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Abstract
Based on an intuitive physical definition of what a finite-time saddle-like behavior is, we derive a mathematical definition. We
show that this definition builds the link between two FTLE-based saddle generalizations, which is not only of theoretical interest
but also provides a more robust extraction of finite-time saddles.
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1. Introduction

Vector field topology [PC87a, HH89] is a common visualization
method to analyze steady flow [PVH∗03, LHZP07]. Critical points
and separatrices segment the domain into coherent regions in which
every streamline has the same origin and destination. It has been
long known that instantaneous topology is not able to capture time-
varying flow behavior [PT84]. Often two problems are named.
First, time-varying data sets usually cannot be integrated infinitely
long. Second, revealed features are not physically meaningful,
which may refer to the fact that particles cross them. We think
that integration to infinity would not be helpful when we want to
analyze time-varying flow because the driving questions are usu-
ally related to finite-time phenomena, for example, from the time
of the oil spill until now. This is why we emphasize our studies
on the finite-time character of saddles. We strongly agree with the
physically meaningful requirement and therefore only work with
pathlines. Several great suggestions for a generalization to time de-
pendent topology have been made, but none is considered a unified
theory of finite-time topology yet [PPF∗11].

In this paper, we are looking for a generalization of a saddle as
known from classical vector field topology that is meaningful in a
finite-time setting. To be meaningful, we expect the definition to at
least satisfy the following three requirements:

• Detect steady saddles: We want the definition to detect the sad-

dle in the vector field (x,−y)T e−
x2+y2

σ ,∀σ ∈ R at (0,0)T , which
is the simplest, continuous, non-linear case that decays to zero
velocity at infinite distance to the critical point.
• Objectivity: The definition should not depend on Euclidean

transformations of the reference frame.
• Reflect movement of particles: The definition shall be pathline

based and not streamline based.

For a basic and intuitive generalizaion, we start off with
the idea of bifurcation lines [PC87b] or hyperbolic trajectories.
Haller [Hal00] introduces uniformly hyperbolic trajectories in the
context of Lagrangian coherent structures roughly speaking as
pathlines with part of their neighboring pathlines converging in for-
ward and part in backward direction. Later in [Hal11], he weakens
the requirement to finite-time hyperbolicity, where a pathline does
not need to satisfy hyperbolic behavior continuously but only over-
all for a given time interval. A fundamental difference between LCS
and our work is that we do not require Lagrangianness. Instead of
treating it an axoim, we consider it an open question whether or not
a saddle will turn out to be a pathline in finite-time. Motivated by
this, we use the following physical definition for a finite-time sad-
dle, which forms a binary field in spacetime. For completeness, we
also state its Lagrangian equivalent.

Definition 1 (Physical Definition of Finite-time Saddles) We con-
sider a point and time (x, t)∈Rd×R a finite-time saddle for a given
time interval t ∈ (t0, t1) if part of its neighborhood has attracting
behavior forward in time to t1 and repelling behavior backward in
time to t0 while part of its neighborhood does the opposite.

Definition 2 (Physical Definition of Lagrangian Finite-time Sad-
dles) We consider a pathline x(t),x(t0) = x0 a finite-time saddle for
a given time interval [t0, t1] if part of its neighborhood has attract-
ing behavior and part of its neighborhood has repelling behavior
forward in time from t0 to t1.

The two biggest contributions of this work are

• A mathematical definition for finite time saddles that matches the
intuitive physical one and ties the link between Sadlo’s FTLE-
based saddles [SW10] and their Lagrangian counterpart.
• A measure for the detection of finite time saddles that does not

depend on ridge detection or the error prone integration exactly
on an unstable manifold [HY00].
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2. Related Work

In the 3D steady case, early work by Perry and Chong [PC87b]
suggested that bifurcation lines are streamlines to which nearby
streamlines are asymptotically drawn (or repelled away from) at
an exponential rate.

