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Abstract. The problem of explaining complex machine learning models,
including Deep Neural Networks, has gained increasing attention over
the last few years. While several methods have been proposed to explain
network predictions, the definition itself of explanation is still debated.
Moreover, only a few attempts to compare explanation methods from
a theoretical perspective has been done. In this chapter, we discuss the
theoretical properties of several attribution methods and show how they
share the same idea of using the gradient information as a descriptive
factor for the functioning of a model. Finally, we discuss the strengths and
limitations of these methods and compare them with available alternatives.
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1 Introduction

Machine Learning has demonstrated huge potential in solving a variety of prob-
lems, mostly thanks to numerous ground-breaking results with Deep Neural
Networks (DNNs) [12, 14, 17, 29, 36]. As learning-based algorithms are deployed
into everyday life products, explaining their predictions becomes of crucial im-
portance, not only to ensure reliability and robustness, but also to make sure the
prediction is fair and not discriminating. While machine learning models power
an increasing number of applications, the black-box nature of DNNs has become
a barrier to the adoption of these systems in those fields where interpretability is
crucial. Whether machine learning is employed in medical prognosis, controlling
a self-driving car or assessing the risk of committing new crimes, the decisions
taken have a deep impact on the life of the people involved and precise guarantees
need to be enforced. European regulations are rather strict in this sense, as they
introduce the legal notion of a right to explanation [10], de facto banning the use
of non-explainable machine learning models on some domains.

Interpretability in machine learning can be achieved in different ways. The
first approach is to use models that are inherently interpretable, like linear
models. Although this is the most immediate solution, these models often trade
interpretability for limited predictive power. A second approach is to design
models able to generate predictions and explanations, either in textual or visual
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form, at the same time. Training this kind of models is very challenging as they
require ground-truth explanations to train on. What is more, as the explanation
generator is itself a trained model, the problem of evaluating fairness and accuracy
is only being transferred from the operational model to the explanation model.
Finally, one can build explanation methods on top of existing models. Potentially,
this allows generating explanations for any existing black-box model without the
need for retraining and without sacrificing the performances of the best models.

Another important dimension to consider is the scope of interpretability
methods. Global interpretability is about understanding how the overall model
makes decisions, which input patterns are captured and how these are transformed
to produce the output [6]. Global interpretability is very useful to detect biases
that might cause unfair or discriminating behavior of the model, but it is arguably
very hard to achieve as the number of interacting parameters grows. For this
reason, several works on interpretability of DNN models focus on explaining
the reasons for a specific decision instead. This is commonly referred to as local
interpretability [6, 15] as the model behavior is only explained for a single, specific
instance. This type of explanation is useful to justify model predictions on a case
by case basis, e.g. why a loan application was rejected.

In the remainder of this chapter, we focus on attribution methods for DNNs.
As they are built on top of existing models, attribution methods belong to the last
of the three explainability approaches discussed above. They aim at explaining
decisions for existing neural network architectures that would be not explainable
otherwise. Moreover, they operate in the scope of local interpretability, as they
produce explanations specifically for a given model and input instance.

Several attribution methods have been developed specifically for neural net-
works [4, 18, 25, 27, 30, 32, 33, 37, 38]. However, the lack of a ground-truth
explanation makes it very challenging to evaluate these methods quantitatively,
while qualitative evaluations have been shown to be insufficient or biased [2, 8, 20].
With the proliferation of attribution methods, we believe a better understanding
of their properties, assumptions and limitations becomes necessary.

We analyze some recently proposed attribution methods from a theoretical
perspective and discuss connections between them. We show how the gradient
with respect to the input features of a neural network is the fundamental piece
of information used by several attribution methods to build explanations and we
discuss the limitations of this approach.

The content of the chapter is mostly based on the results and considerations
of a previous work [3], reorganized to gradually introduce the non-expert reader
into the topic of attribution methods for DNNs. In Section 2, we formally define
attribution methods, show how the gradient is used to generate attributions in
a simple linear model and discuss some desirable properties of these methods.
In Section 3, we move from linear models to DNNs, showing how the gradient
information can be adapted to explain non-linear models. In Section 4, we discuss
strengths, limitations and alternatives to gradient-based methods. Lastly, Section
5 presents some final considerations.
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2 Attribution Methods
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Fig. 1: General setting for attribution methods. An attribution map is generated
for a specific specific input, model and target output.

Consider a model that takes an N-dimensional input x = [x1, ..., xN ] ∈ RN
and produces a C-dimensional output S(x) = [S1(x), ..., SC(x)] ∈ RC . The model
could be, for example, a DNN where C is the total number of output neurons.
Depending on the application, the input features x1, ..., xN can have different
nature. For example, in image classification, x is usually a picture and each feature
in x is a pixel in the picture. In the case of speech recognition, each feature
might be the signal spectral power for a particular time and frequency bin. In the
case of natural language processing, each feature is usually a multi-dimensional
vector representation of each word in a sentence. Similarly, each output of the
network can represent either a numerical predicted quantity (regression task) or
the probability of a corresponding class (classification task).

Given their potentially large number, it is desirable to know which of the
network input features have a greater impact on the predicted output, as well
as the direction of their influence. Even though this is a simplistic notion of
explanation, compared to the human notion which usually involves the formulation
in textual form, it has been proved nevertheless useful to understand the reasons
behind some network (mis)predictions [22].

Formally, attribution methods aim at producing explanations by assigning a
scalar attribution value, sometimes also called "relevance" or "contribution", to
each input feature of a network for a given input sample.

Given a single target output unit c, the goal of an attribution method is to
determine the contribution Rc = [Rc1, ..., R

c
N ] ∈ RN of each input feature xi to

the output Sc(x). For a classification task, the target output can be chosen to be
the one associated with the label of the correct class (e.g. to verify which input
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features activated the class) or the one associated with a different class (e.g. to
analyze the cause of a wrong classification).

