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Abstract—Over the past decades, scientific visualization became a fundamental aspect of modern scientific data analysis. Across all
data-intensive research fields, ranging from structural biology to cosmology, data sizes increase rapidly. Dealing with the growing
large-scale data is one of the top research challenges of this century. For the visual exploratory data analysis, interactivity, a
view-dependent visibility optimization and frame coherence are indispensable. In this work, we extend the recent decoupled opacity
optimization framework to enable a navigation without occlusion of important features through large geometric data. By expressing the
accumulation of importance and optical depth in Fourier basis, the computation, evaluation and rendering of optimized transparent
geometry become not only order-independent, but also operate within a fixed memory bound. We study the quality of our Fourier
approximation in terms of accuracy, memory requirements and efficiency for both the opacity computation, as well as the
order-independent compositing. We apply the method to different point, line and surface data sets originating from various research fields,
including meteorology, health science, astrophysics and organic chemistry.

Index Terms—Scientific visualization, opacity optimization, Fourier approximation.

1 INTRODUCTION

CIENTIFIC visualization is an essential instrument of modern
S scientific computing, as it helps to discover new insights, which
include the role of dark matter in the formation of galaxies [50],
oceanic currents that drive the global climate [60], the neurological
pathways in our brain [5], as well as the treatment of impaired blood
flow in our veins [48], to name a few. Due to the increasing avail-
ability of powerful computational resources and the improvements
in measurement technologies, the available data grows rapidly in
all scientific disciplines. This lead to a serious scalability problem
that becomes even more challenging in the future, making this one
of the top research challenges of the 21% century. Thus, in this
paper, we focus on the scalable visual data exploration of general
scientific data. When it comes to 3D data, an inherent visualization
problem that is shared among all visual primitives (points, lines,
surfaces and volumes) is the occlusion problem [20], [23]. That is,
highly relevant information might be hidden behind unimportant
geometry, which is determined by a user-defined importance value.
In its severity, this ranges from small details being missed to the
screen being fully cluttered, making a navigation through the data
impossible. An appropriate selection of the visual primitives to
display has to fulfill a number of goals to adequately convey the
information in the data [20]. First, it needs to be interactive to
enable a free exploratory navigation, which is challenging with
increasing data set sizes. Second, the occlusions need to be removed
in order to provide a view onto the relevant aspects of the domain,
while still preserving the context. Choosing the visibility of the
geometric primitives is a view-dependent problem and it should
thus give frame-coherent results during the camera navigation.
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For line geometry, Giinther et al. [20] formulated the adjustment
of the line opacity as a global optimization problem with bounded
variables. Their approach was later extended to animated lines [21],
opacity optimization for surfaces [22] and extinction optimization
for volumes [1]. Ament et al. [1] approximated the energy and
reformulated the minimization in ray space, which enabled a
significant acceleration for volume data, which was later carried
into point, line and surface geometry by Giinther et al. [23] in
their decoupled opacity optimization. However, the decoupled
technique still does not scale well for large amounts of geometric
primitives (points, lines and surfaces), due to an order-dependence
that involves the construction and sorting of fragment linked
lists [62], which is ultimately bounded by the available memory.
The order-dependence is required in two steps of the pipeline:
first, for the determination of how much important geometry is
in front or behind a given fragment, and second, for the correct
front-to-back compositing of the final transparent fragments.

In this paper, we reformulate the decoupled opacity optimiza-
tion into an order-independent algorithm that operates on a fixed
and small amount of memory. This is achieved by approximating
both the accumulated importance (to determine the amount of
important geometry in front and behind) and the optical depth (to
obtain the weights for the front-to-back compositing) along the view
ray by a Fourier series. The superiority of Fourier approximations
over simple binning approaches has been demonstrated by Jansen
and Bavoil [27] for the shadowing of transparent geometry. In
order to apply their Fourier approximation along light rays to
the color compositing along view rays, we introduce a necessary
normalization scheme that avoids the severe compositing artifacts
that could otherwise be introduced by potential overshooting of
the approximated signal. The main benefit of our approach is that
for each pixel, the Fourier series can be constructed, evaluated and
integrated efficiently in an order-independent way. With this, our
Fourier opacity optimization is applicable to large data sets, as
shown throughout the paper. Fig. 1 gives the first examples from
a DT-MRI fiber tracking and a cosmological galaxy formation
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simulation. For the DARK SKY data set in Fig. 1 (right), the
previous decoupled opacity optimization [23] is running out of
memory, making it impossible to navigate through this data set.
Even with a screen resolution small enough to render it with
decoupled opacity optimization, our method needs only 4% of the
memory and is 10x faster. In summary, our main contributions are:

« the first order-independent opacity optimization algorithm
which utilizes a Fourier approximation to accumulate
importance in front and behind a given fragment,

« an order-independent transparency (OIT) algorithm that
extends a volumetric shadow mapping method named
Fourier opacity mapping [27] to the blending of colored
fragments along the view ray,

o and an unbiased normalization step that uses weighted
averaging to correctly compose the fragments and blend
them with the background.

