
 

THEME ARTICLE: Applied Visualization 

Management of Cerebral 
Aneurysm Descriptors 
based on an Automatic 
Ostium Extraction 

We present a framework to manage cerebral 

aneurysms. Rupture risk evaluation is based on 

manually extracted descriptors, which is time-

consuming. Thus, we provide an automatic solution 

by considering several questions: How can expert 

knowledge be integrated? How should metadata be 

defined? Which interaction techniques are needed for 

data exploration?  

Cerebral aneurysms are abnormal dilatations of intracranial 
arteries. Their rupture leads to subarachnoid hemorrhage 
(SAH) and is associated with a high mortality and morbidi-
ty rate. Most aneurysms are unintentionally detected due to 

increased diagnostics. Even though most aneurysms will never rupture, they are usually treated, 
due to the poor prognosis of SAH. The associated risk of severe complications is considerable 
and can exceed the natural rupture risk.1 

For decision-making, the individual rupture risk is evaluated, which depends on different factors 
that are not yet well understood. To estimate risk factors, morphological descriptors such as 
aneurysm size are compared between ruptured and unruptured cases. The problem of analyzing 
aneurysm data is twofold. First, descriptors are manually extracted from clinical images, which 
is an error-prone process. An example for such descriptors is the width of the ostium, which 
separates the aneurysm from the parent vessel. Secondly, performing large medical studies with 
different domain experts is challenging, since different tools with inconsistent data formats are 
used. Thus, time is wasted to manually augment acquired data with meta information. 

We present a framework that overcomes these problems. We introduce a novel approach to 
extract the ostium automatically and provide interaction techniques that allow an efficient manu-
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al adaption of the automatic results. Based on this, we compute several morphological de-
scriptors automatically and visualize them within the aneurysm. Our tool documents the aneu-
rysm data in a consistent format. With this, users can search for specific cohorts, where 
individual cases can be analyzed in more detail to find possible rupture-prone correlations be-
tween morphological descriptors. In summary, our main contributions are: 

• an automatic extraction of morphological descriptors, including the ostium; and 
• a concept to consistently document and explore aneurysm data. 

RELATED WORK 
Related methods focus on structured documentation of clinical data and methods for the comput-
er-assisted extraction of morphological descriptors of aneurysms. 

Computer-Based Documentation 
In clinical practice, reports describe patient state, diagnosis, and treatment recommendations, and 
serve for communication between referring clinicians. Due to their free-text form, they generally 
lack structure and readability. To improve this, structured reports were developed. Karim et al. 
provided clinical information using a Web-based application to generate structured reports for 
aortic aneurysms.2 Visual analytics techniques support a more advanced collaborative analysis of 
medical datasets. To manage large volume segmentations in neuroscience, Ai-Awami et al. 
presented a Web-based system in which users have different permissions to edit and verify re-
sults.3 Bannach et al. combined medical image analysis with visual analytics to build, filter, 
analyze, and evaluate patient cohorts.4 Existing systems concentrate on the analysis and struc-
tured management of clinical image data. However, to investigate cerebral aneurysms, simula-
tion data or geometry data has to be included. Therefore, we introduce a consistent format that 
allows analyzation of clinical, simulated, and reconstructed aneurysm data. 

Extraction of Morphological Features 
Medical research involves a detailed quantitative and qualitative analysis of specific anatomy 
and flow characteristics. To support such an analysis, it is necessary to derive morphological 
descriptors from the aneurysm data. A common descriptor is the vessel centerline, which can be 
obtained by thinning methods, distance transformations or Voronoi diagrams. From the aneu-
rysm ostium, other important morphological descriptors are derived. Its maximum width, called 
neck width, was linked to rupture risk and treatment success. Karmonik et al. introduced an 
image-based method.5 They calculated centerline points for each image slice, fitted circles to 
cross-sections of the parent artery and determined the ostium by a radius analysis. Wong et al. 
used cylindrical surface models to reconstruct the normal vasculature.6 Another approach is to 
employ a Voronoi diagram of the surface to calculate a geodesic curve describing the ostium.7,8 
Other researchers used deformable contour models to extract the ostium.9–11 Neugebauer et al. 
employed the centerline and a manually defined point on the aneurysm to determine four points 
on the ostium using a geodesic distance metric.12 Jerman et al. introduced a ray-casting approach, 
where rays are emitted from the aneurysm center towards the vessel wall.13 Based on the inter-
section distance, ostium points are detected. These methods fail for aneurysms with small arter-
ies around the ostium or for wide neck aneurysms, as the cross-section of the ostium exceeds the 
aneurysm width. 

