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Abstract
Recurrent neural networks are prime candidates for learning evolutions in multi-dimensional time series data. The performance
of such a network is judged by the loss function, which is aggregated into a scalar value that decreases during training. Ob-
serving only this number hides the variation that occurs within the typically large training and testing data sets. Understanding
these variations is of highest importance to adjust network hyperparameters, such as the number of neurons, number of layers
or to adjust the training set to include more representative examples. In this paper, we design a comprehensive and interactive
system that allows users to study the output of recurrent neural networks on both the complete training data and testing data.
We follow a coarse-to-fine strategy, providing overviews of annual, monthly and daily patterns in the time series and directly
support a comparison of different hyperparameter settings. We applied our method to a recurrent convolutional neural network
that was trained and tested on 25 years of climate data to forecast meteorological attributes, such as temperature, pressure and
wind velocity. We further visualize the quality of the forecasting models, when applied to various locations on Earth and we
examine the combination of several forecasting models.

This is the authors preprint. The definitive version is available at http://diglib.eg.org/ and http://onlinelibrary.wiley.com/.

1. Introduction

Modeling relationships and trends in time series data is important
to forecast the future development. In the past, recurrent neural
networks (RNNs) have been successfully used to forecast time se-
ries, e.g., for market prediction [KB96], network traffic forecast-
ing [ETFD97] and weather forecasting [HRLD15]. A common ap-
proach for RNNs is to use a sequence of previous time steps to
predict the next step. Generating predictions for each time step of
the testing data results in very large data sets that cannot be shown
at once. Additionally, each RNN can be trained with a different
set of hyperparameters like the number of neurons, the number of
layers or the number of past time steps. The prediction error of
the trained RNNs varies spatially and temporally across different
regions of the training and test data. In this paper, we present an
interactive visualization tool that allows the user to directly com-
pare the performance of individual networks on both training and
test data in the context of weather prediction. We provide multiple
hierarchical views to extract the levels of detail, including annual,
monthly and daily trends, down to individual data points. We sup-
port a direct comparison of forecasting models that were generated
with different parameters. This allows meteorologists to analyze
the output of multiple recurrent and convolutional neural networks
that were trained to predict meteorological attributes, such as tem-
perature, pressure and wind. Among others, users can spot overfit-

ting, systematic prediction errors, outliers, trends, temporal patterns
and adjust the training data and hyperparameters to improve predic-
tions. We further extend the method by combining network models
trained for selected locations on Earth to create predictions for each
grid point on Earth. The performance of the combined network is
then evaluated and visualized.

2. Related Work

In recent years, neural networks enabled significant improvements
in many scientific disciplines. Their strength comes from the capa-
bility to learn non-linear relationships, which can often out-perform
hand-crafted features. Neural networks, however, have certain lim-
itations. It is difficult to adjust their hyperparameters and to infer
how and why a network works, which makes it difficult to make
theoretical promises. Since networks are not transparent, it is not
straightforward to extract new scientific insights about the learned
problem, which might be from a scientific point of view not sat-
isfactory. This is where visualization is needed: to build trust by
analyzing internal data flows and to enable the extraction of scien-
tific insights.

Visualization of Neural Networks. For neural networks, most
work focused on visualizing the learned weights and the struc-
ture of the network. Karpathy et al. [KJL15] visualized and in-
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input fc1 fc2 output

(a) A standard feed-forward neural network with
2 fully connected (FC) layers.

input convolution pooling output

(b) A convolutional neural network with a con-
volutional and a pooling layer.

input recurrent output

(c) A recurrent neural network with one hidden
recurrent layer.

Figure 1: Overview of common neural network architectures: feed-forward (a), convolutional (b) and recurrent neural networks (c).

terpreted RNNs, Liu et al. [LSL∗17] focused on the visual repre-
sentation of convolutional filters of CNNs. The method of Zint-
graf et al. [ZCAW17] helps to understand classification deci-
sions made by artificial neural networks (ANNs). Other work
that addressed visualizations of neural network classifiers in-
clude [SVZ14] and [BBM∗15]. Note that forecasting weather at-
tributes needs a regression ANN with a continuous output in con-
trast to classification ANNs, which were used in most previous re-
lated work.