With this, we obtain a scalable opacity optimization algorithm
that operates within a fixed memory bound on all types of
geometric primitives, i.e., points, lines and surfaces. By selecting
the number of frequency bands in the Fourier approximation, the
user can trade performance for accuracy. We carefully study the
approximation quality of the Fourier-based method for both the
importance accumulation and the order-independent compositing
in detail by analyzing them independently. As we will show later,
a small number of frequency bands is sufficient for the view-
dependent assignment of transparency and its correct front-to-
back compositing, for which we consider the decoupled opacity
optimization [23] and the fragment linked-list compositing of Yang
et al. [62] as reference solutions throughout the paper.

Section 2 outlines related work on visibility optimization in sci-
entific visualization and introduces into the Fourier approximation.
Section 3 presents our novel approach, for which implementation
details are shared in Section 4. Our method is applied and evaluated
in Section 5, followed by a conclusion in Section 6.

2 RELATED WORK

In this section, we summarize the recent visualization work on the
occlusion problem and briefly introduce the Fourier foundations.

2.1

In visualization, data is often encoded by geometric primitives that
are placed in the scene. The placement follows certain objectives.
On the one hand, the geometric primitives should represent the
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Fig. 1: We present a novel visualization technique that optimizes the visibility of scene elements based on a user-defined importance.

In contrast to previous work, our formulation uses Fourier approximations to compute the visibility and to render the transparent
geometry, both in an order-independent and memory-bound way. With this, opacity optimization becomes applicable to large scenes, as
demonstrated here for a DT-MRI fiber tracking visualization of white-matter connectivity through the corpus callosum (left) and the
cosmic web of 16 million stars in the DARK SKY simulation (right). Note that the DARK SKY simulation could not be rendered with
decoupled opacity optimization [23] alone, because of its unbound memory consumption.

underlying data well and on the other hand, they should not
introduce too much occlusion. Next, we summarize recent work on
line and surface placement, and discuss the state of the art in the
visibility optimization of line, surface and volume data.

2.1.1 Line Placement and Selection

When it comes to the placement of flow geometry, we can
distinguish between seeding algorithms and selection algorithms.
Seeding algorithms determine the seed points of flow geometry,
which typically aims for a certain density, the representation of
features or the avoidance of redundancy. Selection algorithms,
on the other hand, pick a subset of precomputed geometry,
which is more suitable for interactive techniques. The first view-
independent 3D seeding algorithms were extensions from 2D to
3D, including density-based [42], feature-based [63], [64], and
similarity-based techniques [12], [45]. The first view-dependent
seeding strategy was developed by Li and Shen [35], which was
an extension of the seminal work of Jobard and Lefer’s iterative
streamline placement [28]. Annen et al. [2] computed streamlines
that resemble surface contours. To maximize the information
on the screen, an entropy-related strategy was used by Xu et
al. [61]. Lee et al. [34] guided both line and camera selection
by a maximum intensity projection of the entropy. Marchesin
et al. [37] iteratively added lines based on the per-pixel fill
rate and line entropy measures, which is not coherent during
camera movement, i.e., small camera movements might lead to
large changes in the chosen line set. To obtain frame coherence
Giinther et al. [19] used visibility statistics, which, however, favor
lines closer to the camera. Using information theory, Tao et
al. [55] selected lines and the viewpoint simultaneously by treating
them as interrelated information channels. Ma et al. [36] merged
lines from a view-independent and view-dependent candidate set
by considering the coherence between local views and the last
frame. For hemodynamics applications, Lawonn et al. [33] used
a curvature-based segmentation into foreground and background
flow in blood vessels. Recently, Kanzler et al. [29] selected lines
from a precomputed line hierarchy, based on a maximum intensity
projection of importance, depth and directional variation. Further,
Kanzler et al. [30] proposed a voxel-based rendering method for
large 3D line sets that encodes direction-preserving lines into a
regular voxel grid and uses parallel GPU ray-casting to determine
visible fragments in correct visibility order, which allows for
interactive navigation with transparency and global illumination
effects. In this paper, we extend the opacity optimization of Giinther
et al. [20], [21], which is a selection-based approach, i.e., it
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operates on a precomputed line set. We examine their method
later in Section 2.2. In principle, any of the above seeding methods
(density-based, feature-based and similarity-based) can generate
the geometry that is shown using our Fourier opacity optimization.

