gradients in the triangulations.

Besides all previously mentioned techniques that aim to gen-
erate a triangulated image from an aesthetic perspective, work
has been done that generates triangles for various other reasons.
Hoppe [Hop96] introduced a mesh simplification method that re-
duces the number of triangles of a given surface such that the geom-
etry is preserved. Starting from an initial triangulation of an image,
his method can be applied to reduce the number of triangles. Later,
Garland and Heckbert [GH97] improved the simplification scheme
by using an error metric. Cohen et al. [CDHM11] employed a greedy
refinement procedure for the generation of a triangulation. Their
method produces a hierarchy of triangulations. Yang et al. [YWB03]
presented a novel idea for image compression. For this, they first
detected the most significant pixels by applying a modified version
of the Floyd-Steinberg algorithm and afterwards, these pixels were
used to create a Delaunay triangulation. Finally, the color of the
triangles was linearly interpolated with regard to the underlying
grayscale image. Demaret and Iske [DI04] also followed the idea to
construct a triangulation of the image by applying a Delaunay trian-
gulation. Again, the most significant pixels need to be determined,
which was calculated by using adaptive thinning, which was first in-

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Kai Lawonn and Tobias Günther / Stylized Image Triangulation

troduced to approximate large set of scattered data. Adams [Ada11]
proposed a mesh generation framework to triangulate an image,
which achieved lower computational and memory complexity. Their
method produces comparable results. Later, Adams [Ada13] was
able to produce better results at lower computational cost. Tu and
Adams [TA13] extended the method by introducing a novel method
to represent discontinuities at image edges. After an initial triangu-
lation was computed, image edges were identified and points were
inserted such that these edge were represented by triangle edges.
Mostafavian and Adams [MA15] employed an optimization algo-
rithm to reduce the approximation error in the reconstructed image.
Experiments showed that their technique produces better results
compared to the previously mentioned methods.

To the best of our knowledge, there is no method that uses an en-
ergy minimization to optimize the approximation quality by moving
the vertices of an image triangulation. However, the previously men-
tioned approaches could serve as input for our method. Afterwards,
the energy could be minimized by applying our framework.

2.2. L0 Gradient Minimization

Xu et al. [XLXJ11] presented the L0 gradient minimization method
to obtain regions with constant color by letting the derivatives vanish.
Their method fits an approximated image by minimizing the L0 gra-
dient, i.e., the non-zero gradient. Thus, it fits an image with reduced
differences in color of neighboring pixels. Cheng et al. [CZL14] built
up on the method by Xu et al. They employed a fused coordinate
descent framework to obtain better results. Storath et al. [SWD14]
introduced an optimization scheme that approximates L0 gradient
minimization based on dynamic programming and an alternating
direction method of multipliers. An edge-preserving image smooth-
ing approach was presented by Min et al. [MCL∗14]. They achieved
high-quality results with significantly improved runtime by mini-
mizing a global objective function. This is accomplished by solving
a sequence of 1D subsystems. Zhang et al. [ZXJ14] used a weighted
median filter to imitate the L0 filter, which reduces the computation
complexity per pixel from O(r2) to O(r) with r being the kernel
size. Nguyen and Brown [NB15] presented an approach to minimize
the L0 gradient with improved runtime. They employed a region
fusion method that unites regions of similar color to obtain regions
of constant color. We focus on image partitions into triangles.

2.3. Image Segmentation

Image segmentation partitions an image into different classes, which
can be represented with constant color. The area of image segmen-
tation is a broad field that has grown over the last years. It com-
prises methods based on thresholding [RC78, Ots79], clustering
approaches [LM99, CQM∗15], histograms [OPR78, AA06], region-
growing [HP74, NN04] and graph-partitioning [GPS89]. For more
information about image segmentation, we refer the reader to recent
surveys [ZA15, SD15, ZL16].

3. Optimization-based Image Triangulation

A key criterion for a successful image triangulation is its approx-
imation quality of the original image. Thus, in the following, we

residual: 8.56 residual: 6.69
Original Constant color Linear gradients

Figure 2: Triangulation of Antennae galaxies (left) with 1500 trian-
gles, using constant colors (middle) and linear gradients (right).

formally pose image triangulation as an energy minimization prob-
lem that reduces the approximation error. Afterwards, we describe
how to carry out the minimization, how to initialize and refine the
triangulations and how users can interact in the process.

3.1. Problem Formulation

Given is an image I : U ⊂ IR2→C, where U describes the image
domain and C is the color space, e.g., an RGB triplet or gray value.

Subdivision into Triangles. Our goal is to approximate an image
using triangles. Thus, we first subdivide the image domain U into
triangles T . Formally, the set of all triangles T is a simplicial
complex that consists of 2-simplices (and their faces) such that the
union of the triangles in T is U :⋃

T∈T
T =U (1)

Note, for every Ti,Tj ∈ T with Ti 6= Tj, the intersection Ti ∩ Tj
is either empty, a 0-simplex (point), or a 1-simplex (line). Thus,
adjacent triangles are not disjoint. Instead, they share the edges.

Triangle Colors. The color f of triangle T ∈T shall approximate
the underlying portion of image I that is covered by the triangle. We
represent f as polynomial that is defined over the domain of T . We
provide two options; a constant and a linear approximation:

constant: f (x,y) = c (2)

linear: f (x,y) = ax+by+ c (3)

The coefficients a, b and c can be computed by minimizing the
squared triangle approximation error E(T):

E(T) =
1
2

∫
T
(I(x)− f (x))2 dx → min (4)

Varying the polynomial degree of the bivariate polynomial f (x,y)
gives rise to different approximation accuracies. Eqs. (2) and (3)
constitute a constant color and a linear gradient, which are shown
in Fig. 2. We refer to Appendix A for the computation of a, b and
c. Higher-order polynomials are imaginable as well. For artistic
reasons, we decided to remain with constant and linear styles for a
simplifying rendition. Note that although we represent a constant
and a linear representation of the triangle, we are able to define
different stylizations based on this, see Sec. 5.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Kai Lawonn and Tobias Günther / Stylized Image Triangulation

Optimal Triangulation. We consider the optimal vertex positions
of a given triangulation to be the ones that minimize the sum of the
triangle approximation errors, i.e., the triangulation approximates
image I, and also minimizes an additional regularization term p(T):

E = ∑
T∈T

E(T)+λ p(T) → min (5)

The regularization term is detailed later and will allow the user to
enforce certain artistic constraints, such as the fairness of the tri-
angle shape. Thereby, parameter λ is a user parameter that steers
how much the position of the vertices are regularized, see Sec. 6.2-
Regularization. Note that Eq. (5) is an energy that is defined on a
very high-dimensional space: the unknowns are not only the loca-
tions of the vertex coordinates of the triangles, but also the number
of triangles is initially unknown. In the following sections, we intro-
duce a reformulation and an iterative approximation that help us to
minimize E.