Neural Networks for Weather Forecasting. The forecasting per-
formance of different network structures and weather attributes has
been analyzed by Hossain et al. [HRLD15]. They used weather data
from only one weather station, while we use adjacent grid data
around our location of interest. Grover et al. [GKH15] designed
a hybrid model for weather forecasting which combines an ANN
with the influence of atmospheric laws on weather attributes. For
simplicity, our work does not yet include physical dependencies
among weather attributes and is instead completely data-driven.

Visualization of Time Series. Sun et al. [SWLL13] compiled a
detailed summary of visual analytics approaches, including time
series and geospatial data. Dang et al. [DAW13] explored high-
dimensional and multivariate economic and financial time series
and focused on cross-correlation between the different variables.
Shi et al. [SCL∗12] visualized ranking changes of search queries in
large time series. Krstajic et al. [KBK11] detected events in multi-
ple time series. McLachlan et al. [MMKN08] facilitated the analy-
sis of large collections of system management time series data. We
refer to Aigner et al. [AMM∗08] for further related work on time
series.

3. Background

Artificial neural networks (ANNs) are an excellent tool to discover
hidden patterns in nonlinear and complex structured data. Neural
networks aim to learn the function f (x) of the equation f (x) = y,
where x is the input and y is the target output. Traditional feed-
forward networks consist of three parts: An input layer that receives
input x, one or more hidden layers and an output layer, see Fig. 1a.
Each layer has a number of interconnected hidden units (neurons)
whose weights are adjusted in the training to minimize the error
between the network’s output f (x) and target value y, i.e. the loss.

Convolutional Neural Networks (CNNs) learn spatial features in
data that is given on regular grids, e.g., images or volumes. Instead

of training individual weights for the neurons, convolutional layers
train small weight patches, called filters or kernels, which has two
benefits: (a) Weights are shared between neurons which reduces
the amount of training and redundant parameters. (b) A local con-
nectivity assures that adjacent data in the grid is treated differently
compared to grid points far away. Another necessary ingredient of
CNNs are pooling layers, which reduce the number of parameters
in the network by aggregating patches of data into a single value,
e.g., using the maximum. A CNN is illustrated in Fig. 1b.

Recurrent Neural Networks (RNNs) are neural networks that
contain loops. Instead of just propagating the input information
straight through the network, a RNN layer also receives its previous
output as input. RNNs have memory and are thus suitable for prob-
lems with a temporal dimension. A schematic RNN architecture
can be seen in Fig 1c. However, standard RNNs do not perform well
in practice when they are used to solve tasks that contain long-term
dependencies, because the error gradient that is propagated back
through the network is prone to either vanish or explode [BSF94].

Long Short-term Memory Networks (LSTMs) are specifically
designed to avoid the vanishing gradient problem of standard RNNs
and are capable to learn long-term dependencies [HS97]. LSTMs
became the most commonly used type of RNN, succeeding in a
wide variety of tasks including speech recognition [GMH13], text
generation [SMH11] and time series prediction [SWG05].

4. Neural Network for Weather Forecasting

The ANNs we designed for weather forecasting use a time series
of regular grids as input, which are centered around a location of
interest. The network architecture is depicted in Fig. 2. A single
time step of the input data consists of an N×N×K grid of nor-
malized meteorological attributes, such as temperature or surface
pressure. The spatial N×N slices provide additional information
around the location of interest (we used N = 7). The number of
grid layers K (depth of the grid) corresponds to the number of me-
teorological attributes, used to train a particular network. The ANN
consists of a convolutional part (CNN) that is followed by a re-
current part (RNN). The convolutional part applies F convolution
filters (we used F = 8 with a support of 3× 3×K), resulting in
an N×N×F feature volume. To reduce the training time and to
reduce overfitting, a max-pooling aggregates spatial 2×2 patches,
which results in a