Haller [HY00] used the term Lagrangian coherent structures
(LCS) to refer to physically meaningful features in time-varying
flow. He made use of the finite-time Lyapunov exponent (FTLE),
which is a measure of separation of infinitesimally close parti-
cles over time. Recently, he summarized the past years of work on
LCS, leading to a unified theory that gives hyperbolic, elliptic and
parabolic LCS as lines that maximize attraction, repulsion, or shear
in a certain time window [Hal15]. The extraction of LCS was dis-
cussed by Farazmand et al. [FH12] and the implementation details
(and code) are given by Onu et al. [OHH15].

Theisel et al. [TWHS05] followed two approaches to the gen-
eralization of topology to unsteady vector fields. In their pathline-
based approach, they categorized pathlines into attractors, repel-
lors, and saddle-like trajectories based on whether their surround-
ing pathlines converge toward it in forward integration, in backward
integration, or none of the above.

In their seminal work [SW10], Sadlo and Weiskopf generalized
the concept of saddle-type critical points to time-dependent vec-
tor fields using the intersections of forward and backward FTLE
ridges. They used these points as seeds for generalized streak-
lines as introduced by Wiebel et al. [WTS∗07], which formed a
generalization of separatrices to time-dependent flows. Üffinger et
al. [USE13] extended the concept to 3D. Later, Üffinger [ÜSK∗12]
suggested to look at neighbor particles seeded on a circle around the
reference particle and to replace the first-order separation approxi-
mation by the actual maximal separation among these particles.

Roth [Rot00] suggested to detect straight bifurcation lines by
applying the parallel vectors operator of Peikert and Roth [PR99],
namely by looking for places at which the velocity is parallel to
the acceleration and at which all eigenvalues are real-valued. More
recently, Machado et al. [MSE13, MBES16] applied the idea of
Roth [Rot00] to locally detect bifurcation lines in 2D space-time.
Since the method only works for saddles moving with equal speed
in a constant direction, Machado et al. [MBES16] suggested to it-
eratively align the bifurcation line with a pathline of the flow. This
method, however, cannot guarantee to find the correct solution.

3. Theory

In this section, we formulate a mathematical definition for finite-
time saddles to match the physical definiton, cf. Def. 1. We analyze
its mathematical properties, derive a first-order approximation, and
demonstrate its relation to existing methods based on the intersec-
tion of forward and backward FTLE ridges.

3.1. Mathematical Definition

Definition 3 (Mathematical Definition of Finite-time Saddles)
We consider a point and time (x0, t) a finite-time saddle for a given
time interval t ∈ [t0, t1] if for any ε > 0, we can find 4 points

x1, ...,x4 ∈ Bε(x) in its ε-neighborhood (numbered in positive ori-
entation around x) so that the pathlines starting at (x1, t) and (x3, t)
will expand from x0 forward in time until t1 and contract backward
until t0 while (x2, t) and (x4, t) do the opposite.

We consider two trajectories x0(t),xi(t) : R→ Rd expanding in
forward time for a given finite time interval t ∈ [t0, t1] if ‖x0(t0)−
xi(t0)‖ < ‖x0(t1)− xi(t1)‖ and contracting if ‖x0(t0)− xi(t0)‖ >
‖x0(t1)− xi(t1)‖. Expansion in forward time is equivalent to con-
traction in backward time and vice versa.

So, with Ft1
t (x) being the flow map from time t to time t1 of a

particle seeded at x, we can equivalently require the conditions:

‖Ft1
t (xodd)−Ft1

t (x0)‖> ‖xodd− x0‖,

‖Ft1
t (xeven)−Ft1

t (x0)‖< ‖xeven− x0‖,

‖Ft0
t (xodd)−Ft0

t (x0)‖< ‖xodd− x0‖,

‖Ft0
t (xeven)−Ft0

t (x0)‖> ‖xeven− x0‖.

(1)

This definition does not produce isolated points but areas. We can
choose a point as representative, which we will call saddle core, for
an area through demanding that it shows this behavior in locally the
strongest way, like through locally maximizing

Mt1
t0 (x0, t) := min(

‖Ft1
t (xodd)−Ft1

t (x0)‖
‖xodd− x0‖

,
‖xeven− x0‖

‖Ft1
t (xeven)−Ft1

t (x0)‖
,

‖xodd− x0‖
‖Ft0

t (xodd)−Ft0
t (x0)‖

,
‖Ft0

t (xeven)−Ft0
t (x0)‖

‖xeven− x0‖
).