In addition, some research groups use in-house tools to compute the aneurysm size or diameter 
automatically.14,15 However, these tools need manually extracted input data, e.g., centerlines. In 
contrast, we calculate morphological descriptors based on an automatically calculated ostium, 
where no further input data is needed. Moreover, our approach overcomes limitations for wide 
neck aneurysms and small arteries around the ostium. 
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DATA ACQUISITION 
Our ostium extraction is based on a 3D polygonal mesh of the aneurysm surface reconstructed 
from 3D digital subtraction angiography. The vessel surface reconstruction is performed using 
the pipeline by Mönch et al.16 First, the aneurysm is segmented. Due to contrast agents, the 
clinical images exhibit a high vessel-to-tissue contrast. Thus, a threshold-based segmentation 
followed by a connected component analysis can be applied to separate the aneurysm and its 
parent vessel from the surrounding tissue. From the binary segmentation, the 3D vessel surface is 
extracted via Marching Cubes. To ensure anatomical accuracy, the 3D reconstructions were 
manually corrected by comparing with contours in the corresponding 2D slices. 

REQUIREMENT ANALYSIS 
The time-preserving management and exploration of aneurysm data, as well as a robust calcula-
tion of morphological descriptors has to fulfill several requirements that were gathered based on 
close cooperation with a neuroradiologist (16 years work experience), who regularly treats cere-
bral aneurysms, and an engineer working on simulations for cerebral aneurysms (four years work 
experience). 

Currently, different pre- and post-operative data is acquired and stored on an FTP server in Mi-
crosoft Excel tables. Domain experts analyze the data collaboratively, which is time-consuming, 
since no consistent storage structure exists. Searching for specific cohorts, e.g., male patients 
with a ruptured aneurysm larger than 5 mm, is cumbersome. Thus, medical studies to investigate 
risk factors are difficult to carry out. Morphological descriptors are determined manually from 
2D image slices using clinical software, or from 3D surfaces using the open-source program 
ParaView. ParaView is also used to manually extract the aneurysm ostium, which requires a 
tedious placement of cutting planes. We summarize the requirements as follows: 

• Requirement 1. Methods are needed to integrate new datasets fast, including different 
meta information and data files. 

• Requirement 2. We need a consistent structure for data management that can incorpo-
rate new data types if necessary. 

• Requirement 3. An easy and fast editing of datasets is required, including quantitative 
parameters and data files. 

• Requirement 4. Filter techniques are needed, which allow the selection of cohorts ac-
cording to defined criteria. 

• Requirement 5. An automatic calculation of morphological descriptors is needed, in-
cluding the ostium. 

• Requirement 6. Visualize the reconstructed and calculated components, e.g., 3D vessel 
surface or aneurysm ostium. 

DETERMINATION OF MORPHOLOGICAL 
DESCRIPTORS 
This section describes the automatic extraction and visualization of morphological descriptors, 
including the ostium. An automatic calculation of these features based on 2D clinical image data 
would require an automatic detection of aneurysms. However, recent approaches have still prob-
lems with false detections as well as missed detections and a reliable 2D ostium extraction is also 
challenging.17,18 

Extraction of the Aneurysm Ostium 
To identify correlations between morphological descriptors and rupture, many datasets have to 
be analyzed, which requires a fast descriptor extraction. An important descriptor is the aneurysm 
ostium. Due to the lack of a unified definition, the ostium extraction is challenging. The ostium 
can be seen as an imaginary surface that separates the aneurysm sac from the non-pathologic 
parent vessel. Thus, the vessel structure without an aneurysm needs to be predicted. Most detec-
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tion algorithms need a priori knowledge, e.g., the centerline of the parent vessel or user interac-
tion, such as selecting the dome point, see Figure 1. To avoid such dependencies on pre-
calculated data, we developed an efficient automatic extraction algorithm that provides facilities 
for an interactive correction of the result. 

 

Figure 1. Four landmarks (P1 to P4) are connected by a curve to extract the ostium surface. 