⌈N
2
⌉
×
⌈N

2
⌉
×K grid. Convolution and pooling

are done for each time step of the time series individually. After
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Figure 2: Schematic illustration: the convolutional part which consists of the Convolution and Pooling layer is highlighted in yellow, while
the Dropout and LSTM layers which form the recurrent part are highlighted in green. A flattening and a fully connected (FC) layer are
in-between.

flattening the grid into a vector, the recurrent layers consider the
temporal features of the time series, using multiple LSTM layers
(we used 2–4), each followed by a 20% dropout to prevent over-
fitting. To conclude the network and to convert the output into the
desired format, a dense layer is used. The network forecasts all K
given meteorological attributes simultaneously for the location of
interest. We used the mean squared error as objective loss function
to train the network.

5. Comparative Visualization of Time Series

A common problem when designing an ANN is the optimization
of its hyperparameters, such as the number of layers, number of
neurons or which parts of the input data to use. Every combina-
tion of values for those parameters results in a new forecasting
model. While automatic hyperparameter optimization methods ex-
ist [BB12], the performance of the network is usually only assessed
by a single value (the residual or loss) that is plotted over the train-
ing epochs in the Loss History. With our visualization, we provide
an in-depth analysis of the forecasting performance for individual
hyperparameter settings as well as for comparisons between set-
tings, starting from coarse overviews down to daily events.

5.1. Error Metric

First, we define the error metrics that we use to compare different
forecasting models. Input to our method are time series of vari-
ous predictions of meteorological attributes for a given location on
Earth. For each time series, an ensemble was generated using dif-
ferent weather forecasting models, see Section 4. For a given en-
semble member m, the temperature series is tm = (tm

1 , ..., tm
n ), the

pressure series is pm = (pm
1 , ..., pm

n ) etc., where n is the number of
time steps.

While our networks use one or several weather attributes for
training, our visualization will always show the performance of
only one attribute at a time. Let a ∈ {t, p, ...} be the selected
attribute. Then, the time series of ensemble member m is am =
(am

1 , ..., am
n ) and the full ensemble is A = {a1, ..., aM}, where M

is the total number of ensemble members, i.e., the number of neu-
ral networks trained for weather forecasting. Further, we denote the
ground truth time series of the selected attribute as ã = (ã1, ..., ãn),
which is the provided meteorological weather data.

Given the ground truth ã, we define different error time series for
a given ensemble member m. As error time series, we consider error
(E), absolute error (AE), normalized error (NE) and the normalized
absolute error (NAE). For brevity, we drop the dependence of a in
the error time series notation.

εεε
m
E = am− ã (1)

εεε
m
AE = |am− ã| (2)

εεε
m
NE =

am− ã
σ(ã)

(3)

εεε
m
NAE =

|am− ã|
σ(ã)

(4)

Eq. (1) computes the signed difference, whereas Eq. (2) com-
putes the absolute error. Eqs. (3) and (4) contain a normalization
to account for the difficulty of predicting values with a higher
standard deviation. To compare the mean errors of two ensem-
ble members m1 and m2, we use their respective mean errors εεε

m1∗
and εεε

m2∗ as well as their relative difference (εεεm1∗ − εεε
m2∗ ), where

∗ ∈ {E,AE,NE,NAE}. While εεε
m1
AE and εεε

m1
NAE are used to directly

compare the performance of the networks, the εεε
m1
E and εεε

m1
NE show

whether models are biased to overestimate or underestimate. The
normalized versions of the errors are better suited to compare re-
sults from different training locations, since areas with low standard
deviation are easier to predict than those with high deviation.