(2)
Definition 3 is objective, i.e. invariant w.r.t Euclidean transforma-
tions of the reference frame x′=Q(t)x+c(t) with a time-dependent
orthogonal matrix Q : R→ SO(d) and translation c : R→ Rd , be-
cause it only depends on distances of particles at the same time.

3.2. Linear Approximation

Using Taylor’s theorem, the difference between two close points
can be expressed through the deformation gradient∇F

Ft1
t (x0)−Ft1

t (xi) =∇Ft1
t (x0)(xi− x0)+O(‖xi− x0‖2). (3)

For the limit ε→ 0, we can write its magnitude as

‖Ft1
t (x0)−Ft1

t (xi)‖2 = (Ft1
t (x0)−Ft1

t (xi))
T (Ft1

t (x0)−Ft1
t (xi))

= (x0− xi)
T (∇Ft1

t (x0))
T∇Ft1

t (x0)(x0− xi).
(4)

With n = x0−xi
‖x0−xi‖ and the Cauchy-Green strain tensor from contin-

uum mechanics Ct1
t0 (x0) = (∇Ft1

t0 (x0))
T∇Ft1

t0 (x0), we get

‖Ft1
t (x0)−Ft1

t (xi)‖2

‖x0− xi‖2 = nT (∇Ft1
t (x0))

T∇Ft1
t (xi)n = nTCt1

t (x0)n,

(5)
which shows that the conditions in (1) can be expressed through
the eigenvalues of C. In particular, the tensors Ct1

t (x0) and Ct0
t (x0)

must each have eigenvalues greater as well as smaller than 1 so that
point (x0, t) is a first-order approximation to the finite-time saddle
in the interval [t0, t1].

The linear approximation is also objective. It follows
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through direct calculation from the behavior of the defor-
mation gradient under Euclidean transformations ∇Ft1

t0
′
(x′) =

Q(t1)∇Ft1
t0 (x)Q(t0)

T [Liu03].

3.3. Relation to FTLE

Our measure is related to FTLE, where the largest eigenvalue λmax
of the Cauchy-Green strain tensor C is evaluated. To consider the
dependence on the size of the time interval and the potentially rapid
growth of the expansion, it is weighted via

FT LEt1
t0 (x0) =

log
√

λmax(Ct1
t0 (x0))

t1− t0
. (6)

Analogously, we can weight the largest and smallest eigenvalue
λmax,λmin of the Cauchy-Green strain tensor for a weighted mea-
sure of strength

M̃t1
t0 (x0, t) := min(

log
√

λmax(Ct1
t )

t1− t
,−

log
√

λmin(C
t1
t )

t1− t
,

log
√

λmax(Ct0
t )

t− t0
,−

log
√

λmin(C
t0
t )

t− t0
)|vmax(Ct1

t )
T vmin(C

t0
t )|.

(7)

Scaling with the scalar product of the eigenvectors removes the case
where they coincide, compare Figure 4. This shows that the inter-
section of forward [t, t1] and backward [t, t0] FTLE ridges over ad-
jacent intervals at time t as suggested by Sadlo [SW10] is related
to the two constraints in Definition 3 that correspond to the expan-
sion. To see that the other two contracting criteria are important to
reduce false positives, we take a look at the following example of a
blue sky bifurcation, i.e. a sink that becomes a source. For c∈ [0,1)

the vector field that has the shape (−x,−cy)T e−
√

x2+cy2
σ if t < 0 and

(−x,−cy)T e−
√

x2+cy2
σ if t ≥ 0 has a ridge along the x-axis for t < 0,

which intersects the ridge along the y-axis for t > 0 falsely indicat-
ing a saddle at the origin.

3.4. Lagrangian Invariance

Haller [Hal15] stated that the use of FTLE over sliding time
windows produces non-Lagrangian results because the structures
belong to different finite-time dynamical systems. This critique
would also apply to the intersection of forward and backward
FTLE ridges of adjacent time intervals as suggested by Sadlo and
Weiskopf [SW10]. An adaption of their idea to a Lagrangian setting
would suggest to look at the intersection of forward and backward
FTLE ridges of the same interval instead, Figure 1. This ties back
to the Lagrangian finite time saddles from Definition 2 because for-
ward expansion equals backward contraction.