Most often, attributions are visualized as attribution maps. These are heatmaps
where, for each input feature, a red or blue color indicates the positive or negative
influence of the feature to the target output, respectively (Figure 1). Therefore,
attribution maps highlight features that are positively contributing to the target
activation as well as features that have a suppressing effect on it (counter-
evidence).

2.1 Example of attributions for a linear model

Before moving into non-linear models like DNNs, we show how attributions can
be found in the linear case. This will also give us the opportunity to introduce
the role of the gradient in generating attributions.

Linear models have been used for decades by statisticians, economists, com-
puter and data scientists to tackle quantitative problems. Among such models,
Multiple Linear Regression [13] can be used to model the dependency of a
regression target y on a number of input features x1, ..., xN :

y = w0 + w1x1 + ...+ wNxN + ε, (1)

where the wi are the learned model weights and ε is the residual error. The
model weights can be estimated by ordinary least squares (OLS). As the model
optimization is not in the scope of this chapter, we refer the reader to [13] for
further details. Under the assumptions of independence, linearity, normality and
homoscedasticity, the weights of a linear regression model are easy to understand
and provide an immediate tool for the model interpretation. Let us consider a
minimal example, where a linear regression is used to estimate the future capital
asset yc, based on two investments x1 and x2. Let assume the assumptions above
are met and the model parameters are estimated as follows:

E[yc|x1, x2] = 1.05x1 + 1.50x2, (2)

We can derive immediately a global interpretation of this model. Every dollar
invested in fund x1 will produce a capital of 1.05$, while every dollar invested in
x2 will produce a capital of 1.50$, independently of the values x1 and x2 might
assume in a concrete scenario. Notice that this explanation is purely based on
the learned coefficient w1 = 1.05 and w2 = 1.50. These, sometimes called partial
regression coefficients, are themselves candidate attribution values to explain the
influence of the independent variables of the target variable:

R1(x) = 1.05 R2(x) = 1.50 (3)

Notice also that the coefficients are the partial derivatives of the target variable
with respect to the independent variable, therefore this attribution is nothing
but the model gradient:
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Ri(x) =
∂yc
∂xi

(x) (4)

On the other hand, this is not the only possible attribution scheme for such
a model. Let us consider a concrete investment scenario where 100′000$ have
been invested in x1 and 10′000$ in x2. The total capital asset, according to
our trained model, will be 120′000$. One might be interested to know, in the
particular case at hand, how x1 and x2 influenced the asset, i.e. how the two
different investments contributed to the final capital. In this case, we are looking
for a local explanation, as we are interested in explaining the response for a
specific data point.

Again, thanks to the linearity of the model, it is easy to see that the 120′000$
can be explained as the sum of two contributions: 105′000$ from money invested in
the first fund and 15′000$ from the money invested in the second one. Reasonable
attribution values are, therefore:

R1(x) = 105′000 R2(x) = 15′000 (5)

In terms of relation with the gradient, we can formulate attributions as the
gradient multiplied element-wise by the input:

Ri(x) = xi ·
∂yc
∂xi

(x) (6)

From this toy example, we have found two possible explanations in terms
of attribution values. Notice that both are based on the gradient of the model
function but significantly different. In the first case, the attribution for variable x2

is significantly higher than for variable x1, while in the second case the ranking is
inverted. One might ask whether one of these is better than the other in explaining
the model. As both attributions were derived with a clear objective, we argue
that they are both reasonable explanations of the model. On the other hand, it
is clear that they answer different questions: attributions in Equation 3 answer
the question "Where should one invest in order to generate more capital?, while
attributions in Equation 5 answer the questions "How the initial investments
contributed to the final capital?". Depending on the question that needs to be
answered, the appropriate attribution methods should be chosen. As they answer
different questions, it is also evident how the two attributions cannot be directly
compared.

2.2 Salience versus Sensitivity methods

The two attribution methods described by Equations 4 and 6 differ in that the
second one also involves the multiplication by the input itself. In the previous
section, we discussed how they explain two very different aspects of the model.
As we will discuss later, several (but not all) attribution methods for DNNs are
computed by multiplying point-wise a quantity by the input being explained.
The justification for multiplying by the input has been only partially discussed
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in previous literature [28, 31, 33]. It has been noted that, when applied to image
classification models, it contributes to making attribution maps sharper [28],
although others noticed that it remains unclear how much of this can be attributed
to the sharpness of the original image itself [31]. On the other hand, there is a
more fundamental justification, which allows distinguishing attribution methods
in two broad categories: salience and sensitivity methods [3].

A sensitivity method aims at describing how the output of the network changes
when one or more input features are perturbed. In a linear model, this effect is
constant for arbitrarily large perturbations. With non-linear models, sensitivity
methods still represent the expected effect of a change in the input, but as
first-order Taylor expansion of a non-linear function, they are only accurate for
infinitesimal perturbations around the original input. While the model sensitivity
to a feature perturbation has been regarded as a possible measure for the
"importance" of the feature [30], the inherent objective of sensitivity methods
should always be taken into account.

Conversely, a salience method describes the marginal effect of a feature to the
output with respect to the same input where such feature has been removed. In
other words, the produced values are meant to describe the contributions of the
different input variables to the final target output. In this sense, for a salience
method, it is often considered desirable that all attribution values sum up to the
final target score, so that the attributions can be directly related to the output
as additive contributions [4, 27, 33]. In our linear example, the multiplication
between the input and the gradient provides a salience method that fulfills this
property. We will see that the same method does not necessarily satisfy the
property when extended to non-linear models. Notice also that salience methods
must necessarily take the input into account when computing attributions.