3.2. Minimization

For now, we consider the number of triangles n to be fixed. We ex-
plain in Section 3.4 how n can be iteratively adapted. The remaining
degrees of freedom are the vertex locations of the triangulation.

Reformulation. In the following, we denote the set of all vertices
of a triangulation as V . A first observation is that the movement
of a single vertex v ∈ V only affects the approximation errors of
the adjacent triangles A (v) = {T ∈ T : v ⊂ T}. In other words,
the impact of a variation of v is local. This insight leads us to a
reformulation of Eq. (5) into a sum over vertices:

E = ∑
v∈V

E(v) → min (6)

where E(v) is the energy (or error) at a vertex:

E(v) = ∑
T∈A (v)

E(T)
3

+λ p(v) (7)

with p(T) = 1
3 ∑v∈T p(v). Note that each triangle is visited three

times, as we iterate over all adjacent triangles of the three corners.
Hence, the division by three. The key property of Eq. (6) is that
E is minimized when all summands E(v) are minimized, since
E(v) is positive. Thus, E can be minimized for a fixed topology by
optimizing the vertices v ∈ V of the triangulation in independent
threads. Here, p(v) models the regularization term per vertex.

Regularization. Our optimization will assume that each vertex is
always within its 1-ring, i.e., within the convex hull of vertices that
are connected by an edge. Formally, the 1-ring is:

N1(v) = {w ∈ (V \v) : w ∈A (v)} (8)

If this property is violated, degenerate or overlapping triangles might
occur. To move vertices towards the center of their 1-ring, we employ
a uniform Laplacian smoothing:

p(v) =
1

2 |N1(v)| ∑
w∈N1(v)

(w−v)2 (9)

Note that we define w2 := 〈w,w〉 as the dot product. By default,
we set the influence of the regularization to λ = 1×10−3, which

initial grid w/ optimization

(a) Regular layout

initial grid w/ optimization

(b) Importance sampling by saliency

Figure 3: Initial triangulations and their subsequent vertex optimiza-
tion without refinement: regular grid (left), saliency (right). Here,
with an equal number of vertices. Note that the saliency approach
adapts to image features, such as the wicks and reflections.

makes this a subtle effect. We refer to Nealen et al. [NISA06] for
alternative approaches that are popular on 2D manifolds.

Gradient Descent. For minimization, we use a gradient descent
with step size h and an out-of-place update to avoid any dependence
on ordering:

v← v−h
dE(v)

dv
(10)

Further, we employ a trust region of 0.2 pixels (empirically chosen)
that clamps the maximum change in v per iteration. Optionally, the
trust region can decrease over time to prevent oscillation around the
minimum. Section 4.1 elaborates on the efficient rasterization-based
computation of the energy gradients dE(v)

dv in Eq. (10) on the GPU.

3.3. Initial Image Triangulation

The energy-minimizing method receives a triangulation as input,
which is iteratively improved by moving its vertices. We provide
the user two options to generate the initial triangulation: a regular
layout and a Delaunay triangulation of an importance sampling of
the initial vertices according to a given probability distribution.

Regular Layout. The regular layout places the vertices of the tri-
angulation on a regular grid. To form the triangles, adjacent vertices
are horizontally and vertically connected and for each grid cell a
diagonal from bottom left to top right is inserted. Fig. 3a gives an
example. The resulting triangulation guarantees that the valence
(number of vertices on the 1-ring) is not higher than 6. A small
valence can be helpful, since then a vertex influences fewer triangles
and acts thus more locally.

Importance Sampling. Alternatively, the user may provide a prob-
ability distribution to guide the initial placement of vertices. The
probability distribution may either be hand-drawn or it can be auto-
matically derived, e.g., from a saliency map [HHK12] that estimates
the visual importance of image features. The possibility to prescribe
a general probability distribution gives the artist complete control
over the sampling process. For importance sampling, we use the
inverse CDF method [PJH16] in 2D. Afterwards, a Delaunay trian-
gulation is applied to form the initial triangles, see Fig. 3b.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Kai Lawonn and Tobias Günther / Stylized Image Triangulation

τ = 4 τ = 3 τ = 2 τ = 1 τ = 0.5

|T |= 187 |T |= 269 |T |= 402 |T |= 1125 |T |= 2926
R = 214.4 R = 185.0 R = 159.8 R = 122.4 R = 91.6

Figure 4: Triangulations (top) and plots of
√

E(T)/|I| (bottom) for
refinement thresholds τ . Blue color represents a low error, whereas
a red color is used for a high error. Number of triangles |T | and the
total summed up approximation error R are listed below.

3.4. Refinement Strategy

In Section 3.2, we assumed that the number of triangles was constant
during the vertex updates. In the following, we lift this limitation.

Adaptive Refinement. We provide the user with the option to auto-
matically refine triangles. When the root mean triangle approxima-
tion error

√
E(T)/|I| exceeds a user-defined threshold τ , we insert a

new vertex at the centroid of the triangle. This way, our method can
start from a coarse triangulation (e.g., two triangles) and eventually
adapts to all image features. Automatic image triangulations and
their approximation errors are shown in Fig. 4 for various thresholds
τ . We employ a refinement strategy that retains a Delaunay triangu-
lation to keep the triangles as equi-angular as possible. Fortunately,
there are multiple methods available to efficiently insert a point into
an existing Delaunay triangulation. The option we used is to re-
store the Delaunay triangulation with incremental edge flips [ES96]:
Whenever the sum of the two angles that are opposite to an edge
exceeds 180◦, an edge flip is performed until no more such edges
are found. We perform this update on the CPU. Another option is
the Bowyer-Watson algorithm [Bow81, Wat81], which first removes
all triangles for which the inserted point is inside the circumcircle
of the triangle and afterwards retriangulates holes.