2.1.2 Surface placement and selection

The optimal placement of stream surfaces follows similar objectives
as the streamline-based methods above, though with additional
degrees of freedom: the orientation and shape of the seeding curve.
Edmunds et al. [15], [16] proposed a dense evenly-spacing of
stream surfaces. Martinez Esturo et al. [39] searched for a single
best stream surface, such that principal surface curvature directions
align with the underlying flow. The method was extended by
Schulze et al. [51] to find multiple best surfaces. Other optimization
criteria include the stretch-minimization by Barton et al. [3] and
the flow alignment or orthogonality by Martinez Esturo et al. [40].
The above methods did not yet consider the potential occlusion that
might be introduced by the geometry. Giinther et al. [22] adjusted
the transparency of surfaces to balance occlusion and visibility.
Ilustrative flow visualization [7] contributed methods to improve
the perception of transparent surfaces, including the angle-based
and normal variation mapping of Hummel et al. [26], the display
of surface slabs and contours by Born et al. [6] and the diffusion
of silhouettes and halos by Carnecky et al. [9].

2.1.3 Volume Visibility

In volume visualization, occlusion is typically treated by adjusting
the transparency transfer function. To avoid occlusions, Viola and
Groller [56] used ghosting and cutaways. A number of approaches
have been proposed for direct volume rendering. For instance, Viola
et al. [57] suggested importance-based opacity mappings. Chan
et al. [11] adjusted the opacity based on psychological principles.
Marchesin et al. [38] included a relevance function into the volume
rendering equation. Ament et al. [1] extended opacity optimization
to volume data, which is detailed later. They not only optimized
the extinction along view rays, but also along shadow rays.

2.2 Opacity Optimization

In this paper, we accelerate the decoupled opacity optimization of
Giinther et al. [23], which is a selection-based approach that adjusts
the opacity of the scene geometry by an energy minimization
that balances occlusion avoidance and the visibility of relevant
parts of the data. The method is view-dependent, frame-coherent
and interactive for moderate problem sizes. The following section
describes the method in detail, since we build up on this approach.

2.2.1 Background

The energy that we minimize originates from the object-space
optimization of Giinther et al. [20], which was originally built for
line geometry. Their method discretizes a given line set into equally-
sized segments, each equipped with a user-defined importance.
From fragment linked lists [62] that are obtained by rasterization of
all lines, the mutual occlusion degrees are inferred to measure how
much individual line segments occlude each other. Both the lines’
importance and the occlusion degrees are input to a minimization
that removes occluding lines, emphasizes relevant structures and
ensures spatial smoothness. Later, Giinther et al. [21] extended
the method to time-dependent line geometry by adding a temporal
smoothness term and by selecting the line discretization view-
dependently from a pre-computed split tree. Afterwards, Glinther et
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al. [22] extended the original method to surfaces. The minimization
was still formulated as a global optimization problem. With their
extension to an extinction optimization in volumetric data and with
their reformulation into a local pixel-based minimization, Ament
et al. [1] simplified the optimization significantly by spatially
smoothing the input importance instead of the opacity. Giinther
et al. [23] applied this idea to points, lines and surfaces, which
accelerated the opacity computation for the geometric primitives
as well, but they have shown that the smoothing still has to be
carried out in object space for line and surface geometry to avoid
image-space discontinuities. A central building block remained: the
construction and sorting of fragment linked lists, which are used to
accumulate the amount of relevant information in front or behind
a given fragment, and to blend the transparent scene geometry. In
order to make the approach scalable for large scenes, we replace
this former bottleneck with an order-independent approximation.