2.3 Baseline for salience methods

Most salience methods require to define a baseline value. Since we are interested
in the marginal effect of a feature, we are implicitly looking for how the output
would change without that feature. As pointed out by others [33], humans also
assign blame to a cause by comparing the outcomes of a process including or not
such cause. In the particular case of a machine learning model, a feature with a
non-zero attribution is expected to play some role in determining the output of
the model.

Unfortunately, there is no proper way to remove one or more features from
the input to a DNN, as most network architectures assume the number of input
features is fixed. While we could re-train the network with a reduced set of input
features, this would result in a different model whose internal mechanics are not
necessarily related to the ones of the original model we want to explain.

In the related literature, this problem is often addressed by simulating the
absence of a feature, instead of removing it in the strictest sense. First, a
baseline input x̄ is defined. The baseline should be chosen, depending on the
domain, to best represent the absence of information (e.g. the black image). Then,
attributions are computed with respect to the baseline, replacing each feature
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with its corresponding baseline value anytime the absence of the feature needs to
be tested.

An important consequence of this setup is that attributions are heavily
affected by the choice of the baseline. In particular, explanations are a function
of the difference between the input and the baseline, rather than the input alone.
Unfortunately, how to choose an appropriate baseline for different domains is still
an open research question. Moreover, the baseline must necessarily be chosen in
the domain of the input space, which creates an evident ambiguity between a
valid input that incidentally assumes the baseline value and the indicator for a
missing feature.

For many attribution methods, the zero baseline is the canonical choice
[27, 33, 37]. Sometimes, the zero baseline is also used implicitly by attribution
methods that do not let the user define it [4, 22]. One possible justification for
this particular choice relies on the observation that, for a model that implements
a chain of operations of the form zj = f(

∑
i(wji · zi) + bj), the all-zero input

is somehow neutral to the output (i.e. ∀c ∈ C : Sc(0) ≈ 0). If the model has
no additive bias and all non-linear activations map zero to zero (e.g. ReLU and
Tanh), the output is in fact zero when the network is fed a zero input. Empirically,
the output is often near zero even when biases have different values, which makes
the choice of zero for the baseline reasonable, although arbitrary.

Other choices are possible. Sometimes, the expected value of each feature
over the training set is used as a baseline [16, 27]. In the image domain, previous
works also suggested to set the baseline to a blurred version of the input images
[7]. Finally, it is also possible to marginalize over the features to be removed
in order to simulate their absence. For example, it has been shown how local
coherence of natural images can be exploited to marginalize over image patches
[38]. Unfortunately, this approach is significantly slower. What is more, it can only
be applied to images or other domains where a prior about features correlation
is known and can be exploited to make the problem computationally feasible.

2.4 Properties and Definitions

We now introduce some definitions and notable properties that will be used in
the remainder of this chapter to characterize attribution methods.

Explanation continuity. We say an attribution method satisfies explanation
continuity if, given a continuous prediction function to be explained Sc(x), it
produces continuous attributions Rc(x). This is a desirable property for any
attribution method [19]: if, for two nearly identical data points, the model
response is nearly identical, then it is reasonable to expect that the corresponding
explanations should also be nearly identical.

Implementation invariance. We say that two models m1 and m2 are func-
tionally equivalent if, for any x provided as input to both models, they produce
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the same output, despite possibly different implementations. More formally, if
∀x : Sm1

(x) = Sm2
(x).

An attribution method is said to be implementation invariant [33] if it always
produces identical attributions for functionally equivalent modelsm1,m2 provided
with identical input :

∀(m1,m2, x, c) : Rc,m1(x) = Rc,m2(x) (7)

Sensitivity-n An attribution method satisfies sensitivity-n [3] when the sum of
the attributions for any subset of features of cardinality n is equal to the variation
of the output Sc caused removing the features in the subset. In this context,
removing a feature means setting it to a baseline value, often chosen to be zero as
discussed in Section 2.3. Mathematically, a method satisfies sensitivity-n when,
for all subsets of features xS = [x1, ...xn] ⊆ x, it holds:

n∑
i=1

Rci (x) = Sc(x)− Sc(x \ xS), (8)

where the notation x \ xS indicates a data point x where all features in xS have
been replaced by a baseline value.

When n = N , with N being the total number of input features, we have∑N
i=0R

c
i (x) = Sc(x)− Sc(x̄), where x̄ is an input baseline representing an input

from which all features have been removed. This property is known as efficiency
in the context of cooperative game theory [23] and recognized as desirable for
various attribution methods [4, 27, 33]. In related literature, the same property
has been variously called completeness [33] or summation to delta [27].

Most often, the baseline is chosen to be neutral with respect to the model
response (Sc(x̄) ≈ 0), in which case sensitivity-N, reduces to

∀x, c :

N∑
i=1

Rci (x) = Sc(x) (9)

meaning that the output of a model for a specific input x can be decomposed as
sum of the individual contributions of the input features.

Clearly, this property only applies to salience methods. A notable observation
is that no attribution method, as defined in Section 2, can satisfy sensitivity-n
for all values of n, when applied to a non-linear model. The proof is provided
in [3]. Intuitively, this is due to the fact that attribution maps have not enough
degrees of freedom to capture non-linear interactions: given a non linear model,
there must exists two features xi and xj such that S(x) − S(x \ xi, xj) 6=
2 · S(x)− S(x \ xi)− S(x \ xj). In this case, either sensitivity-1 or sensitivity-2
must be violated since attribution methods assign a single attribution value to
both xi and xj .
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3 Gradient-Based Attribution Methods for DNNs

In this section, we discuss how the idea of using the gradient information to
generate attributions has been applied in several ways, implicitly or explicitly, to
non-linear models, in particular DNNs. In Section 2.1 we showed how attributions
for a linear regression model are generated as a function of the gradient with
respect to the input features. In this section, we discuss the role of gradient while
introducing several popular attribution methods for DNNs. We show how these
methods differ in the way the backpropagation rules are modified in order to
take into account the non-linearity of the network function. We also discuss how
some methods can be revisited as gradient-based methods, despite their different
original formulation. This will enable a direct comparison between them as part
of a unified gradient-based framework.