Non-Delaunay Triangulations. Note that the incremental update
of vertex positions in Eq. (10) can lead to triangulations that are
no longer Delaunay triangulations, since triangles might deform.
This is desired and necessary to adapt triangles to image features. In
practice, we alternate between refinement and vertex optimization
until the triangulation captures the details sufficiently. Despite the
regularization term, it can happen that vertices collapse onto each
other. For this reason, we remove triangles that have a small area by
performing an edge collapse on their shortest edge.

3.5. User Interaction

During the energy minimization or after the algorithm terminates,
we allow the user to influence the triangulation. Since our target
users are artists, we provide both easy to use high-level tools, as
well as methods to precisely edit individual triangles.

be
fo

re
af

te
r

triangle split edge split edge collapse edge flip retriangulate

Figure 5: For artistic precision, we provide basic mesh editing oper-
ations and allow the user to retriangulate manually drawn regions.

Detail Editing. A central goal of our framework is to provide the
user precise control. Thus, we implemented several mesh editing
operations, which are illustrated in Fig. 5. The edge split (left click
on edge) and triangle split (left click on triangle interior) allow
the artist to add new vertices. An edge collapse (right click on
vertex) collapses the selected vertex onto its nearest neighbor, which
allows to remove triangles. Further, an edge flip (right click on edge)
connects the opposite vertices of two adjacent triangles. Finally, the
vertex order of a triangle can be changed (left click with shift key
pressed), which determines the edge that textures are aligned with.

Brush. Refining larger areas can be tedious, when each vertex must
be placed or removed manually. For this reason, we provide a brush
tool, which inserts vertices in a circular area around the cursor. If
artists intend to increase the triangle density, for instance to guide
the attention of the viewer or to approximate visually important
regions more accurately, the brush is easily applied. The radius
is adjusted by scrolling the mouse wheel. Inside the circle, points
are sampled at a given rate (we used 10 per second) according to
a given probability distribution (uniform or normal distribution).
At the sampled point, a vertex is inserted (similar to left click) or
removed (right click) using the detail operations described above.

Retriangulation. Since the above brush operates only locally, we
further allow the artist to draw a selection mask in which vertices can
be resampled at once, which allows the user to uniformly increase or
decrease the vertex density in a selected region. Using the brushes
above, the artist first draws a selection mask onto the image. When
pressing a button, all vertices inside the selected region are deleted
and a user-defined number of vertices is uniformly sampled. The new
vertices are Delaunay triangulated and connected to the triangulation
outside the selected region, see Fig. 5 (right).

4. Implementation

In this section, we introduce an efficient rasterization-based ap-
proach to compute the energy gradients in Eq. (10).

4.1. Numerical Approximation of Energy Gradient dE(v)
dv

We compute the energy gradient dE(v)
dv of a vertex by determining

how a variation of vertex v affects the adjacent triangles. For this, we
need the energy gradients of the adjacent triangles, cf. Eq. (7). The
energy gradient of a triangle dE(T)

dv requires first the identification
and subsequently the variation of the respective corner using finite

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Kai Lawonn and Tobias Günther / Stylized Image Triangulation

differences. Let {aT , bT , cT } = T ∩V be the three corners of an
adjacent triangle T ∈A (v), then

dE(T)
dv

=


v = aT : E(aT+∆,bT ,cT)−E(aT−∆,bT ,cT)

2∆

v = bT : E(aT ,bT+∆,cT)−E(aT ,bT−∆,cT)
2∆

v = cT : E(aT ,bT ,cT+∆)−E(aT ,bT ,cT−∆)
2∆

(11)

with the notation E(aT ,bT ,cT) = E(T) and ∆ being the pixel size.
Note that at some point, each of the three triangle vertices has to
be moved into four directions (left, right, up, down) for the finite
differences. Thus, in total there are 12 variations of each triangle,
for which we have to minimize E(T). The minimization of E(T) is
detailed in Section 4.2.

To compute the vertex energy gradient dE(v)
dv , we follow Eq. (7),

i.e., we iterate over the adjacent triangles A (v) of vertex v and sum
up the triangle energy gradients, which are estimated using Eq. (11).
For this, we precompute for each vertex v an index list of adjacent
triangles A (v). Additionally, the indices of the three corners of the
triangles are stored. The three corners include the vertex v itself,
which we store at the first entry of this list.

4.2. Rasterization-based Minimization of E(T)

The minimization of triangle error E(T) requires the approxima-
tion of image I with a polynomial, see Eq. (4). Using a geometry
shader, we generate the aforementioned 12 triangles (every possible
displacement of each corner) and compute E(T) for each, so that
the errors can be looked up in Eq. (11).

Constant approximation. For the constant approximation, we
compute the mean color of the rasterized fragments for each of
the 12 displaced triangles and also for the original triangle.

1. Compute mean color. The geometry shader outputs an ID that
allows us to distinguish the 12+1 triangles. The fragment shader
of pixel (xi,yi) samples the underlying image I(xi,yi) and accu-
mulates the color and a fragment counter q for the respective
triangle using atomic operations. Since atomics on floats are
not natively supported on all hardware, we accumulate the 8-bit
colors with values in [0, 255] using integer arithmetic.

2. Compute error E(T). In a second pass, we again rasterize all tri-
angles and their variations. This time, the fragment shader looks
up the accumulated fragment color and the number of fragments
(counter) of the triangle to compute the mean color. Afterwards,
the squared difference between mean color and ground truth
I(xi,yi) is computed for each fragment and again accumulated
using atomic operations to obtain E(T), cf. Eq. (4).

Linear approximation. The computation of a linear color gradient
per triangle requires an additional computation step.

1. Setup linear system. Similar to the constant case, we first ras-
terize all triangles and their variants. In the fragment shader, we
atomically add the coefficients of the linear system, described in
Appendix A. This requires 6 coefficients for the symmetric 3×3
system matrix and 3 coefficients per color channel for the right-
hand side. Since the pixel coordinates are integer coordinates, all
atomic operations can be carried out with integer arithmetic.

2. Solve linear system. Afterwards, we use a compute shader to
solve the linear system for each triangle. Since the system matrix
is symmetric and positive-definite, we use a Cholesky factoriza-
tion [PTVF96]. See Appendix A for details.

3. Compute error E(T). In a second rasterization pass, the frag-
ment shaders look up the coefficients a, b, c of the respective
triangle, compute the fragment color using Eq. (3) and accumu-
late the squared difference to the ground truth using atomics.