For extraction, a more geometric definition of the ostium is needed. We used the description of 
Neugebauer et al., who defined the ostium as a contour comprising four landmarks, P1 to P4 (see 
Figure 1).12 The first two points, P1 and P2, are located on the transition between the aneurysm 
and parent vessel. The other two landmarks control the bending of the ostium around the parent 
vessel. The goal is to identify these four points. Our algorithm consists of six steps, as described 
in the following. 

Skeleton Extraction. Before we are able to compute the precise positions of P1 to P4, we have 
to estimate which vessel part represents the aneurysm. Therefore, we used the skeleton of the 
aneurysm and parent vessel geometry determined using the method by Au et al.19 This method 
performs automatically and thus, no a priori knowledge is needed as input data. Iterative implicit 
Laplacian smoothing is applied to generate a zero-volume skeletal shape. Global positional 
constraints are defined to preserve the connectivity, which yields curves that represent the vessel 
skeleton. Afterwards, each skeleton vertex corresponds to faces (and vertices) of the surface.  

Aneurysm Identification. In the second step, we use the skeleton to identify the aneurysm 
vessel part. The nodes of the vessel skeleton can be characterized according to their number of 
outgoing edges: end nodes (one edge), mid nodes or non-junction nodes (two edges) and junc-
tion nodes (more than two edges). Junction nodes occur at bifurcations of the original surface. 
We determine all end nodes and for each, the nearest junction node is searched by traversing the 
skeleton. We have to decide if the path from the end node to the junction node (over mid nodes) 
represents a section of the parent vessel or the aneurysm. These paths inherit a corresponding 
amount of vertices on the original surface. For these vertices, we compute the shape index 
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−
 and average them, with K1 ≥ K2 being the principal curvatures. Since aneu-

rysms are usually spherical structures, skeleton sections representing the aneurysm exhibit a 
higher Si than sections representing the elongated parent vessel. Based on this assumption, we 
determine the junction PAJ (green) and end node PAE (red), representing the aneurysm, see Figure 
2a bottom. Thus, inaccuracies due to small arteries around the ostium are avoided. In case the 
highest Si does not represent the aneurysm (did not occur in our cases), the user can correct the 
detection by selecting the correct end node PAE. 

61May/June 2018 www.computer.org/cga



 

 APPLIED VISUALIZATION 

 

Figure 2. Pipeline for the ostium reconstruction. First, the vessel skeleton is calculated by iteratively 
shrinking the surface mesh. The skeleton is projected on the aneurysm and two points P1 and P2 
are determined (b), which are used to compute a distance field d3, color-coded on the surface. 
Based on the isoline d3 = 0, two more points P3 and P4 are determined (c). Finally, P1 to P4 are 
connected to a curve to extract the ostium surface. 

Extraction of P1 and P2. Based on the detected aneurysm vessel part, we identify the first two 
landmarks P1 and P2 by generating a curve on the vessel over the aneurysm, see Figure 2(b). 
Inspired by Neugebauer et al., who project the centerline on the surface along the vector pointing 
from the centerline to the aneurysm’s dome,12 we determine another curve on the surface that 
provides us with P1, P2. This information is employed by first determining the path from the 
junction node to the remaining end nodes (except the end node, corresponding to the aneurysm). 
If more than two paths exist, we determine the first tangent vector of each path by subtracting the 
coordinate of the first neighbor node of the junction node and the junction node itself. For each 
of these vectors, we calculate the enclosing angle with PAE-PAJ. The two paths, which are closest 
to 90° are used for further consideration. Then, the Euclidean distances between the surface 
points, belonging to the current node of the skeleton path and the point PAE are determined. This 
is performed for all skeleton nodes, where the vertices representing the minimal distance are 
connected using the Dijkstra algorithm w.r.t. neighbored nodes of the skeleton. This yields a path 
f on the aneurysm surface, see Figure 2b. Afterward, the global minima, which represents the 
aneurysm’s dome position is determined. For f1 and f2, we determine the positions where the 
distance to the junction node is minimal, which yields the landmarks P1 and P2, see Figure 2b. 
For aneurysms with more than two outgoing vessels, more ostium points are detected, where we 
take the two with the maximum occurring distance for P1 and P2. 