3.1 From linear to non-linear models

In the case of a linear regression, we found two possible attribution methods:

Rci (x) =
∂Sc(x)

∂xi
Rci (x) = xi ·

∂Sc(x)

∂xi
(10)

We discussed how these methods can be both considered producing meaningful
explanations for a linear model, although answering different questions. As a first
attempt to produce explanations for a DNN, one might consider applying the
same ideas. Indeed, this is what has been suggested in the related literature over
the past decade.

Sensitivity analysis was one of the first methods to be adapted to the deep
learning domain [30]. Attributions are constructed by taking the absolute value
of the partial derivative of the target output Sc with respect to the inputs xi:

Rci (x) =

∣∣∣∣∂Sc(x)

∂xi

∣∣∣∣ (11)

Intuitively, the absolute value of the gradient indicates those input features
(pixels, for image classification) that can be perturbed the least in order for
the target output to change the most, discarding any information about the
direction of this change. Nevertheless, Sensitivity analysis is usually rather noisy
[18, 24, 31] and taking the absolute value prevents the detection of positive and
negative evidence that might be present in the input.

Gradient * Input [28] was initially proposed as a technique to improve the
sharpness of attribution maps generated by Sensitivity analysis. The attribution
is computed by taking the (signed) partial derivatives of the output with respect
to the input and multiplying them feature-wise by the input itself.

Rci (x) =
∂Sc(x)

∂xi
· xi (12)

The reader might recognize in Equation 12 an attribution method that we
have previously discussed for linear models. While the multiplication with the
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input can be theoretically justified if we are interested in salience instead of
sensitivity, as we move from linear to non-linear models, computing salience
is not as easy. Both Sensitivity analysis and Gradient * Input present clear
shortcomings, as the partial derivative Sc(x)/ ∂xi varies not only with xi but
also with the value of other input features.

Sensitivity analysis still provides a valid measure of the variation of the target
output for a perturbation of the input variables but, in the case of a non-linear
model, this value is only accurate for infinitesimally small perturbations around
the original input. In fact, the resulting attributions can be seen as the first-order
term of a Taylor decomposition of the function implemented by the network,
computed at a point infinitesimally close to the actual input [18].

Similarly, as the gradient is not constant, Gradient * Input does not necessarily
represent the correct marginal effect of a feature. Let us consider an additive
model of the form:

y = w0 + f1(x1) + ...+ fN (xN ) (13)

where fi are non-linear functions. Since the target y is computed as the sum
of contributions of the input variables and there is no cross-interaction between
them, we can expect a salience method to detect these contributions exactly and
satisfy sensitivity-N. Concretely, let us consider the toy example y = x1 +

√
x2,

evaluated at input (4, 4). In this case, the contributions to the output (y = 6)
would be naturally distributed as attributions R1 = 4 and R2 = 2. It is easy to
verify that Gradient * Input fails to satisfy sensitivity-N, producing attributions
R1 = 4 and R2 = 1, which do not sum up to the target value and are hardly
justifiable. In order to overcome these limitations, gradient-based methods have
been adapted to take into account the non-linear nature of DNNs.

3.2 Towards average gradients

Notice that in order to produce the expected attributions for the toy example
illustrated above, we could simply replace the instant gradient, as in Gradient *
Input, with the average gradient between the baseline (here (0, 0)) and the input
value (here (4, 4)). This idea, in fact, is at the core of more recent attribution
methods: Layer-wise Relevance Propagation (in its variant ε-LRP), DeepLIFT
Rescale and Integrated Gradients. We now introduce these methods and discuss
how they can all be examined under the same gradient-based framework. Notice
that the following post-hoc considerations might not have been the ones that
originally led to the formulation of these methods.

Layer-wise Relevance Propagation (ε-LRP) [4] is computed with a back-
ward pass on the network. Let us consider a quantity r

(l)
i , called "relevance"

of unit i of layer l. The algorithm starts at the output layer L, assigning the
relevance of the target neuron c equal to the activation of the neuron itself, and
the relevance of all other neurons to zero (Equation 14). Then it proceeds layer
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by layer, redistributing the prediction score Si until the input layer is reached.
One recursive rule for the redistribution of a layer’s relevance to the following
layer is the ε-rule described in Equation 15, where we defined zij = x

(l)
i w

(l,l+1)
ij

to be the weighted activation of a neuron i onto neuron j in the next layer and
bj the additive bias of unit j. A small quantity ε is added to the denominator to
avoid numerical instabilities. Once reached the input layer, the final attributions
are defined as Rci (x) = r

(1)
i .

r
(L)
i =

{
Si(x) if unit i is the target unit of interest
0 otherwise

(14)

r
(l)
i =

∑
j

zij∑
i′ zi′j + bj + ε · sign(

∑
i′ zi′j + bj)

r
(l+1)
j (15)

LRP, together with the propagation rule described in Equation 15, is called
ε-LRP, analyzed in the remainder of this chapter. We will briefly discuss a more
recent variation of LRP in Section 4.3. Additionally, we assume a small and fixed
ε, with the only purpose of avoiding divisions by zero.

We introduced the method according to the original formulation, where the
role of the gradient might not appear immediately evident. On the other hand, we
can reformulate ε-LRP to show how this method actually computes the average
gradient in some cases and, based on this, discuss its advantages compared to
Gradient * Input, as well as its limitations.

