
EUROGRAPHICS 2018 / D. Gutierrez and A. Sheffer
(Guest Editors)

Volume 37 (2018), Number 2

PointProNets: Consolidation of Point Clouds
with Convolutional Neural Networks

Riccardo Roveri1, A. Cengiz Öztireli1, Ioana Pandele1 and Markus Gross1

1ETH Zürich

Input

WLOP + RIMLS

POISSON

EAR + RIMLS

APSS

OURS + RIMLS

RIMLS

Ground Truth

Figure 1: Surface reconstruction from a noisy and sparse point cloud is an ill-posed problem with infinitely many possible reconstructed
surfaces. Our technique consolidates an input point cloud by learning local maps from input to output geometry patches to enhance
reconstructions with accurate geometric features and details. This leads to significant improvements for the resulting surfaces.

Abstract
With the widespread use of 3D acquisition devices, there is an increasing need of consolidating captured noisy and sparse point
cloud data for accurate representation of the underlying structures. There are numerous algorithms that rely on a variety of
assumptions such as local smoothness to tackle this ill-posed problem. However, such priors lead to loss of important features
and geometric detail. Instead, we propose a novel data-driven approach for point cloud consolidation via a convolutional
neural network based technique. Our method takes a sparse and noisy point cloud as input, and produces a dense point cloud
accurately representing the underlying surface by resolving ambiguities in geometry. The resulting point set can then be used to
reconstruct accurate manifold surfaces and estimate surface properties. To achieve this, we propose a generative neural network
architecture that can input and output point clouds, unlocking a powerful set of tools from the deep learning literature. We use
this architecture to apply convolutional neural networks to local patches of geometry for high quality and efficient point cloud
consolidation. This results in significantly more accurate surfaces, as we illustrate with a diversity of examples and comparisons
to the state-of-the-art.

CCS Concepts
•Computing methodologies → Point-based models;

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

R. Roveri et al. / PointProNets: Consolidation of Point Clouds with Convolutional Neural Networks

1. Introduction

Capturing 3D geometries is becoming commonplace thanks to the
abundance of affordable and lightweight sensors and advancing
algorithms. The captured geometries can then be used for various
applications ranging from 3D printing to photography. A main chal-
lenge for 3D capture systems, however, is that noise and sparseness
in point cloud data typically obscure important geometric features
and details. Recovering those details can be very difficult or impos-
sible for many cases.

Given a noisy and sparse point cloud depicting an object bound-
ary, i.e. surface, it is an ill-posed problem to recover such geomet-
ric details: there can be infinitely many different geometries that
would result in the same sparse and noisy set of sample points. To
regularize the problem, we thus need prior beliefs on the global
or local structure of the geometry to be reconstructed [BTS∗17].
For resolving fine features and details, most methods rely on lo-
cal priors such as locally piece-wise smooth surfaces with sharp
features [OGG09, HWG∗13]. This has led to many successful con-
solidation, i.e. synthesizing a new point set that accurately samples
the underlying surface, and surface reconstruction algorithms.

Although these techniques generate plausible surfaces, they can-
not recover elaborate geometric features if the artifacts in point
cloud data become substantial or the priors do not hold. It is in
general a very challenging problem to resolve geometric features
and up-sample a point cloud especially when only the raw point
cloud without further attributes such as surface normals are pro-
vided [WHG∗15].

In this paper, we propose a data-driven approach to recover sur-
face features and details by building on the recent very successful
class of convolutional neural network (CNN) based deep learning
methods. CNN-s have shown exceptional performance for many
image processing problems, and are more and more used also for
generative tasks where an input image is transformed into a new im-
age with desired properties [XRY∗15, IZZE16, YZW∗16, GCB∗17].
However, modern CNN based architectures require a regular sam-
pling of data, and thus extending these techniques to unorganized
point clouds is non-trivial [QSMG17], and so far could only be
used for coarse shape completion on voxel grids of relatively low
resolution [HLH∗17].

We tackle this by exploiting the structure of our problem: the
geometric features we target are encoded in local regions, which
can be individually parametrized. Our method jointly learns local
parametrizations and the locally fitted surfaces. We achieve this by
developing a new neural network based generative architecture that
can consume and output point clouds. This architecture provides
an end-to-end approach where an input raw point cloud is used to
generate a new very dense point cloud that accurately samples the
underlying surface. We show that this leads to substantial improve-
ments in terms of accuracy of the final surface representations. In
summary, we have the following main contributions:

• The first deep learning method for local point cloud processing
with a fully differentiable architecture that we call PointProNet.
A key component in this architecture is a differentiable points pro-
jection layer for converting unordered points to regularly sampled
height maps. Although we use the architecture for consolidation,

it can also be used for revising further point cloud processing
tasks

• An end-to-end data-driven algorithm for consolidation of unorga-
nized point clouds that leads to very accurate surface representa-
tions, with significant quantitative and visual improvements over
the previous methods.

2. Related Work

Consolidation typically involves denoising, resampling, and surface
normal estimation, as well as outlier removal and missing data
completion. This is then followed by surface reconstruction to get
the final surface. Many reconstruction methods can also be used
for resampling, and methods that output dense point sets render the
reconstruction problem trivial. Hence, our technique is related to
both classes of methods. We review the most relevant techniques
below.

Consolidation with Smoothness Priors Consolidation and the
subsequent task of reconstruction are ill-posed problems and hence
further assumptions are required to generate reconstructed sur-
faces. A very versatile assumption is local smoothness [ABCO∗03].
Smooth reconstructions or resampled point sets can be obtained
with radial basis functions [CBC∗01], solving a Poisson equa-
tion in 3D [KBH06], parametrization-free projections [LCOLTE07,
HLZ∗09, PMA∗14], or moving least squares based local approxi-
mations [ABCO∗03,SOS04, GG07]. The smoothness assumption
breaks, however, for certain classes of real-world surfaces that
contain sharp features. Many other methods thus focus on pre-
serving such features by utilizing sparsity inducing norms [AS-
GCO10, SSW15], dictionary learning [XZZ∗14], positional con-
straints [KH13], dedicated sampling of edges [HWG∗13], or robust
statistics [OGG09, OAG10], leading to significant improvements
especially for man-made objects. All these techniques rely on an
input point set only, and hence cannot resolve surface shapes if the
input point cloud contains a prohibitive amount of imperfection
that makes inferring the underlying surface infeasible. We solve
this problem by guiding local fits with priors extracted from ex-
isting point cloud data of geometries with similar local structures.
This learning based approach resolves ambiguities and steers the
reconstructions towards accurate local structures.

Data-driven Geometry Completion and Reconstruction When
large portions of geometry are missing, several methods use data-
driven priors to complete and reconstruct surfaces from point clouds.
This can be achieved by retrieving models [SXZ∗12, KMHG13,
LDGN15] or model parts [GSH∗07, SFCH12, SKAG15] from
a database that can also be deformed to match the input point
clouds [PMG∗05,NXS12,KMYG12]. Although such methods excel
at global shape completion, resolving geometric features and details
can be challenging due to the limited range of compatible objects or
parts in the database, wrong matches, and misalignments [HLH∗17].
In contrast, we do not require close matches or alignments between
training and test geometries, and focus on learning to recover geo-
metric details. Other data-driven methods regress to parameters of
a constructed model, which is typically used for e.g. human body
shapes [ASK∗05, WBLP11]. However, such parametric models lack

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

R. Roveri et al. / PointProNets: Consolidation of Point Clouds with Convolutional Neural Networks

Frame
Estimator

Projector

Back-
projector

Heightmap Generation Network Heightmap Denoising Network

Convolution
Batch Norm.