Extraction of P3 and P4. To define a contour that represents the correct bending of the aneu-
rysm, two more landmarks P3 and P4 are needed, where all landmarks should be evenly distrib-
uted throughout the ostium contour. For this, P1 and P2 are connected using the Dijkstra 
algorithm. On this path, P3 is determined so that P3 has the same distance to P1 and P2. These 
three points define a plane E. Then, we calculate two geodesic distance fields d1 and d2.20 The 
first distance field starts at P1 and the second starts at P2. Based on d1 and d2, we compute a third 
distance field d3 = d1-d2. To get P4, we determine the isoline I representing d3=0 that lies be-
tween P1 and P2, and compute the intersection points between I and E. From these points, we 
take the intersection point S3 that has the larger distance to P3 to fulfill the condition of evenly 
distributed landmarks. From S3, we go along I in the direction of the smaller distance from PAJ. 
This minimum represents P4, see Figure 2c. 

Ostium Extraction. P1 to P4 are connected to a curve Costium using the method by Surazhsky,21 
determining the shortest geodesic path between points on a triangular mesh. Finally, the enclos-
ing area, representing the ostium surface is triangulated by determining the mean point Pmean, 
where adjacent points on Costium form a triangle with Pmean, see Figure 2d.  

Ostium Correction. Due to the anatomical diversity, P1 to P4 are not always optimal. Therefore, 
the user can select other positions on the mesh to correct Costium. Figure 3a shows the automati-
cally calculated ostium surface, where P1 to P4 are rendered as yellow spheres. For selecting a 
new point Pnew, we determine which of P1 to P4 has the smallest geodesic distance to Pnew. Then, 
Pnew replaces this ostium point, the corresponding contour parts are recalculated and a new trian-
gulation of the ostium surface is generated, while the old ostium point is depicted semi-
transparently, see Figure 3b. The recalculation takes less than 1 s. 

62May/June 2018 www.computer.org/cga



  

 IEEE COMPUTER GRAPHICS AND APPLICATIONS 

 

Figure 3. Manual ostium correction. By selecting new points on the mesh, the ostium is adjusted, 
where the old point is depicted semi-transparently. 

Calculation of Quantitative Parameters 
Based on the extracted ostium and the dome point, we compute seven 1D and five 2D morpho-
logical descriptors to investigate the rupture risk1 The 1D descriptors are aneurysm height (H), 
maximum width (Wmax), maximum diameter (Dmax), neck width (Wneck), and bulge height (Hbulge), 
the height from ostium to the plane of (Wmax), parent artery diameter (Dparent), and the angle 
between parent artery and aneurysm apex (Apa). The 2D descriptors are aspect ratio (H/Wneck), 
height-width ratio (H/Wmax), bottleneck factor (Wmax/Wneck), bulge location (Hbulge/H) and aneu-
rysm/parent artery ratio (Dmax/Dparent). The length of vector vh = pd-po with dome point pd and 
ostium center po represents H = ||vh||. To calculate Wmax for each vertex of the aneurysm vi, we 

determine the corresponding point pi on vh: 
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. Using pi, a ray r is defined: r = pi 

+t (pi −vi). Based on r, all intersection points with the aneurysm surface are calculated and the 
intersection vj with the greatest Euclidean distance to pi is used to calculate Wmax = ||vj-pi||. The 
maximum diameter is given by the two aneurysm points vi and vj with the greatest Euclidean 
distance. Similarly, Wneck is defined as the maximum Euclidean distance between two points 
belonging to the aneurysm ostium. To calculate the bulge height, we use: Hbulge= ||pi-po||. From 
the skeletonization the vessel diameter is known at each node. We assign the median radius to 
Dparent. To compute Apa, vh and the nearest skeleton node to the ostium center cpi as well as the 
tangent t at this point are used. The angle between vh and t is Apa. 

Visualization of Morphological Criteria 
On the semi-transparent vessel surface, morphological descriptors are shown. For 1D de-
scriptors, the defining endpoints are rendered as spheres. Their connecting line is shaded as tube 
to improve its perception,22 see Figure 4. For 2D descriptors, the corresponding 1D structures are 
depicted. Users can activate individual descriptors. 