5.2. Overview

A schematic overview of our interactive tool is shown in Fig. 3.
The principle of providing linked overview and detail views has
been widely used in information visualization and scientific visual-
ization [Hau06, VWVS99, SWLL13]. In our visualization tool, the
coarse-to-fine workflow follows from left to right. We precompute
and store the errors εεεm∗ of every model m according to Eqs. (1)–(4),
which are later read for the selected meteorological attribute. The
following visualization tasks are supported by our tool:

• a high-level comparison of the overall network performance,
e.g., for the comparison of different hyperparameters,

• a view onto statistics including the loss history and box plots,
• a coarse-to-fine analysis from years to months, days and hours,

with comparisons to the ground truth and among models,
• a comparison of the results obtained with the training and test

data to locate overfitting and underfitting,
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Figure 3: Schematic overview of our interactive coarse-to-fine vi-
sualization tool, including a Selection Matrix (a) to select the two
models to compare, a Full Overview (b) to display the performance
and difference for the entire time sequence, a Month Overview (c)
that displays individual data points within a month, and a Time
Step View (d) that shows the past time steps, used to create the
predictions. The Loss History is shown for both the row and the
column model (a) and mean and standard deviation are aggregated
in Box Plots (d).

• an inspection of different error metrics and attributes.

For comparison of the individual models, the relative differences
are displayed pair-wise in a Selection Matrix, see Fig. 3a. The user
can select two models for closer inspection by choosing a row and
a column. Below the matrix, the Loss History is shown for both se-
lected models. As soon as the models are selected, the difference εεε

m
∗

to the ground truth is visualized for each model, as well as the mod-
els’ relative difference, with values averaged for each month, see
Fig. 3b. We denote these three plots as the Full Overview, as they
provide an overview of the full time series. In these plots, the user
can select a month, which is displayed in more detail in the Month
Overview, which shows all data points (individual predictions) for
the specified month, see Fig. 3c. After selecting a time step in the
Month Overview, a detailed plot for this particular forecast is shown
in the Time Step View, in which the prediction, the ground truth and
the time steps are shown that the network received as input, see
Fig. 3d. Below, a Box Plot is shown to compare the obtained mean
and standard deviation of εεε

m
∗ for the two selected models.

In the following, we explain the visualizations in more detail.

5.3. Selection Matrix

As an entry point for the exploration, we devised a visualization
that allows the user to quickly determine how the individual mod-
els compete with each other. Given the errors εεεm∗ (according to the
respective error metric ∗) of each model m (averaged over the entire
time series), we define the Selection Matrix S as:

Si j = (εεε
mi
∗ − εεε

m j
∗ ) (5)

Each element of this anti-symmetric matrix directly compares two
models, which are identified by the row and column index. The

Figure 4: The entry point of the exploration is the Selection Matrix
(a). The variables to display, the share of the data to evaluate and
the choice of the box plot are adjusted below (b). The Loss History
(c) reveals overfitting and underfitting and the Box Plots (d) display
the median and the deviation of the error of both selected models.

(a) Mean Absolute Error (MAE) (b) Mean Error (ME)

Figure 5: Different colormaps are used for the Selection Matrix
depending on the chosen error metric.

models are initially sorted alphanumerically by their hyperparam-
eters; other choices are imaginable. We visualize this matrix in
Fig. 4a. To provide all available error metrics, the radio buttons
to the right of the interactive visualization (cf. Fig. 4g) can be
used to switch to the desired error metric. While the entries in-
side the matrix visualize the relative difference between two model
scores (εεε

mi
∗ − εεε

m j
∗ ), the left and top margins of the matrix repre-

sent the column and row scores εεε
mi∗ and εεε

m j
∗ , respectively. The spe-

cific colormaps used in the visualizations depend on the selected
error metric (cf. Fig 5) and are all based on colormaps by Color-
Brewer2 [Cyn17].

If an entry is negative, model ki (row) is better and if it is posi-
tive, model k j (column) is more accurate. We visualize this matrix
in Fig. 4 (top left) using a diverging color map. The exact error
value appears as text when the cursor hovers over the respective
texel. Note that the colors orange and purple from now on refer to
properties of the row and column model, respectively.