From condition (1) follows that the complete length of the path-
line through x(t) = x0 has overall saddle behavior, too, because of

‖Ft1
t (xodd)−Ft1

t (x0)‖> ‖xodd− x0‖> ‖Ft0
t (xodd)−Ft0

t (x0)‖,

‖Ft1
t (xeven)−Ft1

t (x0)‖< ‖xeven− x0‖< ‖Ft0
t (xeven)−Ft0

t (x0)‖.
(8)

The reverse is not true. For example, the flow that has the shape

Figure 1: The difference between adjacent interval ridges [SW10]
(left) and same interval ridges [HY00] (middle + right).

(0,0)T if t < 0 and (x,−y)T e−
√

x2+y2
σ if t ≥ 0 would show saddle

character for each pathline using the Lagrangian definition, while
Definition 3, would only detect the parts of the pathlines that live
in t > 0. Also, the maxima in strength do not necessarily coincide
with the maxima of the corresponding Lagrangian measure

min(
‖Ft1

t (xodd)−Ft1
t (x0)‖

‖Ft0
t (xodd)−Ft0

t (x0)‖
,
‖Ft0

t (xeven)−Ft0
t (x0)‖

‖Ft1
t (xeven)−Ft1

t (x0)‖
), (9)

or with the definition based on ridge intersection. However, every
point (x0, t) that is considered a saddle in Definition 3, lies on a
pathline that has separating behavior for [t0, t1] as well as backward
for [t1, t0], i.e., on one that can be considered a Lagrangian finite-
time saddle. Nevertheless, it is possible that the saddle core line
defined through the maxima argmax(x, t)Mt1

t0 (x, t) does not form a
pathline.

This means that Definition 1 is sufficient but not necessary for
Definition 2 for the pathline x(t) = x, but (2) not for (9).

3.5. Connection

The smallest forward FTLE µt1
t0(x0) is the negative of the largest

backward FTLE µt1
t0(x0) = −λ

t0
t1((F

t1
t0 (x0)) [HS11]. Now, through

the basic Definition 3, we can see from (8) that the intersection of
FTLE values over the same interval and over adjacent intervals are
actually connected. Areas that have saddle behavior in the adjacent
interval setting are areas of saddle behavior in the same interval
setting if the demand for contracting behavior is added, Figure 1.

This connection provides a nice intuitive interpretation of the
two methods that ties back to the expanding and compressing be-
havior of the classical steady saddle point.

This connection also solves a problem of the ridge intersection
of the same interval setting. While for the adjacent intervals, the
extracted ridges can readily be intersected in the time slice t, here,
we would have to integrate the ridges to path surfaces whose inter-
section will then form the saddle pathline. This integration is highly
unreliable because it is performed exactly on a repelling structure.
In case of the experiment in Figure 2, the two surfaces do not even
intersect at all. The ridges themselves do not suffer from that prob-
lem because at ridges only the fact that repulsion occurs is needed,
not the exact form of the corresponding material surface. Using (9)
can overcome that problem by a timestep-wise evaluation that only
requires the information if repulsion takes place.

4. Experiments

We performed experiments on two analytical data sets, for which
we know the ground truth, to demonstrate the correctness of
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(a) Saddle at t=2. (b) Saddle at t=4. (c) Saddle at t=6.

Figure 2: Detected saddle for accelerated translation. The white
sphere shows the location detected by the proposed method and the
red sphere shows the ground truth of the saddle location.

the proposed method. The first case is a steady saddle v(x,y) =

20/|T |(x + 0.5,−y)T e−2
√

(x+0.5)2+y2
under an accelerated trans-

lation v′(x, t) = v(x− c(t))+ ċ(t) by c(t) = 1
2 (sin(θ)+1,cos(θ))T

with θ = 2πt2/|T |2 and |T | denoting the number of time steps. The
saddle moves clockwise along the circle with radius 0.5 around
(0,0) starting at (0,0.5). The second case is the same saddle un-
der an accelerated rotation v′(x, t) = Q(t)v(QT (t)x) + Q̇(t)x with
Q(t) ∈ SO2 being the rotation matrix by θ = 2πt2/|T |2. This sad-
dle moves around the same circle starting at (−0.5,0). We use the
spatial domain [−1,1]2 with resolution 412 and 10 time steps. Both
transformations are purely Euclidean. They can be interpreted as
a change of the reference frame of the observer and an objective
method should be able to detect the saddle on the circle.