ReLU

Figure 2: The network architecture. Each patch X of an input point cloud is processed with this architecture to generate the consolidated
point set stored in Y. Each component is differentiable and hence allows for end-to-end training.

the geometric details we target, and are only designed for when the
test geometries belong to the specific parametric model constructed.

Geometry Generation and Completion with Deep Learning We
propose a new neural network based deep architecture for the
consolidation problem. The exceptional performance of deep neu-
ral networks on image processing tasks has led to various previ-
ous efforts on extending their power to 3D surfaces. Several ap-
proaches extend the 2D grids used for image processing to 3D
voxels grids [WSK∗15, SGF16, VDR∗16]. This allows a direct ex-
tension of many successful architectures to 3D. However, these
only work for relatively low resolution of grids (typically up to
323) due to the increased memory and computational requirements
in 3D. Even with the state-of-the-art approaches that fuse global
and local patches [HLH∗17], or utilize octrees [RUG17], the res-
olution is limited to 2563. It has thus been so far not possible to
directly recover geometric details with the current deep learning ar-
chitectures [DQN17]. We specifically target such geometric features
and details and propose a new dedicated deep architecture for the
consolidation problem.

While we do not aim at recovering large missing parts of point
clouds, the concurrent work by Han et al. [HLH∗17] targets com-
pletion of 3D shapes. In addition to a global structure inference
network, their deep learning architecture includes a patch-based
local geometry refinement network. The latter is built with voxel
grids and 3D CNN-s, while we propose a network component to
project unordered points to 2D heightmaps. This makes our method
memory efficient and suitable to preserve fine details. Even if the
general application is different, we leave the comparison with the
local geometry refinement network of [HLH∗17] for future work.

Sparse Representations for Geometry in Deep Learning There
are several ideas in the deep learning literature to handle 3D ge-
ometries efficiently via exploiting the sparsity of the data by sparse
convolutions [Gra14, Gra15, ERW∗17], probing filters with a sparse
set of points [LPS∗16], mapping inputs to a permutohedral lat-
tice [JKG16], a voting scheme for sliding-window based object
detection [WP15], applying convolutional neural networks to im-
ages depicting multiple views of a 3D object for classification and
recognition [SMKLM15, QSN∗16], extracting features in a pre-
processing step [FXD∗15, GZC15, DJÖ∗17], or representing shapes
in a spectral domain [BZSL13,MBBV15]. These methods, however,
are not designed to handle general large point cloud data.

For analyzing point clouds, Qi et al. [QSMG17] have recently

proposed a neural network architecture. This method can deal with
the order invariance of points, and can also be nested hierarchi-
cally for an understanding of geometric features at multiple scales,
similar to a convolutional neural network [QYSG17]. Although it
performs well for descriptive tasks on point clouds such as classi-
fication and segmentation, these architectures are not designed for
generating points representing geometric details for accurate surface
reconstruction, which is the focus of our work.

3. Algorithm Overview and Training Data Generation

3.1. Overview

The main idea of our technique is to learn a local mapping that trans-
forms each set of points extracted from a local patch of the input
point cloud to its consolidated version, where the output points sam-
ple the underlying surface very accurately and densely. The union
of all such local output sets give us the final output point cloud. We
define a patch as the set of points included in a local neighborhood.
In particular, we represent a patch of geometry around a point as an
oriented 2D heightmap that stores distances to the sample points in
the neighborhood along a given direction. This 2D representation
of local patches makes it possible to exploit the strengths of deep
learning architectures for image denoising and super-resolution, and
extend them to the task of processing unstructured 3D points.

In order to learn the mapping from a noisy patch of points to its
consolidated version, we designed a new neural network architecture
composed of fully differentiable components, as shown in Figure 2.
The first component, Heightmap Generation Network (HGN) re-
ceives the matrix Xn×3 that stores the x,y,z-coordinates of n input
noisy points in the patch, and generates a noisy heightmap image
HN of resolution k× k. In particular, it first learns a local coordi-
nate frame for projection, projects the points onto the correponding
image plane with a projection module, and resamples the resulting
heightmap to obtain the regularly sampled image HN . The second
component, Heightmap Denoising Network (HDN), uses image con-
volutions to transform the noisy heightmap HN into a denoised
version HD. Finally, by transforming the pixel coordinates of HD
into point locations according to the learned image plane parameters
and the stored distance values, the consolidated patch is generated
and stored as a list of n′ point coordinates Yn′×3, n ≤ n′ ≤ k2. In
addition to learning the positions of the consolidated points, we
propose a simple extension of our network architecture that allows
us to learn consolidating their normals as well, if noisy normals of
the input X are supplied or pre-computed.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

R. Roveri et al. / PointProNets: Consolidation of Point Clouds with Convolutional Neural Networks

X X YYHN HNHD HDHGT HGT

Figure 3: Given an input point cloud patch X stored as raw point locations in the matrix X, our network projects and resamples the geometry
to convert it into the image HN , and processes this image to produce HD (here we also show ground truth HGT ’s for reference). This is finally
back-projected to get the consolidated point set Y .

3.2. Training Data Generation

We start with a set of pairs of an input patch, and the corresponding
ground truth output patch. These are cut out from input and ground
truth output point clouds in spherical neighborhoods of radius r. For
each pair, we thus have a set X of noisy and sparse points, and the
corresponding denser set YGT of consolidated, i.e. denoised and
up-sampled, points. We then extract a ground truth heightmap HGT
from YGT . At training time, the aim of the network is to produce a
denoised heightmap HD that is as similar as possible to HGT , starting
from the input set X .

Ground Truth Heightmap Generation The consolidated patch
YGT is not directly fed to the network, but transformed to a 2D
representation: we aim at extracting a ground truth heightmap HGT
which best encodes, in a 2D image, the 3D geometry. We thus want
to find a normalized vector nGT of a proper image plane positioned
at an offset −rnGT (to avoid negative distances). Since a heightmap
can represent only one layer of geometry, we would like to have
the least amount of points from different depth levels projected
onto the same image pixel and thus averaged. In practice, we set
the vector nGT as the average of the normals of the points in the
consolidated set YGT . Due to the high density of YGT , its uniform
sampling, and lack of noise, we found this average is robust for
capturing local geometries for the patch sizes we consider. Given
the image frame defined by nGT , and an orthogonal vector dGT , the
consolidated points are projected onto the plane orthogonal to nGT ,
and transformed into image coordinates. The distances between
the original points and the projected ones are interpolated with
gaussians to produce a resampled heightmap stored in HGT . The
same heightmap generation procedure is performed in a custom
module within our network in the HGN component. We thus refer
to Section 4.1 for a more detailed explanation of the operations.

Data Augmentation Note that the orientation of nGT is ambigu-
ous: both nGT and −nGT would produce a valid heightmap, even
though the resulting images can be substantially different. We thus
choose the sign of nGT randomly for every patch, in order to ensure
that we feed the network with varied data. The vector dGT defines
rotation of heightmaps on the image plane. We choose a random
dGT orthogonal to nGT to make the learned representation invari-
ant to this degree of freedom. When feeding data to the network
during training, pairs (X ,YGT) are randomly extracted from the

training point clouds by positioning centers of the neighborhoods at
random points in input point clouds. We thus get a dense coverage
of each geometry in the database. Finally, we further augment the
patch pairs dataset by random resampling of the input point clouds,
getting an arbitrary sampling rate for each X . The number of points
can then be matched to n by random down-sampling or replication
of points in X , as the network expects a fixed-size input matrix X.