AE and NAE use a diverging orange-purple colormap for the
relative difference and a sequential green one for the column and
row scores. A brighter shade of green indicates a small error com-
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(a) Full Overview (b) Month Overview

Figure 6: The selected month in the Full Overview (left) is viewed
in detail in the Month Overview (right).

pared to the ground truth, whereas a darker shade means the oppo-
site.

E and NE use a diverging orange-purple for the relative differ-
ence and a diverging red-blue one for the column and row scores. A
red entry means that the mean error is positive, a blue color shows
a negative mean error. The brighter the colors in the margin texels,
the closer are the mean errors to zero.

To the bottom left of the matrix, the weather parameter k to dis-
play can be chosen. Since not all models use the same set of weather
parameters, only those using the selected parameter are displayed.
Further right, the user can select on which part of the data the eval-
uation should happen, i.e., on the training data, the test data or both.
It is useful to see how well the network performed on both training
and test data to spot behavior like overfitting.

For the currently selected row and column model, the Loss His-
tory is shown, see Fig. 4 (top right). In addition, timing measure-
ments for loading the data, training the network and evaluation on
the data are listed. The loss is shown for 100 epochs of both the
training data and the validation data, which consists of 5% of the
training set. Ideally, the validation loss decreases monotonically. In
case of overfitting, however, it starts to increase, since the network
tends to memorize the observed training data instead of generaliz-
ing it.

5.4. Overview of Time Series

To visualize the forecast performance, we follow a coarse-to-fine
approach, which includes two overview visualizations, see Fig. 6.

Time Step View
Figure 7: Side-by-side comparison of predictions for both selected
models, including all past data points received by the networks.

Full Overview. The Full Overview consists of three coordinated
views: from top to bottom there are two individual plots that show
the mean errors εεεk1 and εεεk2 of the currently selected models, and
a difference plot that shows the relative difference (εεεk1 − εεεk2). For
each model, we compute an average error per month and lay out
the data in a 2D matrix, where the columns show the years and the
rows the respective months. Aligning months and years this way
allows observing annual and seasonal patterns, cf. Fig. 6a.

Month Overview. If the user selects a month in the previous Full
Overview, a more detailed Month Overview of that month appears
next to it to the right, see Fig. 6b. This view uses the same layout
and colormaps as the first overview, but differs in the data it visu-
alizes. Here, the columns show the days of the selected month and
the rows the hours. The temporal resolution of our data provides a
value every six hours, resulting in four values per day. This view
provides insights into a model’s night and day time performance.

5.5. Time Step View

Selecting a data point in the previous Month Overview opens the
Time Step View, which concludes our coarse-to-fine sequence. The
respective predictions, the ground truth, as well as the previous time
steps that the two selected networks received as input are plotted
side-by-side in Fig. 7. While the Month Overview only shows the
difference to the ground truth, this more detailed view sheds light
onto the past time steps that led to a particular prediction.

6. Results

For the training and evaluation, we used an ERA-Interim reanal-
ysis of the European Centre for Medium-Range Weather Fore-
cast (ECMWF) [DUS∗11]. We used data from 1990–1999 to train
the models and data from 1990–2016 to evaluate them (separat-
ing testing and training). The data has a spatial grid spacing of
0.75/0.75 degrees (lon/lat) and a time step of six hours. Around
Zurich (Switzerland), we extracted a time series of 7× 7 grids.
This resolution performed best in our initial tests and is another
hyperparameter. The weather attributes at the grid points include
temperature, surface pressure, cloud cover, and the U and V wind
components. These particular attributes were used to train the net-
works and were selected based on advice from a meteorologist. In
the paper, we visualize prediction results for temperature only. We
refer to the video for visualizations of other parameters and to the
additional material for detailed listings of forecasting errors for all
tested networks.
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(a) Underfitting: 32 neurons
(row) vs. 64 neurons (column).