Figures 2 and 3 show the results of the detected locations of sad-
dles on three selected time steps where the white sphere reflects
the saddle location obtained by applying Definition 3. The line in-
tegral convolution (LIC) [CL93] visualization of the instantaneous
vector field of the corresponding time step is displayed on the back-
ground as a context color coded by velocity magnitude. Note that
the instantaneous LIC slice alone cannot reveal the motion of the
saddle, since it shows streamlines instead of pathlines. The analyt-
ically computed correct saddle location is displayed using the red
spheres. It can be observed that the saddle location detected by the
proposed method conforms well with the ground truth, but the max-
imum always lies on a grid point, which is why the exact inner-cell
location cannot be found.

The forward and backward FTLE as by Sadlo [SW10] produces
the same results. Lagrangian forward and backward FTLE pro-
duces no result. The ridges are detected correctly at the first and
last time step, but the path surfaces forward and backward along
the highly unstable regions are deflected so strongly that they do
not intersect at all in [−1,1]2.

As a more complicated example, Figure 4 shows the quad gyre,
which is the extension of the popular FTLE posterchild double
gyre [SLM05] to the domain [0,1]2 with resolution 2012. Here, the
global maximum saddle core line (yellow) of the Measure (7) co-
incides with the intersection of forward and backward FTLE of the
adjacent intervals [SW10]. For comparison, we show the core line
in cyan that was extracted using the parallel vectors operator as de-
scribed by Machado [MSE13] without subsequent iterative pathline
alignment, which is slightly off. Figure 4c shows the saddle core
line detected with our method (yellow) in comparison to the one us-
ing the parallel vectors operator as described by Machado [MSE13]

(a) Saddle at t=2. (b) Saddle at t=4. (c) Saddle at t=6.

Figure 3: Results of detected saddle for accelerated rotation. The
white sphere shows the location detected by the proposed method
and the red sphere shows the ground truth of the saddle location.

(a) Measure (7) de-
tects real saddle.

(b) False positive
without eigenvectors.

(c) Our saddle core line in
spacetime (yellow).

Figure 4: The strongest saddle detected with Measure (7) in the
quad gyre coincides with the intersection of the forward an back-
ward FTLE (red and blue in 4c).

(cyan) on top of forward (red) and backward (blue) FTLE in space-
time. Pathlines seeded with offset in eigenvector direction in Fig-
ure 4b show how a temporary contraction with coinciding eigen-
vectors would produce a false positive if the weighting with the
eigenvectors would be omitted in (7).

5. Discussion

We provided a definition for finite-time saddles that satisfies the
requirements of steady saddle detection, objectivity, and particle
movement reflection from the introduction. It does not demand La-
grangian invariance, but we could see that it produces a subset of
the corresponding Lagrangian definition. The definition provides
the flexibility that a particle can behave like a saddle for certain
times without forcing it to either be a saddle or not for the whole
time interval. Further, it provides the connection between, the inter-
section of forward and backward FTLE ridges for adjacent intervals
and the Lagrangian version for the same interval. Finally, it moti-
vates the computation of finite-time saddles without the necessity
to extract ridges or the exact shape of a path surface in an unstable
region, which makes it more robust.

We do not consider this the only or ultimate definition of ob-
jective finite time saddles because it still has some shortcomings.
Same as FTLE, the integration duration must be chosen and the
measure responds to shear, which is not desirable. Analogously to
FTLE ridges, which become very thin for long integration times,
the finite time saddle regions can become very small and and need
high resolution. For complicated flows, the saddle-like regions can
become very concave and are not as intuitive to interpret as their
steady counterparts.
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