5. Stylization Techniques

The minimization of E(T) in the previous section provides us the
polynomial coefficients a, b and c of the triangle color functions
f , cf. Eqs. (2)–(4). To display the triangulations, we augment the
colors f with several rendering styles. Fig. 6 provides an overview
of the different styles used throughout the paper.

Constant colors and linear gradients. The basic styles display the
colors f directly. Fig. 6b shows the constant colors from Eq. (2) and
Fig. 6c displays the linear color gradients from Eq. (3). Naturally,
the linear gradients approximate image I better if the image contains
smooth color transitions, such as in the Antennae galaxies in Fig. 2,
since constant colors introduce edges that were not present in the
original image.

Tonal art maps. The next styles are inspired by handcrafted art-
work of Josh Bryan [Bry17], who placed parallel lines inside trian-
gles. Lines are thereby aligned with one edge of the triangle and
their density is adjusted to the brightness (more lines appear darker).
His hand-drawn lines are not perfectly straight, which gives the
image a subtle organic feeling. In Fig. 6d, we approximate this style
using tonal art maps (TAMs) of Praun et al. [PHWF01]. A TAM is
a 3D texture that is seamless in each 2D slice and in which the third
dimension represents the brightness. With decreasing brightness,
lines are added, see Fig. 7. Aside from parallel lines, we also use
cross-hatching, which is shown in Fig. 6e. For texturing, we use
barycentric coordinates, which are scaled by the length of the base
edge to obtain a uniform pattern size throughout the image, regard-
less of the size of individual triangles. From the overall appearance
of Bryan’s work, the base edge appears to be randomly chosen. Our
users can adjust the base edge, see Section 3.5. In Fig. 1 (left), we
combined the hatching with the triangle color.

Triangle edges. On top of each style, multi-sampled triangle edges
can be rendered, which reveals the triangle topology. Edges are
shown in Fig. 6f and are applied for example in Figs. 9 and 10.

Lenses. For an experimental effect, we placed Gaussian-shaped
lenses on the triangles’ incenter. The fragment shader casts a ray
onto the parametric surface and refracts the ray towards the image
plane below. The effect creates larger image distortions near edges
in the image, since there the triangle density is higher, see Fig. 6g.

Textures. To enable an unlimited artistic degree of freedom, we
allow the user to place textures on the triangles. These textures mod-
ulate the brightness and can be used for instance to create intriguing
depth illusions. Figs. 6h and 6i for instance, apply a rotationally-
symmetric cushion texture and a recursively embedded triangle
texture that both augment the portrait by a new depth impression.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Kai Lawonn and Tobias Günther / Stylized Image Triangulation

(a) Original (b) Constant (c) Linear gradient (d) Lines (e) Hatching

(f) Triangle edges (g) Lenses (h) Cushions (i) Triangles (j) Incircles

Figure 6: Overview of all rendering styles, which were applied to the same portrait. In total, |T |= 880 triangles were used. In this example,
the user used the brushing tool to place more details at the eyes, mouth and ear to resemble the original image better.

Figure 7: Tonal art maps for line patterns and hatching. The hatching
textures were created by Praun et al. [PHWF01].

Incircles. Our last style uses another geometric primitive that is
derived from the triangulations. In the fragment shader, we com-
pute center and radius of the triangle’s incircle and apply the com-
mon smoothstep function 3r2−2r3 to the triangle colors f , where
r ∈ [0,1] is the relative distance to the incircle’s radius. Delicate
structures are typically represented with smaller triangles, which in
turn increases the density of incircles. In Fig. 6j for instance, shad-
ows at the shirt border and along facial features become apparent.

6. Results

In the following, we evaluate our method and show results for differ-
ent kinds of images, including portraits, landscapes and photographs.
We compare the method with existing approaches, discuss parame-
ters and elaborate on convergence and performance.

6.1. Comparisons

In Fig. 8, we compare our method with five existing image triangu-
lation tools [Bór17, Con16, Yun13, Fis16, Ham12]. Unfortunately,

these tools do not expose a user parameter that allows us to select a
desired target number of triangles. Instead, we applied the methods
with default parameters and show the obtained results. We applied
all methods to seven test images that contain diverse characteristics,
including abstract shapes, images with locally or globally high de-
gree of detail, a face and outdoor scenes. Furthermore, we adapt
the method by Garland and Heckbert [GH97] to construct an image
triangulation. Here, the desired number of triangles can be set.

The method of Conceptfarm [Con16] produces a triangulation
that contains roughly equally-sized triangles. The triangle density
does not increase near image features, and instead appears to be
uniform. Bórquez [Bór17] and Dmesh [Yun13] both adapt the trian-
gulation to image features (gradients). Thereby, the methods exhibit
a strong variation in triangle size, leading to preservation of some
details, yet large parts of the image might be unrecognizable. The
method of Fischer [Fis16] also adapts to features, but involves a
threshold that distinguishes between a fine-tessellated focus region
and a very coarse context. The transition is noticeable for instance in
the third row. The tool of Hamamuro [Ham12] aligns triangle edges
with image features, which enables a much better representation of
outlines. The technique by Garland and Heckbert [GH97] employs
a high number of triangles and reduces them by keeping the image
features. For this, we transformed the image in a grayscale image
and used the gray value as the height. Afterwards, we constructed
an initial triangulation, cf. Sec. 3.3. Finally, we applied the simpli-
fication algorithm by setting the number of triangles equal to our
result. Among the methods from related work it almost always gave
best results. In contrast, our method measures the current approx-
imation error of each triangle and adaptively refines the triangles
until a desired number of triangles or a desired approximation error
is reached. Thereby, the adaptation to edges and the higher degree

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Kai Lawonn and Tobias Günther / Stylized Image Triangulation

Conceptfarm
[Con16]

Bórquez
[Bór17]

Dmesh
[Yun13]

Fischer
[Fis16]

Hamamuro
[Ham12]