(b) Overfitting: temperature
(row) vs. temp. and pressure
(column).

Figure 8: Left: 64 neurons (column) learn well, while 32 neurons
(row) underfit, as they only learn summer months (�). Right: using
only temperature as input (row) overfits the training data compared
to a model with temperature and surface pressure (column), see the
light green colors in the training months, i.e., 1990–1999 (�).

6.1. Visualizations

Next, we explore different hyperparameter settings, including num-
ber of neurons in the LSTM layer, forecast range and training data.

Underfitting. The selection of the number of neurons is demand-
ing. The models shown in Fig. 8a only differ in the number of neu-
rons in their LSTM layers. While the column model with 64 neu-
rons learns well on the complete domain, the row model with 32
neurons learns only a subset. We also tested a model with 128 neu-
rons, but the results were slightly worse due to overfitting, i.e., the
network memorized the training data instead of generalized from
it.

Overfitting. In Fig. 8b, the opposite case is observed. The row
model with only temperature as input overfits on the training data
(1990-1999), which appears brighter in the Full Overview than
the testing data (1999–2016). Adding surface pressure as a sec-
ond weather attribute as in the column model helps to avoid this
undesirable phenomenon. Both models used 64 neurons.

Training on Specific Season. Fig. 9 gives examples of networks
that trained only on certain months. If only the summer months
were learned (row), the model performed slightly better in the sum-
mer than in the winter, on both training and test data. The opposite,
yet far more pronounced behavior can be observed when only train-
ing on winter months (column), which performed clearly worse in

the summer. In the selected region, summer months are thermo-
dynamically much more difficult to predict (even for operational
weather forecasting models). A generalization from winter mod-
els is therefore not possible. Compared to a model that could learn
on all months, the specialized models do not perform better, which
can be explained by the much larger variety of examples seen by
a model training on the entire year than only on three months. The
Box Plots give further insights into the performance of the models.

12h vs. 6h Forecast. The forecast distance is another parameter
of interest. Most models we trained predict only one time step (6
hours) into the future. In Fig. 10, we compare a 6 hour forecast (col-
umn) with a 12 hour forecast (row). The 6h model learns to gen-
eralize better compared to the 12h model, which overfits slightly
on the training data. This can be seen in the Full Overview as well
as in the Box Plots summarized over years. The Loss History does
not show an alarming decrease in validation data performance, thus
the model is still capable of learning, though not as well as the 6h
model.

Hourly Patterns. An interesting hourly pattern can be observed
in a model (row) that uses temperature, surface pressure and cloud
cover as meteorological attributes. When looking at the Month
Overview in Fig. 11, the 12:00 step stands out. The model fails
to learn this step. The Box Plots show this striking phenomenon
even more clearly. The Loss History reveals an overfitting problem:
Neither the training loss nor the validation loss decreased during
training. They even increased over the epochs, which leads to the
conclusion that this model had problems to generalize from these
attributes. Further experiments involving the cloud cover parame-
ter frequently showed a similarly poor performance. Dropping the
cloud cover led to a clear improvement and led us to the conclusion
that this parameter is not suitable for this network configuration.

Wind Decomposition. The 2D wind direction is a promising at-
mospheric attribute, since it provides directional information on the
possible pathways of clouds. When it comes to feature extraction
from unsteady flows, the choice of the right reference frame is im-
portant [GT18]. To test, whether a neural network would learn to
extract the reference frame internally on its own, we precompute
the optimal reference frame and compare the network output with
the output obtained from the original vector field. Following Gün-
ther et al. [GGT17], we locally decompose the air flow v into two
components v and ṽ:

v = v+ ṽ, s.t.
∫

U

∥∥∥∥∂v
∂t

∥∥∥∥2

dV →min (6)