In a DNN where each layer performs a linear transformation zj =
∑
i wjixi+bj

followed by a nonlinear mapping xj = f(zj), a path connecting any two units
consists of a sequence of such operations. The chain rule along a single path
is therefore the product of the partial derivatives of all linear and nonlinear
transformations along the path. For two units i and j in subsequent layers we
have ∂xj/∂xi = wji · f ′(zj), whereas for any two generic units i and c connected
by a set of paths Pic the partial derivative is the sum of the product of all weights
wp and all derivatives of the nonlinearities f ′(z)p along each path p ∈ Pic. We
introduce a notation to indicate a modified chain rule, where the derivative of
the nonlinearities f ′() is replaced by a generic function g():

∂gxc
∂xi

=
∑
p∈Pic

(∏
wp
∏

g(z)p

)
(16)

When g() = f ′(), Equation 16 is the definition of partial derivative of the output
of unit c with respect to unit i, computed as the sum of contributions over
all paths connecting the two units. Given that a zero weight can be used for
non-existing or blocked paths, this is valid for any architecture that involves
fully-connected, convolutional or recurrent layers without multiplicative units, as
well as for pooling operations.

Notably, given this notation, ε-LRP can be reformulated as in the following
proposition [3]:
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Proposition 1 ε-LRP is equivalent to the feature-wise product of the input and
the modified partial derivative ∂gSc(x)/∂xi, with g = gLRP = fi(zi)/zi, i.e. the
ratio between the output and the input at each nonlinearity.

The reader can refer to Table 1 for the mathematical formulation, which
makes the relation between ε-LRP and Gradient * Input more evident. In both
cases, the input is multiplied with a quantity that depends on the network and its
parameters. In the case of Gradient * Input, this quantity is simply the derivative
of the output with respect to the input. In the case of ε-LRP, the quantity can
be seen as a modified gradient, where the instant gradient of each nonlinearity in
the chain rule is replaced by the ratio between the output and the input to the
nonlinearity.

Furthermore, notice that gLRP (z) = (f(z) − 0)/(z − 0) which, in the case
of Rectified Linear Unit (ReLU) or Tanh activations, is the average gradient
of the nonlinearity in [0, z]. It is also easy to see that limz→0 g

LRP (z) = f ′(0),
which explains why g, for these nonlinearities, can not assume arbitrarily large
values as z → 0, even without a stabilizer. On the contrary, if the discussed
condition on the nonlinearity is not satisfied, for example with Sigmoid or Softplus
activations, ε-LRP fails to produce meaningful attributions [3]. This is likely due
to the fact gLRP (z) can become extremely large for small values of z, being its
upper-bound only limited by the stabilizer. As a consequence, attribution values
tend to concentrate on a few features. Notice also that the interpretation of gLRP
as average gradient of the nonlinearity does not hold in this case.

Method Attribution Rci (x)

Sensitivity analysis
∣∣∣∣∂Sc(x)

∂xi

∣∣∣∣
Gradient * Input xi ·

∂Sc(x)

∂xi

ε-LRP xi ·
∂gSc(x)

∂xi
, g =

f(z)

z

DeepLIFT (Rescale) (xi − x̄i) ·
∂gSc(x)

∂xi
, g =

f(z) − f(z̄)

z − z̄

Integrated Gradients (xi − x̄i) ·
∫ 1

α=0

∂Sc(x̃)

∂(x̃i)

∣∣∣∣
x̃=x̄+α(x−x̄)

dα

Table 1: Gradient-based formulation of several attribution methods.

DeepLIFT Rescale The use of average gradients to compute attributions has
been later generalized by other methods. DeepLIFT [27] proceeds in a backward
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fashion, similarly to LRP. Each unit i is assigned an attribution that represents
the relative effect of the unit activated at the original network input x compared
to the activation at some reference input x̄ (Equation 17). Reference values
z̄ij for all hidden units are determined by running a forward pass through the
network, using the baseline x̄ as input, and recording the activation of each unit.
The baseline is a user-defined parameter often chosen to be zero for the reasons
discussed in Section 2.3. Equation 18 describes the relevance propagation rule.

r
(L)
i =

{
Si(x)− Si(x̄) if unit i is the target unit of interest
0 otherwise

(17)

r
(l)
i =

∑
j

zij − z̄ij∑
i′ zi′j −

∑
i′ z̄i′j

r
(l+1)
j (18)

In Equation 18, z̄ij = x̄
(l)
i w

(l,l+1)
ij is weighted activation of a neuron i onto

neuron j when the baseline x̄ is fed into the network. The attributions at the
input layer are defined as Rci (x) = r

(1)
i . The rule here described ("Rescale rule")

is used in the original formulation of the method and it is the one we will analyze
in the remainder of the chapter.

Similarly to ε-LRP, we can reformulate DeepLIFT (Rescale) to highlight the
role of the gradient [3]:

Proposition 2 DeepLIFT (Rescale) is equivalent to the feature-wise product
of the x − x̄ and the modified partial derivative ∂gSc(x)/∂xi, with g = gDL =
(fi(zi)− fi(z̄i))/(zi − z̄i), i.e. the ratio between the difference in output and the
difference in input at each nonlinearity, for a network provided with some input
x and some baseline input x̄ defined by the user.

Again, by comparing the formulation of Gradient * Input and DeepLIFT
(Table 1), it easy to see how the latter replaces the instant gradient of each
nonlinearity in the interval that goes from the baseline to the actual input
value. In this case, the formulation as average gradient holds also for those
nonlinearities that do not cross the origin, such as Sigmoid and Softplus, the
reason why DeepLIFT (Rescale) could be considered a generalization of ε-LRP
that does not assume a zero baseline or a particular shape for the nonlinearity.