Garland &
Heckbert [GH97] Our method Original

|T |= 3773,
R = 20.3

|T |= 7099,
R = 22.0

|T |= 3203,
R = 26.4

|T |= 5632,
R = 20.6

|T |= 4436,
R = 19.3

|T |= 2010,
R = 18.4

|T |= 2010,
R = 11.6

|T |= 5215,
R = 40.1

|T |= 24277,
R = 27.8

|T |= 14537,
R = 35.1

|T |= 11232,
R = 36.1

|T |= 5631,
R = 36.6

|T |= 9698,
R = 27.8

|T |= 9698,
R = 18.9

|T |= 2009,
R = 12.9

|T |= 1512,
R = 37.7

|T |= 416, R = 38.1 |T |= 4146,
R = 14.7

|T |= 2511,
R = 32.2

|T |= 880, R = 10.7 |T |= 880, R = 7.7

|T |= 3050,
R = 21.6

|T |= 3324,
R = 32.3

|T |= 2382,
R = 21.4

|T |= 5004,
R = 18.8

|T |= 3954,
R = 17.5

|T |= 1978,
R = 18.2

|T |= 1978, R = 9.2

|T |= 3437,
R = 18.5

|T |= 7328,
R = 20.2

|T |= 1507,
R = 28.3

|T |= 4966,
R = 19.4

|T |= 3970,
R = 15.9

|T |= 1439,
R = 19.0

|T |= 1439, R = 8.9

|T |= 4423,
R = 25.0

|T |= 10540,
R = 27.8

|T |= 4455,
R = 27.1

|T |= 4356,
R = 24.2

|T |= 4927,
R = 22.4

|T |= 2160,
R = 19.3

|T |= 2160,
R = 13.9

|T |= 4675,
R = 27.5

|T |= 8395,
R = 29.0

|T |= 4703,
R = 32.0

|T |= 4829,
R = 27.7

|T |= 5018,
R = 25.5

|T |= 2785,
R = 20.9

|T |= 2785,
R = 15.3

Figure 8: Comparison of our method with existing image triangulation tools. Here, |T | denotes the number of triangles and R is the
approximation error wrt. the original image. Note that the existing tools do not allow to specify a desired number of triangles. Our method has
a significantly lower approximation error compare to the best method from previous work, while still using far less triangles.

of detail near image features happen implicitly. Since none of the
existing methods considers the approximation quality, our method
obtains both qualitatively and quantitatively the best results, even
for a much smaller number of triangles, as demonstrated.

6.2. Parameter Study

Next, we analyze the parameters of our optimization-based method.

Influence of initial grid. Since our optimization uses a gradient de-
scent, it is likely to reach local minima. This means that the outcome
of the triangulation depends on the initial triangulation. To analyze
the dependence, we generated ten random initial vertex distributions
in Fig. 9, which are initially Delaunay triangulated. During the first

400 optimization iterations, we iteratively subdivided the triangles
with highest error until 1000 triangles were reached. Each time,
the additional vertex is incrementally inserted into the Delaunay
triangulation, which guarantees a well-behaved topology. As shown
in the plot, the errors reduced in each run similarly. This is mainly
due to the retriangulation. The visual results of the worst and best
triangulation are shown on the right. As expected, the triangulations
look different but are quantitatively comparable.

Refinement Threshold τ . A central user parameter is the trian-
gle error threshold τ , which globally determines whether triangles
should be subdivided. Results for varying thresholds were shown in
Fig. 4. Additional local control over the triangle density is given to
the user through the interaction methods, described in Section 3.5.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Kai Lawonn and Tobias Günther / Stylized Image Triangulation

0 100 200 300 400 500 600
iteration number

20

25

30

35

40

45

50

re
si

du
al

optimizationrefinement + optimization

or
ig

in
al

w
or

st
tr

ia
ng

ul
at

io
n

be
st

tr
ia

ng
ul

at
io

n

Figure 9: Residual plots for ten automatic refinements with random
initial vertices (100 vertices, Delaunay triangulated). Within the first
400 iterations, the triangulation is automatically refined until 1000
triangles are reached. The last 200 iterations show the reduction of
the error due to the optimization of the triangulation.

λ = 1×10−3 λ = 1×10−2 λ = 3×10−2 λ = 1×10−1

Figure 10: Different λ weights for the regularization, which balance
between adaptivity to thin structures (left) and stiffness (right)

As alternative to the specification of a desired error threshold, the to-
tal number of triangles may also be bounded, as in Fig. 9. Applying
the refinement every iteration leads to faster convergence. Subdivid-
ing less frequently can result in a smaller number of vertices and
gives the user time for a visual feedback of the intermediate triangle
density, which allows for an earlier termination.

Regularization λ . With Eq. (9), we introduced a regularizer that
moves vertices toward the center of their 1-ring. Fig. 10 illustrates
the effect of varying λ weights. For small or zero λ , triangles might
collapse and have zero area, which can be undesirable. The differ-
ence between the two left images is small. A further reduction of
λ will not change the result. When λ is too large, the triangulation
becomes stiff, which hinders adaptation to small details, e.g., in the
right image triangles cannot adept to the cherry stalk. Throughout
all examples in the paper, we used a weight of λ = 1×10−3.

6.3. Video Triangulation

Existing video triangulation methods compute triangulations in-
dependently for each frame [Yun13], which creates a significant

Figure 11: Three frames of the galloping cycle of an elephant. Our
method handles occlusions of the legs and automatically refines.

0 200 400 600
iteration number

0

20

40

60

80

100

re
si

du
al

Figure 12: Four image triangulations and their corresponding con-
vergence plots. The energy always decreases quickly.

amount of incoherence and flickering, or construct a 3D tetrahedral-
ization that does not meet our approximation goals [RD09]. Our
optimization-based method, on the other hand, is able to start from
the triangulation of the previous frame and optimizes the vertex
positions for the next frame to minimize the approximation error.
Thereby, vertices move only short distances and adaptive vertex in-
sertion and collapses are performed to adapt to fast movements, oc-
clusions and the appearance of features. Fig. 11 shows three frames
of an elephant galloping cycle. We refer to the accompanying video
for a frame coherent animation and further examples.

6.4. Convergence

To measure the approximation quality, we compute the distance to
the ground truth I. Since E(T) is a squared distance, the following
measure computes the root mean squared error for the entire image

R =

√
1
|I| ∑

T∈T
E(T) (12)

where |I| is the total number of rasterized fragments, i.e., the number
of image pixels. Fig.12 shows the error over time for four different
triangulations. The images in the top row (still life, cherry and
giraffe) are refined until 700 triangles are reached. The meta ball
was refined until an approximation error of E(T) = 0.3 was reached
for every triangle. Within the first 400 iterations, the triangulation
is automatically refined and vertices are optimized. The last 200
iterations reduce the error only by optimizing the vertex positions.