4. A Network Architecture for Point Cloud Consolidation

Given the training data consisting of pairs (X ,YGT) that are trans-
formed into (X,HGT) as described above, we would like to design
an architecture that can be trained with these pairs at training time,
and produce consolidated output points Y for an arbitrary X at
testing time. In this section, we elaborate on the main components
of our network (Figure 2) in more detail, and explain how the output
of the network (used in a feed forward manner) serves to produce
the final consolidated point cloud.

4.1. Heightmap Generation Network

The goal of our first component, Heightmap Generation Network
(HGN) in Figure 2, is to estimate an image plane orientation, and to
produce a corresponding noisy heightmap by projecting the points
stored in X. The component is thus divided in two parts: first, a
vector n and an orthogonal direction d are estimated from the input
points in X , then, the input points are projected to the image plane,
generating a noisy heightmap image HN .

Frame Estimator In order to estimate n, the component Frame Es-
timator (Figure 2) needs to deal with the unordered structure of the
input point set given in X. To tackle this problem, we utilize the idea
of using a symmetric function with respect to ordering of points X
with a single max pooling layer from a very recent work [QSMG17],
and use it to predict n. In the original work, the final fully connected
layers produce a global descriptor, which is then used for classifica-
tion or segmentation. In our method, we adopt the same architecture
but modify the output of the final fully connected layers to produce
the 3D vector n. Additionally, it would be beneficial that the learned
representation is invariant to translations and rotations of X. We
achieve this by centering the points in X by subtracting the patch
center, and by feeding patches with random rotations at training
time.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

R. Roveri et al. / PointProNets: Consolidation of Point Clouds with Convolutional Neural Networks

As elaborated on in Section 3.2, due to the ambiguity of the sign
of nGT , our dataset contains patches of either orientation. Even with-
out this augmentation, we found out that there can be many similar
patches with similar nGT but with opposite signs. The frame estima-
tor then typically learns to estimate an average, which significantly
distorts the learned n and thus heightmaps. To avoid this averaging,
at training time, we snap the orientation of n to that of nGT by set-
ting n← n(nT nGT) and normalizing. This ensures that the network
is forced to learn the direction of n, and choose either of the two ori-
entations, and not their average. Note that this snapping component
is not present at testing time, where the orientation of n is irrelevant
for generating the final consolidated patch. Similarly, at training
time, the direction vector d, is kept as close as possible to dGT and
orthogonal to n at each iteration by setting d← dGT − (dT

GT n)n and
normalizing in the component, to ensure rotations on the plane are
not averaged. At testing, a random d orthogonal to n is sufficient as
the learned representation is invariant to rotations on the plane.

Projector The second part of HGN takes the vectors n, d, and
the input point set in the form of the matrix X, and renders a 2D
heightmap HN regularly sampled at pixel coordinates. The projector
component first projects the 3D points onto the image plane given
by the vectors n and d, and positioned at an offset of −r, to avoid
negative distances. Hence, for each point x ∈ X (i.e. each row of
X), we define

p = x− (xT n+ r)n, (1)

as the projected position of x. For each projected point p, we also
store the distance ‖x−p‖. The projected points are then transformed
into image coordinates as

i = k
2r

[
pT d+ r pT (n×d)/‖(n×d)‖+ r

]T
, (2)

where HN is a k× k image. We thus get the image coordinates i and
the corresponding distance values D(i). The heighmap image HN
is then generated by interpolating the distances D(i) on the image
plane with Gaussian interpolation at pixel centers.

We use a Gaussian with a cutoff such that for a given pixel center
c in image coordinates, only the points i given byN = {i | ‖c− i‖<
δ} need to be considered. The value at c is then given by

HN(c) =

{
1

W (c) ∑i∈N (c) g(c, i)D(i), N (c) 6= ∅
0, N (c) = ∅,

(3)

where W (c) = ∑i∈N (c) g(c, i), and g(c, i) = e−
‖c−i‖2

σ2 . We show
some examples of generated HN at testing time in Figure 3. All
operations of the projection module are differentiable with respect
to the inputs, thus the gradients can be back-propagated through the
network.

4.2. Heightmap Denoising Network

Our second network component, Heightmap Denoising Network
(HDN) in Figure 2, takes the noisy heightmap HN as input, and
generates a denoised version HD as its output. As this is a map-
ping between regular images, many previous methods from the

Input PCA based
projection

HGN based
projection

Figure 4: Estimating consistent local directions for projection that
are robust to noise and result in heigtmaps that capture local struc-
ture well is difficult with geometric methods such as PCA (shown
in red), whereas our architecture generates a robust and propoer
direction for heighmap generation (green). This is essential for
HDN to generate accurate and consistent results as we show for
consolidated point sets with projections estimated by PCA and HGN
(middle and right).

image processing literature can be utilized. CNN-based architec-
tures have been successfully adopted for image denoising and super-
resolution [KLL15, ZZC∗16], obtaining state-of-the-art results. We
thus also adopt a deep CNN for this step. HDN is inspired by a
recent network architecture [KLL15], consisting of a sequence of
10 convolutional layers with depth 64, and filters of size 7×7. After
each convolution, batch normalization and a rectified linear unit
layer (RELU) are applied.

Examples of noisy HN and corresponding denoised HD
heightmaps obtained at testing time are shown in Figure 3. The
network learns a very accurate mapping, leading to HD very close
to the ground truth patch images.

4.3. Training Procedure and Analysis

Training and Loss We first train HDN by using the ground truth
plane parameters, thus by substituting n with nGT in HGN, and
minimizing the loss ‖HD−HGT ‖2. This allows us to train the con-
volutional layers of HDN on patch pairs with perfect projection and
resampling. Once the weights of HDN are trained, we fix them and
train HGN with the same loss as before. By imposing the same loss,
we force HGN to learn the best projection such that the projected
heightmap, once denoised, becomes as similar as possible to the
ground truth image HGT .

Robustness to Noise and Sampling Adopting a learning based
approach to estimate projection and denoising simultaneously makes
our local fits robust to noise and sparse data, and consistent with
the local geometric features. This is very hard for purely geometric
algorithms, such as fitting local planes with PCA. Such methods
result in parameters that are overfitted to noise or biased with respect
to the patch structure, depending on the size of the neighborhood,
noise level, and local geometry.

Figure 4 (top, left) shows an example for a noisy patch (blue
circle), where a PCA-based estimation of the normal vector at the

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

R. Roveri et al. / PointProNets: Consolidation of Point Clouds with Convolutional Neural Networks

patch center is given in red, and the n estimated by our network
in green. The former is obtained by averaging the normals of the
points in the patch, all estimated with a small neigborhood size
(one third of the patch size) with PCA. Our estimated n generates a
better heightmap that is consistent for noisy patches, as it captures
the underlying local geometry well. This is clear also in the final
consolidated point clouds, as we show for PCA-based projections
followed by HDN in Figure 4 (top, center), and our full architecture
HGN + HDN in Figure 4 (top, right). Utilizing our full architecture
results in a much smoother geometry while preserving important
features.