 

Figure 4. Visualization and quantitative values of morphological descriptors, showing Wmax (red), H 
(blue), Dparent (light green) and Apa (dark green semi-circle). 
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MANAGEMENT OF ANEURYSM DATA 
To better understand the patient-specific rupture risk and to find an optimal treatment, a large 
number of ruptured and non-ruptured datasets have to be compared. For this, different types of 
data such as image or flow data as well as morphological descriptors or patient-specific meta in- 
formation have to be analyzed. Therefore, we developed a consistent structure for handling 
aneurysm data that avoids redundancy. Besides the visualizations, other exploration techniques 
are provided to manage and analyze the data. 

Documentation Structure 
Our framework consists of three parts: a database, an FTP server and a visualization component. 
The acquired image data is stored on the FTP server, using the data structure shown in Figure 5. 
For each patient, a new case is created on the server, with pre- and post-operative data that is 
organized in studies. Each study comprises four information elements: Scanner data includes 
CTA and MRA data. Geometric information is stored in reconstruction data, e.g., the ostium. 
Moreover, flow simulations are stored, for either single (steady) or multiple (unsteady) time 
steps. Different formats such as Ensight or OpenFoam are distinguished. Media data contains 
characteristic images or videos, e.g., showing wall regions with higher risk. In addition, meta 
data is stored for the cases, studies and corresponding data items, including the study type (pa-
tient or proband), gender and age. Furthermore, the morphological descriptors, information about 
rupture and treatment are collected. 

 

Figure 5. Data structure on the FTP server. Each case conforms to a patient or proband. Data 
items acquired at different times are coordinated into studies. 

The visualization component provides an overview depiction of existing cases using a tabular 
representation. Besides basic case information, a preview picture of an optimal view on the 
aneurysm surface is shown, generated with the method by Meuschke et al.,23 see Figure 6. 
Moreover, widgets to add and edit cases and studies, download data from the FTP server or to 
render the 3D reconstructed data are provided. 

Interaction Techniques 
To search for specific cohorts, configurable filtering masks are provided. Figure 6 shows two 
masks, where users can select study information (left, top) and aneurysm descriptors (left, bot-
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tom). Datasets that do not satisfy the selected criteria are removed from the tabular overview. 
Pressing the edit button (see Figure 6. bottom right) displays a summary of meta information 
including available data on the FTP server, see Figure 7, and enables editing such as adding of 
aneurysm descriptors. Besides directly editing morphological descriptors, users can activate the 
3D visualization. When manually correcting the ostium, the morphological descriptors are recal-
culated and stored. 

 

Figure 6. Datasets are shown in a tabular representation. On the left, filtering masks are provided 
to search for cohorts. 

 

Figure 7. User interface to manage and explore aneurysm data. Existing data is summarized and 
can be edited. 

EVALUATION 
To show the improved accuracy of automatically calculated results, we compare the calculated 
morphological descriptors with manually measured descriptors provided by two neuroradio-
logists. Moreover, we compare our ostium extraction with manual expert results and with the 
results of an existing approach. Finally, informal interviews with four domain experts are per-
formed to evaluate the implementation of the defined requirements. 
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Comparison to Expert Results 
The experts manually determined the morphological 1D descriptors based on CTA slice images 
for 10 datasets. Moreover, the manual measurements were performed on the 3D surface mesh. 
Therefore, they selected points on the surface that define the endpoints of the descriptors. The 
angle Apa could not be measured in 2D, because it is challenging to find an appropriate slice. We 
compared the manual 2D (2DM) and 3D (3DM) measurements to our 3D automatic computa-
tions (3DA), see Table 1. In medical guidelines, an increased rupture risk is assumed for aneu-
rysms larger than 7 mm and therefore, they are usually treated. Moreover, the experts stated that 
measurement deviations of more than 0.5 mm would be critical, since this could influence the 
treatment decision. 

Table 1. Comparison of our automatically calculated (3DA) descriptors to manually measurements 
based on 2D image slices (2DM) and the 3D aneurysm surface (3DM). Maximum occurred 

deviations are emphasized. 