6.5. Performance

In Fig. 13, the computation time of the individual steps from Sec-
tion 4.2 is listed, as well as the time to update the positions of all
vertices. One iteration of the optimization takes for the constant case
3−15ms and for the linear case 6−24ms. The measurements are
taken for the image of Lenna at a resolution of 512× 512 pixels,
with an Nvidia GeForce GTX 1080 and an Intel Core i7-6700K
CPU. The runtime scales linearly in the number of pixels. Note
that increasing the number of triangles improves performance. The
reason for this is the sequential execution of atomic operations. The
larger a triangle, the more fragments atomically add to the same

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Kai Lawonn and Tobias Günther / Stylized Image Triangulation

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Number of triangles

Compute mean color
Compute error
Update vertex position

0.00

5.00

10.00

15.00

20.00

25.00

30.00

Number of triangles

Setup linear system
Solve linear system
Compute error
Update vertex position

Figure 13: Performance measurements in milliseconds for the con-
stant (left) and linear (right) approximation.

variable, which is a serialized memory access. Evidently, the rasteri-
zation (with the atomic operations) is the bottleneck. Operations that
are executed per triangle (solve linear system) or per vertex (update
vertex position) are with < 0.12ms very fast in comparison. Their
performance does not change for small numbers of triangles, since
groups of threads run on the GPU in parallel.

For reference, we implemented the minimization of E(T) on the
CPU to compare the loss of precision due to the integer arithmetic on
the GPU, compared to double precision on the CPU. For a constant
color, the estimates of E(T) deviate by 0.023 gray values (in [0,255])
and for the linear approximation by 0.029 gray values, which are
both very small. Thus, we argue that integer arithmetic for the
accumulation of approximation errors on the GPU is sufficient.

6.6. Discussion

Reestablishing the Delaunay properties temporarily increases the
energy residual. This is, however, very often useful to eventually
move toward a better minimum. On the other hand, if no additional
insertion of vertices is allowed, it can prevent the minimization from
reaching the minimum. For this reason, we disable the reestablish-
ment of Delaunay triangulations in the end and apply additional
vertex optimization iterations until convergence, see Fig. 9.

7. Evaluation

To assess the quality of our triangulation framework, we conducted
an evaluation with two artist. Both are of age 32, the first artist A1
is male with three years of experience in digital art and the second
artist A2 is female with eight years of experience in digital art as
well as conventional art. The evaluation was performed in two steps.
In the first step, we asked the artists to generate a triangulation of an
image. Both artists were free in their choice what program they use.
A1 used Inkscape (www.inkscape.org) and A2 used Photo-
shop (https://www.adobe.com/products/photoshop.
html). Figure 14 shows the result of A1 using Inkscape only and
A2 using Photoshop only in comparison with our result. After the
manual generation of the triangulation, we showed the artist our
framework in detail and they had time to acquaint themselves with
the tool. In the second step, we asked the artists to create trian-
gulations with our tool. During the process, we noted the spoken
comments. Afterwards, we asked them to point out limitations and
favored functionalities.

Results. Both artists stated that our framework is very helpful to
generate a triangulation. Furthermore, they pointed out that the
results are visually pleasing. A2 asked for more facilities to generate

Figure 14: Comparison of manually generated triangulations by
artist A1 and A2. From left to right: the original image, the result by
the artist A1 with 870 triangles, the result of the artist A2 with 993
triangles, and our result with 800 triangles.

a stylized triangulation. Currently, we allow the user to add new
styles by using textures, but she asked for a real-time solution. For
this, she imagined a canvas, where different textures can be drawn
and the result is shown immediately. The first participant A1 stated
that it would be nice to have different styles in different regions.
Furthermore, A1 wished to have a preview of the brush tool. After
highlighting the regions and activating the brushing, the vertices
are currently added randomly in this region. A1 asked for more
control over this process. Additionally, both asked for an undo
facility and a possibility to move the vertices manually. In summary,
both participants enjoyed the framework and stated that it produces
pleasing results. They would use it to generate triangulated images.

8. Conclusions

In this paper, we proposed the first optimization scheme that effi-
ciently computes an image triangulation that approximates a given
image better than existing tools, both in terms of quality and the ap-
proximation error. In comparison to other approaches, we optimize
the vertex positions such that an approximation energy is minimized.
Starting from an initial triangulation, our method optimizes the po-

sition of each vertex independently so that the approximation errors
of all adjacent triangles are minimized. In order to preserve image
features, we automatically subdivide triangles with high error and
reestablish Delaunay triangulations. To provide users full control,
we offer direct and indirect methods to interact with the triangula-
tion, including edge flips, splits and collapses, brushes and selective
retriangulations. Inspired from artwork, we collected a number of
rendering styles, including constant colors, linear gradients, tonal art
maps and textures. We believe that our tool can serve as platform to
explore other stylizations. Further, we demonstrated that our method
produces frame coherent animations for video input data.

In the future, we would like to improve the video triangulations to
increase temporal stability for real-world videos with small details.
We believe that topological changes and occlusions could be better
handled and that the vertex paths could be guided by the underlying
motion, for instance through optical flow. Further, we would like to
explore different ways to minimize our proposed energy to obtain
lower residuals. Currently, we optimize for constant and linear gradi-
ents only. It would be straightforward to include the other rendering
styles directly into the optimization process or to use other color
spaces or error measures.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

www.inkscape.org
https://www.adobe.com/products/photoshop.html
https://www.adobe.com/products/photoshop.html

Kai Lawonn and Tobias Günther / Stylized Image Triangulation

Acknowledgements

We thank Robert W. Sumner and Jovan Popović for the elephant
animation.

Appendix A: Triangle Color Optimization

In Section 3.1, we introduced the squared triangle approximation
error E(T), cf. Eq. (4), which measures how well the color f of a
triangle T approximates the underlying image I. We represent f as
polynomial and solve for the unknown monomial basis coefficients.
To discretize the triangles, they are rasterized into q pixels:

E(T)≈ 1
2q

q

∑
i=1

(I(xi)− f (xi))
2 → min (13)

The discrete energy in Eq. (13) is minimized by setting ∇E(T) = 0
and rearranging for the unknowns.

Constant: f (x,y) = c

c =
1
q

q

∑
i=1

I(xi, yi) (14)

If the triangle color f is constant, the optimal c is the mean color.