Such local fits with geometric techniques are also problematic
when the size of neighborhood considered is large with respect to
local geometric structures, which is the case for all our patches, as
we need to capture local structure within our networks. In Figure 4
(bottom), the same comparison as in (top) is shown for a sharp
feature, but in this case the PCA normals are computed with a size
as large as that of the patch. The n estimated by our network (green)
allows HGN to generate a proper heightmap around the peak, which
can then be effectively denoised by HDN (bottom, right). PCA, on
the other hand, estimates a vector (red) that is perpendicular to n.
This results in a heightmap where distances of points are averaged,
leading to artifacts in output consolidated point sets (bottom, center).

4.4. Processing Point Clouds at Testing Time

Processing a Single Patch At testing time, given an input point
cloud, a spherical patch of radius r around a point is extracted. If
the normals of the input point cloud are provided or pre-computed,
the patch can be further refined by considering location-wise and
normal-wise close points. The patch is first resampled to obtain n
points as in data generation for training (Section 3.2), and centered
at the origin. It is then fed to the Frame Estimator component of
HGN (Figure 2) to estimate the normal direction n for the plane
over which the heightmap HN is defined. A random direction vector
d orthogonal to n is then computed, and the noisy height map HN
is generated with Projector. The HN is then denoised by HDN to
produce HD, which is finally converted into a point cloud by Back-
projector with the same frame that Projector uses. Each pixel center
with the corresponding depth given by HD projects into a 3D point.
Pixels with zero values are not projected, as they do not represent
geometry (the resulting positions fall out of the patch sphere due
to the offset we use as explained in Section 4.1), but are rather
placeholders for no geometry. The resulting consolidated set of
points is then translated to the original position of the input patch.
We show examples of consolidated sets Y in Figure 3. As compared
to the input noisy and sparse set X , we get a denoised and much
denser output set Y .

Reprojection Density The above process is repeated independently
for patches around every point of the input point cloud. The gener-
ated point sets are all retained in a final set representing the consoli-
dated point cloud, without any further processing such as averaging
of point locations.

In order to introduce overlaps between patches and hence produce
a dense output, we evaluate a patch around each input noisy point.
Less overlaps can be introduced for efficiency, at the cost of quality

 Output, denseOutput, sparse

Figure 5: The output consolidated point cloud, obtained by evaluat-
ing only patches around one quarter of the input noisy points (left),
and around every input noisy point (right).

due to sparseness of the output. An example of output point cloud
with less overlapping is shown in Figure 5 (left), where patches
were extracted only around one quarter of the input noisy points.
Compared to the denser version in Figure 5 (right), it is smoother
and contains several small holes.

The number of new points n′ sampled on HD further defines the
density of the final consolidated point cloud. For example, reproject-
ing a single point corresponding to the central pixel of HD would
produce a denoised point cloud with the same number of points as
the input, thus possibly losing the ability to preserve fine details. On
the other hand, reprojecting a point for every pixel of HD could lead
to artifacts at the borders of the patch, nearby the zero value pixels
which are placeholders for no geometry. The convolutions, indeed,
may introduce smooth transitions between the zero values pixels
and the ones representing geometry. We found projecting the pixels
in a central part of HD for each patch produces best results. After
HD is computed, we thus reproject only the pixels that fall into a
square of size m around the patch center.

4.5. Extension for Point Normals

As we get a dense and denoised point set as the consolidated output,
surface normals at the output points can simply be computed with
existing geometric methods such as PCA. However, for cases where
there are sharp features to be preserved, we might still not get
the exact expected sharpness for normals as we are limited by the
resolution of the intermediate image-based representation HD. For
such cases, we thus propose an additional network component for
denoising point normals. The idea is to denoise, instead of a single-
channel noisy heightmap HN as before, a three-channel noisy normal
map NN , generated from the input normals. The architecture is the
same as before with a few modifications. First, HDN processes
images NN of three channels, each representing a component of
normal vectors. Second, each channel j of the normal map NN is
generated as in Equation 3, by interpolating the jth component of
the surface normals denoted by N(i, j) for projected points i as

N(c, j) =
1

W (c) ∑
i∈N (c)

g(c, i)N(i, j). (4)

Here, N(c, j) is the jth component of the normal vector stored at the
pixel center c, expressed in image plane coordinates as before.

At testing time, given an input patch X , the maps HN and NN are

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

R. Roveri et al. / PointProNets: Consolidation of Point Clouds with Convolutional Neural Networks

 Input Output, dense Output, downsampled GT

Figure 6: From an input noisy point cloud (Input), our method
produces a dense, consolidated version (Output, dense). Prior to
surface reconstruction, this can be optionally adaptively downsam-
pled (Output, downsampled) to speed up reconstruction algorithms.
The ground truth mesh (GT) is shown as reference.

generated with respect to the estimated frame, and their denoised
versions HD and ND are obtained via two separate HDN’s. We can
then obtain the point locations from HD by back-projection as before,
and normals from ND by changing the coordinate system according
to the same estimated frame.

5. Experiments and Analysis

5.1. Network Implementation and Parameters

For all our experiments, we set the patch radius r to 5 times the
average spacing between the input points, and resample the patches
to n = 100 points (Section 3.2). We use images of size k = 48, and
set σ = 1/r for generating HN , and σ = 1/2r for generating the
training dense heightmaps HGT , with δ = 2.5σ. We back-project
points from the heighmap image HG in a square of size m = 24.
The whole architecture is trained with the Adam Optimizer with
an initial learning rate of 0.0001 lowered by 10 times every 30k
steps. We feed the patches in batches of size 8. For the PointNet
components [QSMG17], we use the default parameters and their
basic code for handling unordered point sets as input. The network
was implemented in TensorFlow.

5.2. Pipeline For Surface Reconstruction

A key application of point cloud consolidation is to serve as a prepro-
cessing step to surface reconstruction algorithms. These algorithms
are affected by noise and sparseness of the input data. Thus, provid-
ing a consolidated, dense point cloud is critical for improving the
reconstructed surfaces. We start by applying our method to a noisy
input point cloud and generating a consolidated dense version. Since
the resulting point cloud is very dense, we can easily downsample it
in an adaptive fashion, keeping a high density of points in proximity
of the features. This step considerably speeds up the reconstructions
without loosing quality. In particular, we use a simple and efficient
clustering algorithm [PGK02], where downsampling is obtained by
grouping points in local clusters. In order to keep a denser sampling
near the features, the size of the clusters is adapted to the local
variation of the point set. We use 30 as a maximum cluster size and
0.02 as maximum surface variation (for the flags dataset, see below,
20 and 0.03).

Figure 6 illustrates an input point cloud (of about 50k points)
from our sculptures dataset (see below), our dense consolidated

point cloud (about 1.6M points), our subsampled point cloud (about
150k points), and the ground truth mesh from which the noisy input
was sampled. The generated dense point cloud does not present noise
and preserves detailed features such as the nostril and the edges of
the base. Those features are also preserved in the downsampled
point cloud, while reducing the overall sample count.

If not learned through our point normals network extension, we
estimate the point normals of the consolidated point cloud using
PCA of local neighborhoods and a Riemannian graph for their
global orientation. Due to the high density and quality of the output
consolidated point cloud, this simple approach already obtains high
quality results. We compute point normals with PCA on 50 nearest
neighbor points.

Finally, we reconstruct the underlying surface by extracting the
iso-surface of the RIMLS [OGG09] using the marching cubes algo-
rithm. We refer to our surface reconstruction results as OURS-R, and
our output dense point clouds as OURS. We use a spatial low pass
filter of 7 to 10 times the local spacing of output points for RIMLS.
The RIMLS sharpness parameter σn is set to 0.75.