Criteria Measure D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 

 

Height (mm) 

2DM 7.8 3.8 6.0 4.5 5.0 4.6 4.1 4.6 5.3 4.7 

3DM 8.4 3.7 5.3 4.4 5.7 5.9 4.5 4.1 5.1 4.6 

3DA 8.5 4.1 5.5 4.8 5.7 6.1 4.6 4.4 5.4 4.9 

 

Width (mm) 

2DM 4.2 3.4 5.3 4.5 5.4 4.5 3.8 4.8 3.0 4.2 

3DM 5.7 3.2 4.8 5.3 6.7 6.5 4.7 4.7 4.3 5.1 

3DA 5.8 3.6 4.9 5.5 7.0 6.7 4.8 5.0 5.1 5.2 

 

Diameter  

(mm) 

2DM 9.1 4.4 6.2 4.5 5.5 5.5 4.4 5.0 6.1 5.7 

3DM 9.9 4.9 6.3 6.5 7.6 6.7 5.0 4.8 6.3 6.5 

3DA 10.7 5.3 6.4 6.8 7.7 7.4 5.6 5.2 7.0 6.9 

 

Neck Width  

(mm) 

2DM 3.6 2.1 1.4 4.6 3.4 2.7 2.3 2.4 2.5 3.3 

3DM 3.6 2.3 2.0 4.5 3.6 3.5 3.0 2.8 3.2 4.1 

3DA 4.4 2.7 2.5 4.9 4.4 4.1 3.0 2.8 3.4 4.3 

 

Bulge Height  

(mm) 

2DM 7.0 1.5 3.0 2.2 2.9 3.0 1.4 0.9 0.8 1.0 

3DM 6.7 1.4 2.8 2.6 4.0 2.9 1.6 1.3 0.8 0.9 

3DA 6.4 1.4 2.9 1.3 3.1 3.3 1.7 2.2 1.0 1.1 

 

Artery Diameter 

(mm) 

2DM 1.0 1.0 0.6 0.8 0.7 0.9 1.1 0.9 1.2 0.9 

3DM 1.0 1.0 0.6 0.9 0.7 0.8 1.0 0.7 1.2 1.1 

3DA 1.2 1.0 0.7 0.9 0.8 0.8 1.0 0.8 1.3 1.1 

 

Apex Angle  

(degrees) 

2DM x x x x x x x x x x 

3DM 50.6 60.7 55.2 49.9 51.4 80.6 60.3 75.5 48.3 77.3 

3DA 45.8 54.7 41.8 38.1 59.8 89.5 44.6 80.1 54.4 83.4 

 

Measurement deviations differ for the individual descriptors. For height, the maximum differ-
ence between 2DM and 3DM is 1.3 mm and between 2DM and 3DA is 1.5 mm. However, be-
tween 3DM and 3DA, the deviation was reduced to 0.4 mm. Similar differences occurred for the 
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bulge height that has a maximum difference of 1.1 mm, 1.3 mm and 1.3 mm for 2DM/3DM, 
3DM/3DA and 2DM/3DA.The aneurysm width and diameter show larger deviations between 
2DM/3DA with 2.2 mm and 2.3 mm, which are highly critical deviations according to treatment 
decision. Also the median differences are increased with 1 mm for width and 1.2 mm for diame-
ter. For 3DM/3DA, a maximum difference of 0.8 mm occurs for both. The neck width shows a 
maximum difference of 0.8 mm between 2DM/3DM and 3DM/3DA, but between 2DM/3DA a 
maximum deviation of 1.4 mm occurred. The measurements for Apa exhibit a maximum differ-
ence of 15.7 degrees between 3DM/3DA. For the parent artery diameter, the lowest maximum 
differences occurred with 0.1 mm, 0.2 mm and 0.1 mm for 2DM/3DM, 3DM/3DA and 
2DM/3DA. 

Evaluation of the Ostium Extraction 
To assess the quality of our ostium extraction, we compare the calculated ostium contours using 
the Hausdorff distance Hd to ostium curves, manually defined on the 3D aneurysm mesh by 
medical experts, see Table 2 (first row). The experts selected points on the surface that were 
connected by the method of Surazhsky.21 

Table 2. Hausdorff distance between the automatically and manually generated ostium as well as 
deviations for the morphological descriptors calculated based on both ostium surfaces. 