Linear: f (x,y) = ax+by+ c q

∑
i=1

 x2
i xi · yi xi

xi · yi y2
i yi

xi yi 1


︸ ︷︷ ︸

A

a
b
c


︸ ︷︷ ︸

x

=

 q

∑
i=1

xi · I(xi, yi)
yi · I(xi, yi)

I(xi, yi)


︸ ︷︷ ︸

b

(15)

If f is linear, we solve a linear system to determine the coefficients
a, b and c. Since A is a symmetric and positive-definite matrix,
we solve the linear system Ax = b using a Cholesky decomposi-
tion [PTVF96]. If matrix A is singular, we automatically fall back
to the constant case. Note that pixel colors are only contained in the
right-hand side b. Thus, if the color has multiple channels (R, G, B),
the Cholesky factorization of A can be reused for each channel.

References

[AA06] ARIFIN A. Z., ASANO A.: Image segmentation by histogram
thresholding using hierarchical cluster analysis. Pattern Recogn. Lett. 27,
13 (Oct. 2006), 1515–1521. 3

[Ada11] ADAMS M. D.: A flexible content-adaptive mesh-generation
strategy for image representation. IEEE Transactions on Image Process-
ing 20, 9 (Sept 2011), 2414–2427. 3

[Ada13] ADAMS M. D.: A highly-effective incremental/decremental
delaunay mesh-generation strategy for image representation. Signal
Processing 93, 4 (2013), 749 – 764. 3

[Bór17] BÓRQUEZ J.: The Delaunay triangulation image generator.
http://snapbuilder.com/code_snippet_generator/
triangulator_triangulation_image_generator/, 2017.
Accessed: 2017-09-16. 1, 2, 7, 8

[Bow81] BOWYER A.: Computing Dirichlet tessellations. The Computer
Journal 24, 2 (1981), 162–166. 5

[Bry17] BRYAN J.: Hand-drawn Image Triangulations. https://www.
joshbryanart.com/triangulations, 2017. Accessed: 2017-
09-16. 1, 6

[CDHM11] COHEN A., DYN N., HECHT F., MIREBEAU J.-M.: Adaptive
multiresolution analysis based on anisotropic triangulations. Mathematics
of Computation 81 (Sept. 2011), 789–810. 2

[Con16] CONCEPT FARM: Triangulate 7. https://www.behance.
net/gallery/10543937/Image-Triangulator-App, 2016.
Accessed: 2017-09-16. 1, 2, 7, 8

[CQM∗15] CHEN Z., QI Z., MENG F., CUI L., SHI Y.: Image seg-
mentation via improving clustering algorithms with density and distance.
Procedia Computer Science 55 (2015), 1015 – 1022. 3rd International
Conference on Information Technology and Quantitative Management,
ITQM 2015. 3

[CZL14] CHENG X., ZENG M., LIU X.: Feature-preserving filtering with
l0 gradient minimization. Computers & Graphics 38 (2014), 150 – 157. 3

[DI04] DEMARET L., ISKE A.: Advances in digital image compression
by adaptive thinning. Annals of the Marie-Curie Fellowship Association
3 (2004), 105–109. 2

[DS02] DECARLO D., SANTELLA A.: Stylization and abstraction of
photographs. ACM Trans. Graph. 21, 3 (July 2002), 769–776. 2

[ES96] EDELSBRUNNER H., SHAH N. R.: Incremental topological flip-
ping works for regular triangulations. Algorithmica 15, 3 (Mar 1996),
223–241. 5

[Fis16] FISCHER G.: Triangulate images. https://snorpey.
github.io/triangulation/, 2016. Accessed: 2017-09-16. 1,
2, 7, 8

[GDA∗12] GERSTNER T., DECARLO D., ALEXA M., FINKELSTEIN A.,
GINGOLD Y., NEALEN A.: Pixelated image abstraction. In Proceed-
ings of the Symposium on Non-Photorealistic Animation and Rendering
(Goslar Germany, Germany, 2012), NPAR ’12, Eurographics Association,
pp. 29–36. 2

[GGD08] GRUNDLAND M., GIBBS C., DODGSON N. A.: Stylized mul-
tiresolution image representation. Journal of Electronic Imaging 17, 1
(2008), 013009:1–17. 2

[GH97] GARLAND M., HECKBERT P. S.: Surface simplification using
quadric error metrics. In Proceedings of the 24th Annual Conference on
Computer Graphics and Interactive Techniques (1997), SIGGRAPH ’97,
pp. 209–216. 2, 7, 8

[GPS89] GREIG D. M., PORTEOUS B. T., SEHEULT A. H.: Exact max-
imum a posteriori estimation for binary images. Journal of the Royal
Statistical Society. Series B (Methodological) (1989), 271–279. 3

[Ham12] HAMAMURO A.: Triangulation image generator. http://
jsdo.it/akm2/xoYx, 2012. Accessed: 2017-09-16. 1, 2, 7, 8

[HHK12] HOU X., HAREL J., KOCH C.: Image signature: Highlight-
ing sparse salient regions. IEEE Transactions on Pattern Analysis and
Machine Intelligence 34, 1 (Jan 2012), 194–201. 4

[Hop96] HOPPE H.: Progressive meshes. In Proceedings of the 23rd
Annual Conference on Computer Graphics and Interactive Techniques
(New York, NY, USA, 1996), SIGGRAPH ’96, ACM, pp. 99–108. 2

[HP74] HOROWITZ S. L., PAVLIDIS T.: Picture Segmentation by a di-
rected split-and-merge procedure. Proceedings of the 2nd International
Joint Conference on Pattern Recognition, Copenhagen, Denmark (1974),
424–433. 3

[KCWI13] KYPRIANIDIS J. E., COLLOMOSSE J., WANG T., ISENBERG
T.: State of the art: A taxonomy of artistic stylization techniques for
images and video. IEEE Transactions on Visualization and Computer
Graphics 19, 5 (May 2013), 866–885. 2

[Leu15] LEUNG H.: Polygonian. http://www.polygonian.com/,
2015. Accessed: 2017-09-16. 1, 2

[LM99] LUCCHESE L., MITRA S. K.: Unsupervised segmentation of
color images based on k -means clustering in the chromaticity plane. In
Proceedings of the IEEE Workshop on Content-Based Access of Image
and Video Libraries (1999), pp. 74–. 3

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

http://snapbuilder.com/code_snippet_generator/triangulator_triangulation_image_generator/
http://snapbuilder.com/code_snippet_generator/triangulator_triangulation_image_generator/
https://www.joshbryanart.com/triangulations
https://www.joshbryanart.com/triangulations
https://www.behance.net/gallery/10543937/Image-Triangulator-App
https://www.behance.net/gallery/10543937/Image-Triangulator-App
https://snorpey.github.io/triangulation/
https://snorpey.github.io/triangulation/
http://jsdo.it/akm2/xoYx
http://jsdo.it/akm2/xoYx
http://www.polygonian.com/