5.3. Datasets

For our experiments, we built three datasets: two with synthetic data
and different levels of noise (sculptures and flags), and one with
real-data from a sensor (Kinect v2), each composed of objects with
similar features and separated in a training and a testing subset. For
testing our point normals network extension, we built an additional
synthetic dataset containing multiple geometric sharp features (geo-
metric shapes). The test point clouds only contain point locations,
without point normals or any additional attributes.

For training, we have three ground truth models for the sculptures,
three for flags, four for geometric shapes, and four for Kinect v2,
from which many training patches are generated. The ground truth
point clouds of sculptures, geometric shapes and the noisy and
ground truth point clouds of Kinect v2 were extracted from the
models also used in recent works [WLT16]. For the Kinect models
represented as meshes, we remove the connectivity information
and just retain the vertex locations. The meshes of the flags dataset
were generated by animating a waving flag mesh and randomly
selecting frames. While the flags dataset is very specialized (each
model has wrinkles of similar shapes and sizes), the other datasets
are more general. The ground truth models of our datasets are shown
in Figure 7.

For each model in the training sets, ground truth point sets are
twice as dense as the input point sets, and are generated by Poisson
disk sampling for equal distribution of points. Synthetic Gaussian
noise was dynamically added to the input points at training time, as
the training patches were generated. For the sculptures dataset, three
training sessions were performed, each with noise of a different
standard deviation (σ1 = 0.037r, σ2 = 0.075r and σ3 = 0.15r),
while for the flags and the geometric shapes datasets, σ = 0.075r.

Our testing sets contains six models for sculptures, ten for flags,
two for geometric shapes, and 14 scans of three models for Kinect v2.
For each model, an input noisy and sparse point cloud was sampled
(except for Kinect v2, where we already have noisy scans) from the

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

R. Roveri et al. / PointProNets: Consolidation of Point Clouds with Convolutional Neural Networks

Sculptures

Flags

Kinect v2

Geometric shapes

Figure 7: The ground truth meshes for our four training datasets.

ground truth model with the same conditions as in the corresponding
training dataset. The input point clouds of the sculptures dataset
consist of about 70k points on average, while the other datasets
come with around 15k points for testing models.

5.4. Comparisons

We compare numerically (reconstructions) and visually (point
clouds and reconstructions) to five common and state-of-the-art
methods for point consolidation and surface reconstruction: Poisson
Surface Reconstruction [KBH06], APSS [GG07], RIMLS [OGG09],
WLOP [HLZ∗09], and EAR [HWG∗13]. While Poisson, APSS, and
RIMLS directly produce an iso-surface, WLOP and EAR generate
a resampled point cloud. For comparing our surface reconstruction
results, we thus apply RIMLS to the output of WLOP and EAR, and
utilize marching cubes to extract the final surface for all methods.
We refer to these combinations as WLOP-R and EAR-R.

In order to numerically compare the mesh reconstruction results,
we adopt the Hausdorff distance between the reconstructed meshes
and the ground truth ones. As we have models that are not closed,
we used the one-sided Hausdorff distance from a ground truth mesh
to the reconstructed one, in order to avoid including errors due to
extra surface parts around the boundaries in the reconstructed mesh.
The Hausdorff distance is normalized with respect to the diagonal
of the bounding box of the mesh, and multiplied by 104. For every
dataset, we compute the average Hausdorff distance for all testing
models.

We exhaustively search for the best parameters for the other
methods by running an extensive test for each model. For APSS,
RIMLS, WLOP-R and EAR-R, the spatial low pass filter parameter
is tuned separately for each dataset and each method, by testing a set
of values varying between three to ten times the local point spacing,
and choosing the best result. The RIMLS sharpness parameter σn
is set to 0.75 for all methods. For Poisson Surface Reconstruction,
an octree depth parameter of 14 is used. The WLOP and EAR
neighborhood radius parameter is set to 8 times the average spacing
of the input point set, and the EAR sharpness parameters to an angle
of 30 with edge sensitivity 0.05. For methods that require surface
normals, we estimate them with PCA again by using optimized
values for each case.

5.5. Experiments

For all experiments, we observed a significant visual and numerical
improvement over the existing methods when using our technique.

Input WLOP EAR OURS GT

Figure 8: Consolidated point clouds on the noisy input Nicolo (from
the sculptures dataset with σ2), and on a model from the flags
dataset. Our method captures local structures of the ground truth
(GT) model accurately.

We show example input and consolidated output point clouds using
our technique as well as others in Figure 8. While WLOP over-
smoothes the details of the model Nicolo and the wrinkles of the
flag, the dense point clouds of EAR deform the geometry by cre-
ating extra sharp edges that are not present in the original models,
e.g. at the border of the ear or at the peak of the flag wrinkle. Our
dense point clouds reproduce the ground truth local structures more
faithfully, e.g. we get a realistically rounded eyelid without turning
it into a sharp edge.

We show visual comparisons of reconstructions in Figures 1, 9, 10,
and 11. We observe that Poisson, APSS and WLOP-R tend to gener-
ate oversmoothed surfaces, as can be seen for many surface features,
e.g. for the eyes of Nicolo in Figure 1, the ear and hair of Bimba
in Figure 10, or the flag in Figure 11. The oversmoothing effect is
confirmed by the last row of Figure 9, displaying the distances from
the ground truth to the closest point on the reconstructed meshes.
In the detailed ear and hair regions, these methods have high errors.
On the other hand, these methods can also produce noisy results
depending on the input, as for the buste and neck of the Boy model
in Figure 11. Our technique produces faithful reconstructions for all
cases, avoiding over- or under-smoothing of local structures.

RIMLS and EAR are designed to preserve sharp features. Indeed,
EAR-R produces accurate results in geometric shapes with clear
edges such as the base of Eros in Figure 9. However, it fails to cor-
rectly preserve more organic, detailed features such as the face of the
same model or the ear and hair of Bimba, as shown in Figure 10 and
in the distance maps in Figure 9. Similarly, RIMLS performs better
on sharp features, but produces bumpy results in smooth regions,
such as the buste of Bimba, and overall cannot capture delicate
structures such as the eyes of Nicolo in Figure 1, or the wrinkle pro-
file in Figure 11. Instead of sharpening details, our method outputs
high quality structures that more faithfully reproduce the underlying
geometry, thanks to the learned representation.

These visual results are confirmed by quantitative comparisons

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

R. Roveri et al. / PointProNets: Consolidation of Point Clouds with Convolutional Neural Networks

Input POISSON APSS RIMLS WLOP-R EAR-R OURS-R GT

Figure 9: Surface reconstructions for the test models Eros (top) and Bimba (bottom) from the sculptures dataset with σ2, with ground truth
meshes (GT) for reference. For Bimba, the distances from the ground truth mesh to the reconstructed meshes are also displayed (red encodes
large values).

 Input POISSON APSS RIMLS WLOP-R EAR-R OURS-R GT

Figure 10: Close-ups of the reconstruction of Bimba, with two different levels of noise σ1 and σ2. In both cases, our method (OURS-R)
produces the most accurate ear and hair features, while keeping the cheek smooth as in the ground truth (GT).

in Table 1. The best two results for every dataset are highlighted in
bold. Our method obtains the smallest Hausdorff distance for every
dataset.