Criteria D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 

Hausdorff (mm) 0.35 0.61 0.31 0.19 0.31 0.38 0.25 0.40 0.75 0.39 

Height (mm) 0.07 0.23 0.05 0.01 0.35 0.12 0.01 0.01 0.33 0.1 

Width (mm) 0 0.23 0.09 0.02 0.03 0.01 0 0.01 0.61 0.1 

Diameter (mm) 0 0.54 0.14 0.23 0 0.22 0 0 0.27 0.03 

Neck Diameter (mm) 0.14 0.43 0.08 0.07 0.05 0.23 0.04 0.21 0.28 0.05 

Bulge Height (mm) 0.07 0.28 0.24 0.16 0.17 0.06 0.01 0.05 0.63 0.01 

Apex Angle (degrees) 0.58 1.01 0.49 0.88 0.46 0.19 0.11 0.58 1.87 0.73 

 
Our automatic approach and the manual approach lead to similar results. The maximum occur-
ring Hd is 0.75 mm (D9), whereas the best result has a Hd of 0.19 mm (D4), both depicted in 
Figure 8. The aneurysm of D9 is parallel to the vessel, which leads to a similar distance to the 
skeleton. Thus, the applied distance metric returns no optimal positions for P1 and P2. However, 
the experts stated that the correction of the ostium contour by selecting new points is easy to use 
and allows for a fast adaption. Furthermore, we investigated the influence of occurring devia-
tions between the manually and automatically extracted ostium on morphological descriptors. 
Table 2 shows deviations of the descriptors calculated for both ostium surfaces. For D9, the 
maximum difference is 0.63 mm for the bulge height and for D2, the diameter deviates by 0.54 
mm. The experts recommend a manual correction for a deviation of more than 0.5 mm. As for 
the angle differences, they were unsure about an acceptable variance because there are no studies 
that show a significant influence of the angle on the rupture risk. However, for the distance-
based criteria, the comparison shows that our ostium extraction leads to appropriate results for 
the majority of the tested datasets. 
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Figure 8. Automatic ostium results for D4 (left) and D9 (right) compared to the manual results 
(green), where the automatic and manual results are very close to each other in the left image. 

We compared our method with the semi-automatic ostium extraction of Neugebauer et al.12 
Figure 9 shows two ostium surfaces with our approach (blue), with the semi-automatic method 
(red) and manually generated (green) for aneurysms with a wide neck. The semi-automatic 
method leads to very dissimilar results compared to manual surfaces due to a wrong determina-
tion of P4. Our method is much closer to the manually generated surfaces, which is reflected in 
the Hausdorff distances with 5.14 (left) and 1.67 mm (right) for the semi-automatic approach and 
0.30 mm (left) and 0.48 mm (right) for our technique. 

 

Figure 9. Comparison of our method (blue) to the semi- automatic approach [12] (red) and manual 
results (green). 

Evaluation of the Data Administration 
The workflow was designed and evaluated with two engineers with expertise in blood flow 
simulations, and the two neurologists. During the informal evaluation the following tasks were 
performed: 

1. Adding a new case. 
2. Adding a new study to an existing case, including information about the pathology. 
3. Editing a study by uploading additional files and changing morphological descriptors. 
4. Searching for a cohort that fulfills specific descriptors with a specified variance. 

First, we described the functionality of the tool. Then, the experts performed the defined tasks, 
while we noted the experts’ spoken comments. 

Adding new cases and studies was described as simple by all experts (Requirement 1). The 
predefined drop down menus enable a fast selection of meta information. Short text-based de-
scriptions can be added to cases and studies, for which experts wished for suggestions of already 
used descriptions. In addition, they emphasized the possibility to upload files for selected pa-
thology information, i.e., images of aneurysm location or reports about rupture. Furthermore, the 
experts wished for an option to add new studies to the selected case in the main view. 

For editing, the experts selected a case from the tabular overview. They were able to edit meta 
information and to upload different types of data using the predefined structure, see Figure 5 
(Requirement 2). They liked the overview of already uploaded data which avoids redundancy. In 
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addition, they used the visualizations to explore and edit morphological descriptors. The auto-
matic calculation was considered very helpful, as it saves time and avoids measurement errors 
(Requirement 5). They wished for a visual summary for clinical documentations and treatment 
planning. 

Finally, the experts searched for specific cohorts. The predefined property lists enable a fast 
definition of individual filtering masks (Requirement 4). The possibility to define a permitted 
variance for each property was emphasized, as it allows a detailed analysis of ruptured and un-
ruptured cases. The experts would like to have a statistical analysis of morphological descriptors 
within a filtered cohort. 