to separate vortices from the ambient transport. Thereby, v is the
same vector field as v at a transient moment in a rotating and/or
translating reference frame in which the flow is near-steady (the
temporal derivative is minimized at each point in a local neigh-
borhood U) and ṽ accordingly contains the ambient movement—
ideally, the transport direction of clouds. We trained and evaluated
networks with v (row) or ṽ (column) as input. Fig. 12 indicates that
using the ambient flow ṽ improves predictions for small numbers
of neurons, as visible in the Box Plots, since networks must not
learn the feature extraction themselves. If not enough neurons are
available for learning, such a preprocessing of the input prevents
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Figure 9: Comparison of a network that has trained only on summer months (row) with one that only trained on winter months (column).
The specialization is clearly visible in the Full Overview (�). Box Plots that summarize over months give further insight into the behavior of
both networks. They show a higher mean absolute error and standard deviation in months unknown to the network (�).

Figure 10: Comparison of a 6 hour forecast model (column) with a 12 hour forecast (row). The 6 hour forecast performs better, since the 12
hour forecast experiences overfitting, which can be seen in the Full Overview (�) as well as in Box Plots that summarize over years (�). In
the row model, we connect the 12 hour forecast with a dashed line to indicate that the skipped 6 hour data point is not existent.
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Figure 11: The Month Overview (�) as well as the Box Plots (�) show a clear error spike around the 12:00 step for the row model. The
Loss History (�) reveals that this particular model could not generalize since neither the training nor the validation loss decreased over the
epochs. This is an indicator of overfitting. Here, the user chose to evaluate the performance on the test data only.

Figure 12: Extracting the ambient transport using [GGT17] from the flow improved the predictions, as visible in the Full Overview and the
Selection Matrix. The currently selected row model uses the raw wind speed components, while the column model uses the ambient transport
in U and V direction. Both models also received the temperature attribute as input.
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Figure 13: Adding a fully connected layer (highlighted in yellow) at the end of the network improves the predictions as the network uses the
last layer for balancing over- and underestimations.

Figure 14: The column model was the best prediction network for Zurich for the network architecture described in this work. When looking
at the Full Overview, it is apparent that this model generally overpredicts temperature. Adding a last layer as shown in the row model helps
to balance the network and generates reduced MEs as well as MAEs.

underfitting. Note that unlike v, the decomposition of Günther et
al. [GGT17] in Eq. (6) is objective [TN65], i.e., ṽ is independent of
smooth rotations and translations of the input reference frame.

Post-Processing While showing the MAE helps to visualize the
general quality of the predictions, the ME setting also proved to be
useful. The best network model for Zurich using the network archi-
tecture described in Section 4 has the lowest MAE on the testing
data but still yields a ME of 0.31. This means that the model tends
to predict too high temperature values in general.

Adding a last dense layer makes the model balance itself. The
network structure including the last fully connected layer is de-
picted in Fig. 13. Comparing the best Zurich model with the cur-
rent network architecture with one that uses an additional last dense
layer reduces the ME from 0.31K to −0.07K (by 77.4%) and the
MAE from 0.95K to 0.88 (by 7.4%), which can be seen in Table 1.
The visualizations in Fig. 14 show the comparison of the best model

Forecast Model MAE ME SDAE SDE
With last layer 0.88K −0.07K 0.76K 1.17K
Without last layer 0.95K 0.31K 0.83K 1.22K

Table 1: Network performance with and without the last dense
layer: mean absolute error (MAE), mean error (ME), standard de-
viation of absolute error (SDAE) and standard deviation of error
(SDE).

so far and the model using an additional layer. The colors in the Full
Overview are evidently more balanced now.

6.2. Performance

The implementation of our network architecture in Section 4, as
well as the training and testing were done with Keras [Cho15] us-
ing the Tensorflow [ABC∗16] back end with GPU support. The
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Figure 15: A network model that has been trained on a single loca-
tion (Zurich) is evaluated on all available grid locations on Earth.
The evaluation error is averaged over temperature predictions for
the year 2016 and truncated at a maximum error of 10 Kelvin.

following timings were measured with an Intel i7-4710MQ CPU,
8GB RAM and an NVIDIA GeForce GT 730M GPU with 2GB
VRAM. The training of the networks took between 51 minutes and
16 hours for 100 training epochs, depending primarily on the num-
ber of neurons, the number of input steps and the chosen weather
attributes. After a network has been trained, a forecast of a single
time step takes on average 1 millisecond. It took our models be-
tween 37 and 61 seconds to generate forecasts for the whole train-
ing and test data.