Cross-Training In Figure 12, we analyze the importance of train-
ing datasets for accurate structure recovery. We show consolidated
point clouds of the Nicolo model by using the ground truth plane
normal nGT and direction dGT for each patch, and varying the
heightmap denoising procedure. In particular, in the first column,
the HD’s are generated by simply smoothing the HN with Gaus-
sian interpolation using a small σ, in the second column the same
smoothing is applied but with a larger σ, in the third column we use

Dataset APSS RIMLS WLOP-R EAR-R OURS-R
Scu. σ1 2.85 2.62 2.99 3.6 2.57
Scu. σ2 4.11 4.27 4.26 4.56 3.70
Scu. σ3 6.28 7.37 6.54 6.74 6.14
Flags 5.69 6.03 5.69 5.93 5.55
Kin.v2 17.58 19.40 17.24 17.83 17.10

Table 1: The Hausdorff distances averaged over the testing models
in each dataset for each method. The best two performing methods
are highlighted for each dataset. Our method (OURS-R) outperforms
the others in every dataset.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

R. Roveri et al. / PointProNets: Consolidation of Point Clouds with Convolutional Neural Networks

Input POISSON APSS RIMLS WLOP-R EAR-R OURS-R GT

Figure 11: Reconstructed surfaces for the testing models Boy (top) and a flag (bottom) from the Kinect v2 and flags datasets, respectively. The
distances from the ground truth (GT) mesh to the reconstructed meshes are also plotted for the flag.

HDN to generate the HD but using the weights trained on the flags
dataset, and in the fourth column we use the weights trained on the
sculptures dataset. The last column is the ground truth, and every
column contains the generated point cloud and four example HD’s.
Simpler image denoising techniques produce considerably worse
results, and by specializing the training with models of the same
class as the testing models, we can obtain substantially better results
than with more general datasets.

Point Normals While our dense output point clouds allow for accu-
rate estimation of surface normals with PCA, we found our extension
for denoising normals to be useful for preservation of sharp features
for geometric objects, as elaborated on in Section 4.5. In this case,
the input normals to generate NN were estimated from the noisy
point clouds with PCA, and oriented with a Riemannian graph. In

Figure 13, we show reconstruction results on the geometric shapes
testing dataset (Fandisk and Icosahedron). The normals on the con-
solidated point clouds, color-coded in this figure, are estimated with
PCA, or learned with the normal estimation network for compari-
son. The close-ups of the point clouds (top), and the reconstructed
surfaces (bottom) illustrate that the learned normals better preserve
the sharp features. In Figure 14, we further illustrate some noisy
normal maps NN , denoised versions ND, and the ground truth NGT
for the Fandisk model. We can observe that our ND contains very
sharp edges.

Timing All trainings were performed for 200k steps, lasting on
average 5 hours. The total time required to denoise an input patch is
about 0.013 seconds, out of which about 44% is for preprocessing
the input, 15% for estimating HN , 33% to denoise it to HD, and 7%

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

R. Roveri et al. / PointProNets: Consolidation of Point Clouds with Convolutional Neural Networks

Gaussian 1 Gaussian 2 OURS, Flags OURS, Sculpt. GT

Figure 12: Different denoising variations. The noisy heightmaps HN
of a noisy Nicolo model are denoised with: Gaussian smoothing with
a small σ, Gaussian smoothing with a large σ, using our network
trained on the flags dataset, using our network trained on sculptures.
The resulting consolidated point clouds are shown (top) with four
example denoised heightmaps (bottom). The ground truth (GT) data
is shown for reference.

PCA 1 PCA 2 Learned Normals OURS-R
Input
GT

Figure 13: Consolidated point clouds with color-coded normals
and RIMLS reconstructions of a noisy input Fandisk (above) and
Icosahedron (below) from the geometric shapes dataset. The nor-
mals are: estimated with PCA with a small radius (PCA 1), PCA
with a large radius (PCA 2), or learned with our normal estimation
network (Learned Normals). The latter better preserves sharp edges.

NN ND NGT NN ND NGT

Figure 14: Example normal map denoising results from the Fandisk
model. NN is the input noisy, and ND is the denoised normal map.
The ground truth normal map NGT is shown for reference.

to reproject the points. For the bimba model (of about 60k points),
the total processing time was about 90 seconds on a GTX 970 and
a i5-3570 CPU, 3.40GHz. As each patch is local and processed

 OURS OURS OURS-RGT

Figure 15: Limitations of our method. In case of two surface sheets
falling into the same patch (left, GT) , our method averages the
positions of the points creating a noisy result (left, OURS). Occa-
sional frames can be badly estimated in the presence of complex
patches unseen during training, and thus some bad points can be
generated (right, OURS). Due to the high density of our results, the
final reconstructed surfaces are not affected (right, OURS-R).

independently, our technique thus allows for real-time patch-wise
consolidation, and is trivially parallelizable.

Limitations In this paper, we target the typical problems of noise
and sparse sampling in input point clouds. However, when the input
point cloud contains relatively large holes, our current scheme is not
able to fill them with a sampling as dense as in the other parts of
the point cloud. This is because there is less overlap of projected
patches near the holes, since we generate patches of consolidated
point clouds only around existing input points. As a consequence,
the RIMLS reconstruction might lead to deformed surface parts in
those regions. This can be seen for the base of the Boy model in
Figure 11. This could be alleviated by having a denser sampling
of patches around the holes, starting from the boundaries and pro-
gressively closing the holes, similar to texture synthesis. In case
of missing parts considerably larger than the patch size, a global
filling approach would be required. Our method is designed to
capture local structures for manifold surfaces, as many previous
techniques including MLS based approaches. This allows us to use
local heightmaps as an intermediate representation. However, such a
representation comes with well-known limitations for non-manifold
structures and large surface parts that cannot be represented with
such a parametrization. Possible solutions are utilizing multi-depth
maps and more complex differentiable parametrizations that can be
efficiently trained. A typical example is when two surface sheets
fall into the same patch, where our current method would average
their locations as shown in Figure 15 (left). If the input normals are
provided, this problem can be solved by extracting patches consid-
ering location-wise and normal-wise close points, as mentioned in
Section 4.4. We generate a patch around each point in an input point
cloud at testing time. This means that for high levels of outliers, we
might end up with extra output points that are far away from the
surface. For these cases, a new training dataset and procedure need
to be designed to set all depths values of HD for an outlier to zero.
Similarly, in cases of patches very different from the ones in the
training set (e.g., partial patches at the borders), or badly performed
training (e.g., too short training) occasional badly estimated outlier
frames may occur. A badly estimated frame would, in most cases,
produce a bad set of points, as can be seen in our output point cloud
in Figure 15 (right). Since our produced point cloud is very dense
and mainly made of consistent re-projections across patches, even
in the presence of few bad points the final reconstruction is not neg-
atively affected, as shown in the reconstructed surface in Figure 15

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

R. Roveri et al. / PointProNets: Consolidation of Point Clouds with Convolutional Neural Networks

(right). Finally, our HD images are sometimes slightly smoother than
HGT . This is a property of the used convolutions, and the behaviour
could be improved by utilizing more advanced image network archi-
tectures such as Generative Adversarial Networks [GPAM∗14].

6. Conclusions and Future Work

In this work, we presented PointProNets, a fully differentiable, CNN
based deep learning architecture to process point clouds. The in-
put unordered points are internally converted to regularly sampled
height maps, which are suitable to be processed by modern and
well-performing CNN architectures. We demonstrated the poten-
tial of this architecture by developing an end-to-end algorithm to
consolidate raw point clouds, where local parametrizations and fit-
ted surfaces are learned jointly, to achieve superior reconstructions
where delicate features and details of surfaces are preserved.