The formulation in Table 1 also highlights some further connections between
Gradient * Input, ε-LRP and DeepLIFT. Motivated by the fact that attribution
maps for different gradient-based methods look surprisingly similar on several
tasks, some conditions of equivalence or approximation have been be derived [3]:

Proposition 3 ε-LRP is equivalent to i) Gradient * Input if only ReLUs are
used as nonlinearities; ii) DeepLIFT (computed with a zero baseline) if applied to
a network with no additive biases and with nonlinearities f such that f(0) = 0
(e.g. ReLU or Tanh).
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The first part of Proposition 3 comes directly as a corollary of Proposition 1
by noticing that for ReLUs the gradient at the nonlinearity f ′ is equal to gLRP
for all inputs. This relation has been previously proven in the literature [11, 28].
Similarly, we notice that, in a network with no additive biases and nonlinearities
that cross the origin, the propagation of the baseline produces a zero reference
value for all hidden units (i.e. ∀i : z̄i = f(z̄i) = 0). Then gLRP = gDL, which
proves the second part of the proposition.

Integrated Gradients We have seen how DeepLIFT and, in some cases, ε-
LRP can be seen as computing a backward pass through the network where the
gradient of the nonlinearities is replaced by their average gradient. There is one
fundamental problem with this approach though: the chain rule does not hold
for discrete gradients in general. As a consequence, the quantity computed by
replacing each instant gradient by an average gradient at each nonlinearity does
not necessarily result in the average gradient of the function as a whole. Moreover,
two different implementations of the same function might lead to different results
when the chain rule is applied. In this case, we say that the attribution method
fails to satisfy implementation invariance [33].

Integrated Gradients [33] can be considered a generalization of DeepLIFT,
designed to satisfy implementation invariance. It builds on the same idea of
previous methods, as it can be interpreted as computing attributions multiplying
the input variable element-wise with the average partial derivative, as the input
varies from a baseline x̄ to its final value x.

However, in this case, the original gradient is used for the nonlinearities, thus
preserving the validity of the chain rule. Attributions are defined as follows.

Rci (x) = xi ·
∫ 1

α=0

∂Sc(x̃)

∂(x̃i)

∣∣
x̃=x̄+α(x−x̄)

dα (19)

Integrated Gradients presents several interesting properties. First, as the gradi-
ent of a function only depends on the function itself and not on its implementation,
Integrated Gradients has the notable property of being implementation invariant,
a property which is not satisfied by ε-LRP and DeepLIFT in general. Secondly, it
can be immediately applied to any network architecture as it only depends on the
function gradient, which is easily obtained thanks to the automatic differentiation
of frameworks like Tensorflow [1] or PyTorch [21]. Finally, it always satisfies
sensitivity-N, meaning that the sum of the produced attributions sum up to
the network output minus the output when the network is evaluated at the
baseline. Notice that DeepLIFT also satisfies sensitivity-N by design, but only
if the computational graph does not include multiplicative interactions. This is
illustrated in the following counter-example: take two variables x1 and x2 and a
the function h(x1, x2) = ReLU(x1 − 1) · ReLU(x2). One can easily show that,
by applying the methods as described by Table 1, DeepLIFT does not satisfy
sensitivity-N while Integrated gradients does 3.
3 DeepLIFT has been designed specifically for feed-forward neural networks and
therefore assumes no multiplicative interactions. The gradient-based formulation
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One of the limitations of Integrated Gradients is its relatively high computa-
tional cost, as evaluating the average gradient requires to numerically evaluate
an integral. This means one needs to evaluate the model and its gradient several
times, with slightly different inputs, which is computationally expensive for large
models. While Integrated Gradients computes the average partial derivative of
each feature as the input varies from a baseline to its final value, DeepLIFT
approximates this quantity in a single step by replacing the gradient at each
nonlinearity with its average gradient. Although the chain rule does not hold
in general for average gradients, it has been shown empirically that DeepLIFT
is most often a good approximation of Integrated Gradients in the case of feed-
forward architectures [3].

4 Discussion

In the previous section, we have introduced five gradient-based methods for DNNs.
While Sensitivity analysis, Gradient * Input and Integrated Gradients belong
to this category by construction, we have discussed how ε-LRP and DeepLIFT
(Rescale) can also fit in the definition of gradient-based methods, as they are
computed by applying the chain rule for gradients once the instant gradient at
each nonlinearity is replaced with a function that depends on the method. We
have also suggested a theoretical justification for using the gradient information
to produce explanations, starting from linear models and moving to DNNs. In this
section, we highlight the advantages and limitations of gradient-based methods
and discuss some possible alternatives.

4.1 Advantages of gradient-based methods

The strength of gradient-based methods is twofold. First, they are fast. Sensitivity
analysis, Gradient * Input and ε-LRP only require a single forward and backward
pass through the network to produce the attribution map. DeepLIFT requires one
more forward pass to set the baselines for all nonlinearities, an operation that is
computationally negligible in most of the use-cases. Integrated Gradients is slower
than the others as it requires 50-200 backward passes for the numerical evaluation
of the integral. Nevertheless, compared to other, not gradient-based methods,
it can be still considered very efficient. What is more, the number of network
evaluations does not depend on the number of input features to the network,
which allows these methods to scale more easily. Notice also that frameworks like
Tensorflow and PyTorch provide optimized algorithms to compute the gradients,
often evaluated on the GPU to reach the best performance.