Kai Lawonn and Tobias Günther / Stylized Image Triangulation

[MA15] MOSTAFAVIAN S., ADAMS M. D.: An optimization-based
mesh-generation method for image representation. In 2015 IEEE Pacific
Rim Conference on Communications, Computers and Signal Processing
(PACRIM) (Aug 2015), pp. 234–239. 3

[MCL∗14] MIN D., CHOI S., LU J., HAM B., SOHN K., DO M. N.:
Fast global image smoothing based on weighted least squares. IEEE
Transactions on Image Processing 23, 12 (Dec 2014), 5638–5653. 3

[NB15] NGUYEN R. M. H., BROWN M. S.: Fast and effective l0 gradient
minimization by region fusion. In IEEE International Conference on
Computer Vision (ICCV) (Dec 2015), pp. 208–216. 3

[NISA06] NEALEN A., IGARASHI T., SORKINE O., ALEXA M.: Lapla-
cian mesh optimization. In Proceedings of the 4th International Confer-
ence on Computer Graphics and Interactive Techniques in Australasia
and Southeast Asia (New York, NY, USA, 2006), GRAPHITE ’06, ACM,
pp. 381–389. 4

[NN04] NOCK R., NIELSEN F.: Statistical region merging. IEEE Trans.
Pattern Anal. Mach. Intell. 26, 11 (Nov. 2004), 1452–1458. 3

[OBB∗13] ORZAN A., BOUSSEAU A., BARLA P., WINNEMÖLLER H.,
THOLLOT J., SALESIN D.: Diffusion curves: A vector representation for
smooth-shaded images. Commun. ACM 56, 7 (July 2013), 101–108. 2

[Oll15] OLLIVIER P.: Trimaginator. http://trimaginator.com/,
2015. Accessed: 2017-09-16. 1, 2

[OPR78] OHLANDER R., PRICE K., REDDY D. R.: Picture segmentation
using a recursive region splitting method. Computer Graphics and Image
Processing 8, 3 (1978), 313 – 333. 3

[Ots79] OTSU N.: A Threshold Selection Method from Gray-level His-
tograms. IEEE Transactions on Systems, Man and Cybernetics 9, 1 (1979),
62–66. 3

[PHWF01] PRAUN E., HOPPE H., WEBB M., FINKELSTEIN A.: Real-
time hatching. In Proceedings of the Annual Conference on Computer
Graphics and Interactive Techniques (2001), SIGGRAPH, ACM, pp. 581–
. 6, 7

[PJH16] PHARR M., JAKOB W., HUMPHREYS G.: Physically based
rendering: From theory to implementation. Morgan Kaufmann, 2016. 4

[PTVF96] PRESS W. H., TEUKOLSKY S. A., VETTERLING W. T., FLAN-
NERY B. P.: Numerical recipes in C, vol. 2. Cambridge university press,
Cambridge, 1996. 6, 11

[Puc08] PUCKEY J.: Delaunay raster imagery. https://www.
jonathanpuckey.com/projects/delaunay-raster/,
2008. Accessed: 2017-09-16. 1, 2

[RC78] RIDLER T. W., CALVARD S.: Picture thresholding using an
iterative selection method. IEEE Transactions on Systems, Man, and
Cybernetics 8, 8 (Aug 1978), 630–632. 3

[RD09] RICHARDT C., DODGSON N. A.: Voronoi video stylisation. In
Computer Graphics International Short Papers (May 2009), pp. 103–108.
9

[SD15] SONAWANE M., DHAWALE C.: A brief survey on image segmen-
tation methods. In IJCA Proceedings on National conference on Digital
Image and Signal Processing (2015), Citeseer. 3

[Sec02] SECORD A.: Weighted voronoi stippling. In Proceedings of
the 2Nd International Symposium on Non-photorealistic Animation and
Rendering (New York, NY, USA, 2002), NPAR ’02, ACM, pp. 37–43. 2

[SM16] SÁNCHEZ-MARÍN J.: Polyshaper. http://polyshaper.
co/, 2016. Accessed: 2017-09-16. 1, 2

[SWD14] STORATH M., WEINMANN A., DEMARET L.: Jump-sparse
and sparse recovery using potts functionals. IEEE Transactions on Signal
Processing 62, 14 (July 2014), 3654–3666. 3

[TA13] TU X., ADAMS M.: Improved mesh models of images through the
explicit representation of discontinuities. Canadian Journal of Electrical
and Computer Engineering 36, 2 (Spring 2013), 78–86. 3

[Wat81] WATSON D. F.: Computing the n-dimensional delaunay tessella-
tion with application to voronoi polytopes*. The Computer Journal 24, 2
(1981), 167–172. 5

[XLXJ11] XU L., LU C., XU Y., JIA J.: Image smoothing via l0 gradient
minimization. ACM Trans. Graph. 30, 6 (Dec. 2011), 174:1–174:12. 3

[Yun13] YUN D. Y.: DMesh. http://dmesh.thedofl.com/,
2013. Accessed: 2017-09-16. 1, 2, 7, 8, 9

[YWB03] YANG Y., WERNICK M. N., BRANKOV J. G.: A fast approach
for accurate content-adaptive mesh generation. IEEE Transactions on
Image Processing 12, 8 (2003), 866–881. 2

[ZA15] ZAITOUN N. M., AQEL M. J.: Survey on image segmentation
techniques. Procedia Computer Science 65 (2015), 797 – 806. Interna-
tional Conference on Communications, management, and Information
technology (ICCMIT’2015). 3

[ZL16] ZOU Y., LIU B.: Survey on clustering-based image segmenta-
tion techniques. In Computer Supported Cooperative Work in Design
(CSCWD), 2016 IEEE 20th International Conference on (2016), IEEE,
pp. 106–110. 3

[ZXJ14] ZHANG Q., XU L., JIA J.: 100+ times faster weighted median
filter (wmf). In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (June 2014), pp. 2830–2837. 3

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

http://trimaginator.com/
https://www.jonathanpuckey.com/projects/delaunay-raster/
https://www.jonathanpuckey.com/projects/delaunay-raster/
http://polyshaper.co/
http://polyshaper.co/
http://dmesh.thedofl.com/