7. Combination of Forecasting Models

The models generated with the network described in Section 4 are
optimized for a particular location on Earth where they have been
trained to forecast weather attributes. However, a model that was
trained for one location can be evaluated at different locations, as
well. As the evaluation of a model is much less time-consuming
than its training, training on a few selected locations and evaluating
on the whole grid will save time. From a visualization point of view,
the step from a single point to the whole grid introduces spatial
dimensions, for which we add additional views, as described next.

7.1. Full Evaluation of a Single Model

Evaluating a network model trained on one specific location on all
available grid points on Earth results in a Prediction Quality Map
as seen in Fig. 15 for a network trained for Zurich. There exists
a set of grid points where the model performs well and which are
therefore similar to Zurich from the network’s perspective.

7.2. Full Evaluation of Combined Models

Further developing this idea leads to a combination of multiple net-
works that were trained for different locations. If we look at the
Prediction Quality Map generated by the Zurich model in Fig. 15,
a second network trained on a grid point with a high MAE can
be used to predict weather attributes of locations where the Zurich
model did not succeed.

(a) Zurich and Paris (b) Zurich, Paris and Los Angeles

Figure 16: Combination of Zurich, Paris and Los Angeles models.
The minimal error decreases every time a new model is added and
reaches a good score when using three different network models.

An example of a suitable location for a second network model
is the grid point near Paris. Choosing the better prediction of the
Zurich and Paris networks for each grid point decreases the overall
MAE of the predictions when evaluating on every grid point on
Earth, which can be seen in Fig. 16a.

The minimal error plot depicted in Fig. 16a does still have spots
where both models fail to predict the temperature attribute cor-
rectly. We chose the nearest grid point to Los Angeles to train the
third model. Combining the Zurich, Paris and Los Angeles mod-
els further decreases the overall MAE as shown in Fig. 16b. The
Los Angeles model seems to be a good choice for ocean regions.
Note that for this approach two testing rounds with different data
sets have to be used: One to determine the best model for each lo-
cation and one to evaluate the choice on separate data. Both data
sets are distinct parts of the testing data which have not been used
for training before. In our example, determining the best model for
each grid point can be done by evaluating the models on data from
2000 and then use the resulting combined model to predict weather
data from 2001–2016.

This approach was compared with a single model that was
trained on the data of all three locations. The result of this com-
parison favors the combination of individual models, which can be
inspected in the additional materials.

8. Conclusions

In this paper, we described a comprehensive and interactive system
to visually analyze and compare time series predictions. The input
to our system were time series generated by convolutional and re-
current neural networks that we trained for meteorological weather
forecasting. We devised several linked views, including a Selection
Matrix for an entry point of the exploration, a Full Overview and
Month Overview to discover annual, monthly and daily patterns,
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and additionally showed Time Step Views, Loss Histories and Box
Plots to provide a deeper insight into the prediction performance.
Our method enables to spot phenomena like underfitting, overfit-
ting, and outliers easily. Using not only the MAE but also the ME
as an error metric helped to identify unbalanced models and to im-
prove the network design. Finally, we added the spatial dimension
and visualized the prediction errors globally for the entire Earth.

In the future, we would like to use neural networks to pre-
dict the residual error of operational weather forecasting systems.
Further, analyzing which parts of the input data led to a predic-
tion would also be interesting for a comparison even if networks
were trained to forecast other attributes. While we concentrated on
meteorological data, an application of the visualization model to
other ensembles of time series is imaginable as well. An exam-
ple would be stock market data, which can also be generated using
ANNs [KB96].
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