Although we have focused on point cloud consolidation in the
scope of this work, the proposed architecture has the potential to be
used for many other points based geometry processing tasks. More-
over, as in our additional component for point normals denoising,
the architecture could be easily extended to points with attributes,
such as colors for joint depth-color data processing.

Acknowledgments Riccardo Roveri is supported by the Swiss Na-
tional Science Foundation (grant No. 200021_146227/2).

References

[ABCO∗03] ALEXA M., BEHR J., COHEN-OR D., FLEISHMAN S.,
LEVIN D., SILVA C. T.: Computing and rendering point set surfaces.
IEEE Transactions on Visualization and Computer Graphics 9, 1 (Jan
2003), 3–15. 2

[ASGCO10] AVRON H., SHARF A., GREIF C., COHEN-OR D.:
ℓ1sparsee reconstruction of sharp point set surfaces. ACM Trans.
Graph. 29, 5 (Nov. 2010), 135:1–135:12. 2

[ASK∗05] ANGUELOV D., SRINIVASAN P., KOLLER D., THRUN S.,
RODGERS J., DAVIS J.: Scape: Shape completion and animation of
people. ACM Trans. Graph. 24, 3 (July 2005), 408–416. 3

[BTS∗17] BERGER M., TAGLIASACCHI A., SEVERSKY L. M., ALLIEZ
P., GUENNEBAUD G., LEVINE J. A., SHARF A., SILVA C. T.: A survey
of surface reconstruction from point clouds. Computer Graphics Forum
36, 1 (2017), 301–329. 2

[BZSL13] BRUNA J., ZAREMBA W., SZLAM A., LECUN Y.: Spectral
Networks and Locally Connected Networks on Graphs. ArXiv e-prints
(Dec. 2013). 3

[CBC∗01] CARR J. C., BEATSON R. K., CHERRIE J. B., MITCHELL
T. J., FRIGHT W. R., MCCALLUM B. C., EVANS T. R.: Reconstruc-
tion and representation of 3d objects with radial basis functions. In
Proceedings of the 28th Annual Conference on Computer Graphics and
Interactive Techniques (New York, NY, USA, 2001), SIGGRAPH ’01,
ACM, pp. 67–76. 2

[DJÖ∗17] DIBRA E., JAIN H., ÖZTIRELI A. C., ZIEGLER R., GROSS
M. H.: Human shape from silhouettes using generative hks descriptors
and cross-modal neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA,
July 21-26, 2017 (2017). 3

[DQN17] DAI A., QI C. R., NIESSNER M.: Shape completion using
3d-encoder-predictor cnns and shape synthesis. Proc. Computer Vision
and Pattern Recognition (CVPR), IEEE (2017). 3

[ERW∗17] ENGELCKE M., RAO D., WANG D. Z., TONG C. H., POSNER
I.: Vote3deep: Fast object detection in 3d point clouds using efficient
convolutional neural networks. In 2017 IEEE International Conference
on Robotics and Automation, ICRA 2017, Singapore, Singapore, May 29 -
June 3, 2017 (2017), pp. 1355–1361. 3

[FXD∗15] FANG Y., XIE J., DAI G., WANG M., ZHU F., XU T., WONG
E.: 3d deep shape descriptor. In 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (June 2015), pp. 2319–2328. 3

[GCB∗17] GHARBI M., CHEN J., BARRON J. T., HASINOFF S. W.,
DURAND F.: Deep bilateral learning for real-time image enhancement.
ACM Trans. Graph. 36, 4 (July 2017), 118:1–118:12. 2

[GG07] GUENNEBAUD G., GROSS M.: Algebraic point set surfaces.
ACM Trans. Graph. 26, 3 (July 2007). 2, 8

[GPAM∗14] GOODFELLOW I., POUGET-ABADIE J., MIRZA M., XU B.,
WARDE-FARLEY D., OZAIR S., COURVILLE A., BENGIO Y.: Gener-
ative adversarial nets. In Advances in Neural Information Processing
Systems 27, Ghahramani Z., Welling M., Cortes C., Lawrence N. D.,
Weinberger K. Q., (Eds.). Curran Associates, Inc., 2014, pp. 2672–2680.
12

[Gra14] GRAHAM B.: Spatially-sparse convolutional neural networks.
ArXiv e-prints (Sept. 2014). 3

[Gra15] GRAHAM B.: Sparse 3d convolutional neural networks. In Pro-
ceedings of the British Machine Vision Conference (BMVC) (September
2015), BMVA Press, pp. 150.1–150.9. 3

[GSH∗07] GAL R., SHAMIR A., HASSNER T., PAULY M., COHEN-OR
D.: Surface reconstruction using local shape priors. In Proceedings of the
Fifth Eurographics Symposium on Geometry Processing (Aire-la-Ville,
Switzerland, Switzerland, 2007), SGP ’07, Eurographics Association,
pp. 253–262. 2

[GZC15] GUO K., ZOU D., CHEN X.: 3d mesh labeling via deep convo-
lutional neural networks. ACM Trans. Graph. 35, 1 (Dec. 2015), 3:1–3:12.
3

[HLH∗17] HAN X., LI Z., HUANG H., KALOGERAKIS E., YU Y.: High-
resolution shape completion using deep neural networks for global struc-
ture and local geometry inference. In IEEE International Conference on
Computer Vision (ICCV) (October 2017). 2, 3

[HLZ∗09] HUANG H., LI D., ZHANG H., ASCHER U., COHEN-OR D.:
Consolidation of unorganized point clouds for surface reconstruction.
ACM Trans. Graph. 28, 5 (Dec. 2009), 176:1–176:7. 2, 8

[HWG∗13] HUANG H., WU S., GONG M., COHEN-OR D., ASCHER U.,
ZHANG H. R.: Edge-aware point set resampling. ACM Trans. Graph. 32,
1 (Feb. 2013), 9:1–9:12. 2, 8

[IZZE16] ISOLA P., ZHU J.-Y., ZHOU T., EFROS A. A.: Image-to-image
translation with conditional adversarial networks. arxiv (2016). 2

[JKG16] JAMPANI V., KIEFEL M., GEHLER P. V.: Learning sparse
high dimensional filters: Image filtering, dense crfs and bilateral neural
networks. In IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR) (June 2016). 3

[KBH06] KAZHDAN M., BOLITHO M., HOPPE H.: Poisson surface
reconstruction. In Proceedings of the Fourth Eurographics Symposium
on Geometry Processing (Aire-la-Ville, Switzerland, Switzerland, 2006),
SGP ’06, Eurographics Association, pp. 61–70. 2, 8

[KH13] KAZHDAN M., HOPPE H.: Screened poisson surface reconstruc-
tion. ACM Trans. Graph. 32, 3 (July 2013), 29:1–29:13. 2

[KLL15] KIM J., LEE J. K., LEE K. M.: Accurate image super-resolution
using very deep convolutional networks. CoRR abs/1511.04587 (2015).
5

[KMHG13] KIM Y. M., MITRA N. J., HUANG Q.-X., GUIBAS L. J.:
Guided real-time scanning of indoor objects. Comput. Graph. Forum 32,
7 (2013), 177–186. 2

[KMYG12] KIM Y. M., MITRA N. J., YAN D.-M., GUIBAS L.: Acquir-
ing 3d indoor environments with variability and repetition. ACM Trans.
Graph. 31, 6 (Nov. 2012), 138:1–138:11. 2