The second advantage of gradient-based methods is the ease of implementation.
As pointed out by others [33], a desirable property for attribution methods is
their immediate applicability to existing models. When the pure gradient is used,

generalizes the method to other architectures but does not guarantee meaningful
results outside the scope DeepLIFT was designed for.
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like in the case of Gradient * Input or Integrated Gradients, attributions can
be computed for any network architecture where a gradient is defined, with
very few lines of code. Our gradient-based formulation makes this possible for
ε-LRP and DeepLIFT (Rescale) as well. Since all modern frameworks for Deep
Learning implement backpropagation for efficient computation of the chain rule,
it is possible to implement all methods above by overriding the gradient of all
nonlinearities in the computational graph, with no need to implement custom
layers or operations. Listings 1.1 and 1.2 show an example of how to achieve this
on Tensorflow, respectively for ε-LRP and DeepLIFT (Rescale).

1 @ops.RegisterGradient("GradLRP")
2 def _GradLRP(op, grad):
3 op_out = op.outputs[0]
4 op_in = op.inputs[0]
5 return grad * op_out / (op_in + eps)

Listing 1.1: Example of gradient override for a Tensorflow operation. After
registering this function as the gradient for nonlinear activation functions, a call
to tf.gradients() and the multiplication with the input will produce the
ε-LRP attributions.

1 @ops.RegisterGradient("GradDeepLIFT")
2 def _GradDeepLIFT(op, grad):
3 op_out = op.outputs[0]
4 op_in = op.inputs[0]
5 delta_out = op_out - ref_output
6 delta_in = op_in - ref_input
7 if tf.abs(delta_in) < eps:
8 return grad
9 else:

10 return grad * delta_out / delta_in

Listing 1.2: Example of gradient override for a Tensorflow operation (DeepLIFT
(Rescale)). Compared to ε-LRP, this requires to compute a reference input and
output for each hidden unit, with a second forward pass.

4.2 Limitations

Unfortunately, gradient-based methods are also strongly affected by noisy gra-
dients, as depicted in Figure 2, which shows the attributions generated for a
Convolutional Neural Network (CNN) performing image classification. While
most attribution mass is assigned to the area of the picture with the main subject,
which seems reasonable, the attribution value assigned to individual pixels is
affected by high-frequency variations, with neighboring pixels often being assigned
very different attributions, possibly of the opposite sign. This phenomenon is
likely to be caused by the violation of explanation continuity on gradient-based
methods.
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To illustrate the problem, let us consider a simple continuous function y =
max(x1, x2) and compute the attributions for the two input variables (x1, x2) as
the input varies from (2, 2 + ε) to (2, 2− ε), assuming the default baseline (0, 0).
Notice that this kind of function is very common in CNNs, which often include
several max-pooling layers. Notice also that the function is continuous as the
output varies smoothly from 2 + ε to 2. On the other hand, since the gradient for
the max function acts as a hard switch, all gradient-based methods discussed
above 4 present a discontinuity in (2, 2) where the attribution mass suddenly
moves from x2 entirely to x1, as shown in Table 2. Intuitively, assigning all the
attribution to the input feature with the highest value ignores the fact that,
without that feature, the output would still be significantly high thanks to the
influence of the other. While there is no doubt that the two input variables have
some interaction to generate the result, generally it is not straight-forward to find
a fair mechanism for credit assignment. The problem has been extensively studied
in the context of cooperative game theory, where alternative mechanism, often
proven to be closer to the human intuition, have been proposed [26]. Unfortunately,
these methods are also computationally expensive and only applicable to DNNs
with some significant approximations [16], a reason why gradient-based methods
are still very popular.

Attributions for min(x1, x2)

Input (x1, x2) = (2, 2 + ε) (x1, x2) = (2, 2 − ε)

Attributions (R1, R2) = (0, 2 + ε) (R1, R2) = (2, 0)

Table 2: Example of attributions generated for a continuous function by gradient-
based methods (Gradient * Input, Integrated Gradients and most implementations
of ε-LRP and DeepLIFT (Rescale).

In general, continuity in the produced explanations is a desirable property for
any explanation method [19]. When we move away from a single operation and
consider more complex models such as deep CNNs, the violation of explanation
continuity exacerbates the problem of shattered gradients [5]: a high number of
piece-wise linear regions in the learned function causes the gradient to become
highly discontinuous and resemble white noise, which turns into high-frequency
variations in the attributions produced by gradient-based methods. This makes

4 In fact, ε-LRP and DeepLIFT (Rescale) are not implementation invariant so the
result might change depending on the actual function implementation adopted in the
network. For example, it can be implemented as a primitive operation (max-pooling)
or, for positive numbers, it can be implicitly implemented by a two-layer network
with three hidden units: y = 0.5∗ (ReLU(x1 −x2)+ReLU(x2 −x1)+ReLU(x1 +x2).
In both cases, our reference implementation [3] produces the same attributions for
all gradient-based methods, including ε-LRP and DeepLIFT (Rescale).
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these explanations particularly sensitive to small variations in the input and not
necessarily representative of the overall classification process.

4.3 Beyond gradient-based methods

Gradient-based methods are certainly not the only ones proposed in the literature.
In particular, the gradient-based methods discussed before can be framed within
a broader category of backpropagation methods, where the influence of the input
features on the output is estimated layer by layer, trying to reverse the flow of
information of the forward pass.

Instead of considering the model as a black-box that cannot be inspected,
backpropagation methods take advantage of lower level access to the model’s
computational components and of the knowledge of how information flows in a
DNN. Most often, backpropagation methods compute attribution maps with a
few forward and backward passes through the network (Fig. 3a). In the forward
pass, normal inference is performed on the input that needs to be explained.
Then, a backward pass is performed, starting from a target (output) unit and
propagating its activation through the network, layer by layer, until the input
layer is reached, where the attribution map is formed.