DISCUSSION 
Since we ensure anatomical accuracy during the vessel reconstruction, see “Data Acquisition” 
section, we interpret occurring deviations between manual and calculate descriptors as de-
scriptor-dependent measurement errors. The aneurysm diameter and width show strong varia-
tions, since the maximum extent is difficult to find manually in 3D. Measuring aneurysm angles 
is almost impossible in 2D. In contrast, measurements of the parent artery diameter, which is 
independent of aneurysm shape, show the lowest deviations. Thus, manual measurements are 
error-prone and time-consuming. Processing a dataset took between 8–10 minutes, whereas our 
method needs 1.0–1.9 minutes. In clinical routine, such measurements are currently the basis for 
decision-making. Thus, aneurysms are treated that could initially be observed based on objective 
automatic measurements. This is important since treatment also carries considerable risk of 
severe complications. This aside, manual measurements are not reproducible. To better under-
stand the rupture risk and to evaluate the aneurysm state over time as well as to find an optimal 
treatment, reproducible measurements are needed. 

We compared our automatic ostium extraction with manually generated ostium contours and 
with the method by Neugebauer et al.12 Our results are very similar to manual expert results and 
exhibit significantly lower Hausdorff distances than the results by Neugebauer et al.12 Moreover, 
our approach is independent of predefined input data and overcomes limitations of existing 
approaches handling wide neck aneurysms and small arteries around the ostium. 

However, our approach is limited to cases with one aneurysm. For multiple aneurysms (about 
20% of all cases), ostium surfaces have to be computed separately. Moreover, problems occur if 
the aneurysm runs parallel to the parent artery, which is uncommon according to the medical 
experts. The medical literature provides no unique ostium definition leading to slightly different 
ostium curves by different domain experts. Thus, we calculated the variances of morphological 
descriptors between our automatic and the manually defined ostium. Except for two datasets, no 
significant changes occurred and thus our ostium calculations are appropriate to analyze the 
aneurysm morphology. 

The informal study showed that our framework fulfills the defined requirements. All experts 
were able to efficiently use the tool and they would employ it for exploration and management of 
aneurysm data. To the best of our knowledge, there is no comparable concept that focuses on the 
management of aneurysm data, comprising clinical images, flow data, morphological descriptors 
and patient-specific meta information. Our tool allows for an efficient filtering of datasets, which 
supports the collaboration of different research groups. Furthermore, the descriptors are visual-
ized in a qualitative and quantitative manner, which could also be used for documentation and 
patient education in clinical routine. The analysis of cohorts has to be further supported by statis-
tical methods combined with visual analytics to provide a more detailed investigation of de-
scriptors. This would also require techniques that allow for a visual comparison of multiple 
datasets. 

CONCLUSION 
We presented a tool for visual exploration and management of cerebral aneurysms. Based on an 
automatic ostium extraction, morphological descriptors are automatically calculated and investi-

69May/June 2018 www.computer.org/cga



 

 APPLIED VISUALIZATION 

gated, which is less time-consuming and error-prone than manual measurements. A consistent 
data structure was defined to ensure a redundancy-free storage of aneurysm data. Filtering of 
cohorts supports domain experts to better understand individual risk factors. 

Until now, no percentage value could be calculated that reliably indicates rupture probability. 
Determining a value is challenging, since various factors influence the rupture, such as morpho-
logical descriptors and inflammation processes that cannot be modeled yet. Moreover, clinicians 
evaluate rupture risk differently based on their experience. Our tool enables a fast and objective 
analysis of the aneurysm morphology in clinical discussions by automatic calculations and data 
management. 

In the future, we plan to use the morphological criteria to build an aneurysm rupture risk classifi-
cation. Providing decision trees could support treatment decisions. Moreover, we intend to apply 
our ostium extraction to a larger amount of datasets to further evaluate its robustness. Therefore, 
further manual ostium extractions are required by domain experts. In addition, we want to com-
pute the morphological descriptors for time-dependent data that consider the vessel deformation 
during the cardiac cycle. For this, visualization techniques would be needed that show the behav-
ior of the parameters over time. Finally, we want to extend our ostium extraction to multiple 
aneurysms and integrate hemodynamic descriptors that also seem to influence the rupture risk. 
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