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

R. Roveri et al. / PointProNets: Consolidation of Point Clouds with Convolutional Neural Networks

[LCOLTE07] LIPMAN Y., COHEN-OR D., LEVIN D., TAL-EZER H.:
Parameterization-free projection for geometry reconstruction. ACM Trans.
Graph. 26, 3 (July 2007). 2

[LDGN15] LI Y., DAI A., GUIBAS L., NIESSNER M.: Database-assisted
object retrieval for real-time 3d reconstruction. Computer Graphics Forum
34, 2 (2015). 2

[LPS∗16] LI Y., PIRK S., SU H., QI C. R., GUIBAS L. J.: FPNN: field
probing neural networks for 3d data. CoRR abs/1605.06240 (2016). 3

[MBBV15] MASCI J., BOSCAINI D., BRONSTEIN M. M., VAN-
DERGHEYNST P.: Geodesic convolutional neural networks on riemannian
manifolds. In 2015 IEEE International Conference on Computer Vision
Workshop (ICCVW) (Dec 2015), pp. 832–840. 3

[NXS12] NAN L., XIE K., SHARF A.: A search-classify approach for
cluttered indoor scene understanding. ACM Trans. Graph. 31, 6 (Nov.
2012), 137:1–137:10. 2

[OAG10] ÖZTIRELI A. C., ALEXA M., GROSS M.: Spectral sampling of
manifolds. In ACM SIGGRAPH Asia 2010 papers (New York, NY, USA,
2010), SIGGRAPH ASIA ’10, ACM, pp. 168:1–168:8. 2

[OGG09] ÖZTIRELI A. C., GUENNEBAUD G., GROSS M.: Feature pre-
serving point set surfaces based on non-linear kernel regression. Computer
Graphics Forum 28, 2 (2009), 493–501. 2, 7, 8

[PGK02] PAULY M., GROSS M., KOBBELT L. P.: Efficient simplification
of point-sampled surfaces. In Proceedings of the Conference on Visu-
alization ’02 (Washington, DC, USA, 2002), VIS ’02, IEEE Computer
Society, pp. 163–170. 7

[PMA∗14] PREINER R., MATTAUSCH O., ARIKAN M., PAJAROLA R.,
WIMMER M.: Continuous projection for fast l1 reconstruction. ACM
Trans. Graph. 33, 4 (July 2014), 47:1–47:13. 2

[PMG∗05] PAULY M., MITRA N. J., GIESEN J., GROSS M., GUIBAS
L. J.: Example-based 3d scan completion. In Proceedings of the Third
Eurographics Symposium on Geometry Processing (Aire-la-Ville, Switzer-
land, Switzerland, 2005), SGP ’05, Eurographics Association. 2

[QSMG17] QI C. R., SU H., MO K., GUIBAS L. J.: Pointnet: Deep learn-
ing on point sets for 3d classification and segmentation. Proc. Computer
Vision and Pattern Recognition (CVPR), IEEE (2017). 2, 3, 4, 7

[QSN∗16] QI C. R., SU H., NIESSNER M., DAI A., YAN M., GUIBAS
L. J.: Volumetric and multi-view cnns for object classification on 3d
data. 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2016), 5648–5656. 3

[QYSG17] QI C. R., YI L., SU H., GUIBAS L. J.: Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. arXiv preprint
arXiv:1706.02413 (2017). 3

[RUG17] RIEGLER G., ULUSOY A. O., GEIGER A.: Octnet: Learning
deep 3d representations at high resolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2017). 3

[SFCH12] SHEN C.-H., FU H., CHEN K., HU S.-M.: Structure recovery
by part assembly. ACM Trans. Graph. 31, 6 (Nov. 2012), 180:1–180:11.
2

[SGF16] SHARMA A., GRAU O., FRITZ M.: Vconv-dae: Deep volumetric
shape learning without object labels. Computer Vision – ECCV 2016
Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016,
Proceedings, Part III (2016), 236–250. 3

[SKAG15] SUNG M., KIM V. G., ANGST R., GUIBAS L.: Data-driven
structural priors for shape completion. ACM Trans. Graph. 34, 6 (Oct.
2015). 2

[SMKLM15] SU H., MAJI S., KALOGERAKIS E., LEARNED-MILLER
E. G.: Multi-view convolutional neural networks for 3d shape recognition.
CoRR abs/1505.00880 (2015). 3

[SOS04] SHEN C., O’BRIEN J. F., SHEWCHUK J. R.: Interpolating and
approximating implicit surfaces from polygon soup. ACM Trans. Graph.
23, 3 (Aug. 2004), 896–904. 2

[SSW15] SUN Y., SCHAEFER S., WANG W.: Denoising point sets via l 0
minimization. Comput. Aided Geom. Des. 35, C (May 2015), 2–15. 2

[SXZ∗12] SHAO T., XU W., ZHOU K., WANG J., LI D., GUO B.: An
interactive approach to semantic modeling of indoor scenes with an rgbd
camera. ACM Trans. Graph. 31, 6 (Nov. 2012), 136:1–136:11. 2

[VDR∗16] VARLEY J., DECHANT C., RICHARDSON A., RUALES J.,
ALLEN P.: Shape Completion Enabled Robotic Grasping. ArXiv e-prints
(Sept. 2016). 3

[WBLP11] WEISE T., BOUAZIZ S., LI H., PAULY M.: Realtime
performance-based facial animation. ACM Trans. Graph. 30, 4 (July
2011), 77:1–77:10. 3

[WHG∗15] WU S., HUANG H., GONG M., ZWICKER M., COHEN-OR
D.: Deep points consolidation. ACM Trans. Graph. 34, 6 (Oct. 2015),
176:1–176:13. 2

[WLT16] WANG P.-S., LIU Y., TONG X.: Mesh denoising via cascaded
normal regression. ACM Transactions on Graphics (SIGGRAPH Asia)
35, 6 (2016). 7

[WP15] WANG D. Z., POSNER I.: Voting for voting in online point cloud
object detection. In Robotics: Science and Systems (2015), Kavraki L. E.,
Hsu D., Buchli J., (Eds.). 3

[WSK∗15] WU Z., SONG S., KHOSLA A., YU F., ZHANG L., TANG X.,
XIAO J.: 3d shapenets: A deep representation for volumetric shapes. In
CVPR (2015), IEEE Computer Society, pp. 1912–1920. 3

[XRY∗15] XU L., REN J. S. J., YAN Q., LIAO R., JIA J.: Deep edge-
aware filters. In Proceedings of the 32Nd International Conference
on International Conference on Machine Learning - Volume 37 (2015),
ICML’15, JMLR.org, pp. 1669–1678. 2

[XZZ∗14] XIONG S., ZHANG J., ZHENG J., CAI J., LIU L.: Robust
surface reconstruction via dictionary learning. ACM Transactions on
Graphics (Proc. SIGGRAPH Aisa) 33 (2014). 2

[YZW∗16] YAN Z., ZHANG H., WANG B., PARIS S., YU Y.: Automatic
photo adjustment using deep neural networks. ACM Trans. Graph. 35, 2
(Feb. 2016), 11:1–11:15. 2

[ZZC∗16] ZHANG K., ZUO W., CHEN Y., MENG D., ZHANG L.: Beyond
a gaussian denoiser: Residual learning of deep CNN for image denoising.
CoRR abs/1608.03981 (2016). 5

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