Backpropagation methods differ in the way information flows in the backward
pass. While this might consist in computing the chain rule for gradients (possibly
replacing the gradient of the nonlinearities with other quantities), this is certainly
not the only possible way to propagate relevance information from upper layers
to the input. Most notably, some recent variants of LRP and DeepLIFT are
backpropagation methods that cannot be easily fit in the definition of gradient-
based methods. For example, αβ-LRP [4, 19] employs a backpropagation rule
where the positive and negative information paths are weighted according to two
different parameters, chosen by the user. This adaptation enables explanation
continuity [19] but it also produces attributions that diverge from other gradient-
based methods, making it hard to apply the theoretical framework we discussed
so far. Similarly, a second variant of DeepLIFT known as "RevealCancel" [27]
inherits some considerations from cooperative game theory to fix the problem of
explanation continuity as discussed in the previous section. Both of these methods
produce interesting results but more research will be necessary to derive strong
theoretical foundations for these propagation rules, whose heuristics might have
limitations not fully understood.

Other notable attribution methods are the so-called perturbation methods. In
this case, attributions for each input feature (or set of features) are computed by
directly removing, masking or altering them, and running a second forward pass
on the new input, measuring the effect that this operation has on the output
(Fig. 3b).

Perturbation methods have the advantages of a straightforward interpretation,
as they are a direct measure of the marginal effect of some input features to the
output. They are also model-agnostic, meaning that they can be applied to any
black-box model that provides an evaluation function, without any need to access
the internal operations. These methods have been first applied to CNNs in the
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domain of image classification, visualizing the probability of the correct class as
a function of the position of a grey patch occluding part of the image, a method
known as Box Occlusion [37]. Other methods are Prediction Difference Analysis
[38], Meaningful Perturbation [7] and LIME [22].

Original (label: "garter snake") Grad * Input Integrated Gradients DeepLIFT (Rescale) -LRP

Fig. 2: Attribution generated by applying several attribution methods to an
Inception V3 network for natural image classification [34]. Notice how all gradient-
based methods produce attributions affected by significant local variance.

…
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target neuron
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“green lizard”

“rugby ball”

“grasshopper”

(a) Backpropagation methods

Blackbox
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Blackbox
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-

(b) Perturbation methods

Fig. 3: Categorization of attribution methods

Original (label: "garter snake") Occlusion-1 Occlusion-5x5 Occlusion-10x10 Occlusion-15x15

Fig. 4: Attributions generated by occluding portions of the input image with
squared grey patches of different sizes. Notice how the size of the patches influence
the result, with focus on the main subject only when using bigger patches.
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A major limitation of perturbation methods is that the number of features
that are perturbed altogether at each iteration, as well as the chosen perturbation
technique, significantly affect the resulting explanations. Figure 4 highlights this
problem in the case of Box Occlusion, where different explanations are generated
for different sizes of the occluding box. While an ideal perturbation method would
test all possible subsets of input features, this is not computationally feasible with
most real-life datasets, as the cardinality of the power-set grows exponentially
with the size of the input. In practice, perturbation methods differ by their
underlying perturbation technique but the lack of a theoretically-grounded way
of choosing it raises questions about the reliability of the resulting explanations.

Moreover, notice that perturbation methods tend to be significantly slower
than gradient-based methods (up to hours for a single image [38]). As the number
of required network evaluations grows with the number of input features, these
are often aggregated to obtain attributions within a reasonable time. Which and
how features are aggregated is also an hyper-parameter that strongly affects the
resulting explanations.

5 Conclusions

Understanding and explaining complex machine learning models have become
crucially important. While several attribution methods have been proposed in
the last decade, we see no silver bullet among them. As discussed in the case of a
linear model, the notion itself of "explanation" is not well defined, and therefore
attribution methods sometimes answer different questions.

Moreover, the empirical evaluation of attribution methods is still hard to
accomplish, as no fully reliable quantitative metrics are available. Therefore,
when an explanation highlights some unexpected behavior of the model, it might
be difficult to discern whether the problem is in fact due to the model itself or
rather to the method used to explain the model [33].

Generally, the problem of validating attribution methods is accentuated by
the lack of a solid theoretical foundation for the propagation rules of many
backpropagation methods, as well as the little theoretical understanding of how
different perturbation techniques affect the result on perturbation methods.
Too often, attribution methods are only evaluated qualitatively, for example by
comparing the attribution maps generated by different methods for the same
model. We believe this is an extremely dangerous approach because humans
might judge more favorably methods that produce explanations closer to their
own expectations. Take, for example, a DNN trained for image classification:
several works have shown that these networks are easily fooled by carefully-crafted
adversarial samples, altered images almost indistinguishable from the originals by
the human eye, but able to trick the network into a totally wrong classification
[9, 35]. Adversarial samples suggest that DNNs are much more sensitive to small
variations in the intensity of image pixels than the human brain is. So, if the
mechanisms underlying the image recognition task in a DNN and in the human
brain are different, we would expect the corresponding explanations to reflect
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this difference. Instead, qualitative evaluations tend to be biased towards what
we consider a "good" explanation as humans.

In order to develop better quantitative tools for the evaluation of attribution
methods, we first need to define the goal that an ideal attribution method should
achieve, as different methods might be suitable for different tasks. Then, as for the
properties of explanation continuity, implementation invariance and sensitivity-N,
we can proceed defining those axioms or properties we consider necessary for any
good explanation method to fulfill. We believe this is a promising path to follow
for future research on this topic.

To conclude, in this chapter we have analyzed five attribution methods and
the role of the gradient in defining them. Starting from a linear model, we
have shown how the gradient information can be used to generate explanations,
explicitly or implicitly. We have also discussed some theoretical properties of these
methods and shown that, despite their apparently different formulation, they
are strongly related. By reformulating ε-LRP and DeepLIFT (Rescale), we have
shown how these can be conveniently implemented with modern machine learning
frameworks, similarly to other gradient methods. Finally, we have discussed
some limitations of gradient-based methods, in the hope of encouraging further
exploration of new techniques towards achieving explainable DNN models.
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