2.2.2 Energy Formulation

In decoupled opacity optimization [23], the optimal opacity o; €
[0, 1] of fragment i minimizes a quadratic energy E. As shown by
Ament et al. [1], the optimal fragment opacities ¢; are independent
of each other. Thus, if the n fragments of a pixel are sorted from
front to back, the quadratic energy becomes E =Y/ | E;(0;) with

)M< Zg, 3 Ly g,)
(1

Jj=i+1

The p-term is a regularization that penalizes an o; unequal to 1
(opaque). Using the importance g; € [0, 1] of a fragment, the g-term
penalizes the opacity of unimportant segments i (i.e., 1 —g; is large)
that occlude an important segment j (i.e., g; is large). Thereby,
exponent A steers the fall-off of g; from 1, which allows the user to
emphasize important structures. The r-term removes background
clutter by fading out unimportant segments behind important ones.
The energy weights ¢ > 0, r > 0, and the emphasis exponent A > 0
are set by the user, while we set p = 1 for normalization.

Ei(oy) = g(a, — 1)2+a

2.2.3 Analytic Solution

The optimal o € [0, 1] is found analytically by setting dE‘(a’) =0
and rearranging for the fragment opacity o, cf. Ament et al [1]:

p
- )
+(1-g)* (r):] lg,+q2?:i+1g,-)

Computing the sums Z;;ll g? and Yi; 4 g? for geometric data [23]
requires the construction and sorting of fragment linked lists, which
is the bottleneck of this method. The construction is not only slow
due to the atomic operations that are required to manage the access
to the fragment memory pool, but also due to the complexity
on the viewport, which is ultimately bounded by the available
memory that is conservatively allocated to the memory pool. The
visualization of large scenes with high depth complexity is thus
prohibitively slow and memory intensive. In this paper, we lift
these limitations by approximating the sums with Fourier series,
which can be constructed and evaluated order-independently.

a,'I

2.2.4 Object-Space Smoothing of Opacities

For line and surface geometry, the optimal fragment opacities o;
are smoothed across the geometry to ensure smooth transitions. We
follow Giinther et al. [23], who discretized lines into segments and
surfaces into patches. First, the fragment opacities are mapped into
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object-space, i.e., onto the segments and patches. As segment or
patch opacity, they chose the smallest ¢ of its rasterized fragments,
which is a conservative choice to make a segment or patch disappear
if at least one fragment needs to fade out in order to clear the
view on something more important. Once the opacities arrived in
object-space, they are smoothed with iterative Laplacian smoothing.
Finally, the per-segment opacities are interpolated onto the vertices
of the mesh. For this, the vertices of the lines and surfaces fade
their opacity value towards the weighted average of the opacity
values of the neighboring line segments or surface patches. The
discretization into line segments and surface patches, as well as the
interpolation weights of the vertices, are precomputed as described
by Giinther et al. [23]. In this paper, we are only concerned with
the computation of the fragment opacities.

2.2.5 Transparent Rendering

The output of the opacity optimization is a transparency value for
each vertex in the scene. For the final visualization, the transparent
geometry has to be rendered for which several methods exist, cf.
Maule et al. [43]. The correct blending methods require fragment
sorting [10], [62] or many render passes [4], [17], which does not
scale well for large scenes with high depth complexity. Several fast
approximations were developed for real-time rendering to avoid
the sorting, including weighted average [4], weighted sum [46] and
the weighting with a scene-dependent analytic function [44]. These
methods, however, do not consider the actual transmittance of light
and therefore lead to an impaired perception of the surface order.
For this reason, we follow a different strategy that is based on a
volumetric shadow mapping approach by Jansen and Bavoil [27],
named Fourier opacity mapping. They proposed to approximate the
transmittance in participating media with a Fourier series, which
they used to efficiently compute shadows. In this paper, we extend
the method to the blending of colored fragments. The extension
is not straightforward, since errors in the approximation lead to
a noticeable saturation of the colors. To avoid these artifacts, we
propose a normalized weighting scheme that keeps the colors
in their convex hull. We prove that the weighting is identical to
the correct blending methods in the case of zero approximation
error. By adjusting the number of frequency bands in the Fourier
approximation, our method is a scalable approach in-between the
fast approximations and the slow ground truth methods.

2.3 Fourier Approximation of a General Function

In the following, we briefly introduce the Fourier approximation,
which is the central building block of our method. The Fourier
analysis found numerous applications in computer graphics, e.g.,
for ocean waves [41], depth of field [53] or shadows [27]. Next,
we revisit the approximation of continuous and discrete sums.

23.1

A continuous function f(z) in the depth range z € [0, 1] can be
approximated by a Fourier series with m frequency bands, as shown
by Jansen and Bavoil [27]:

Continuous Fourier Approximation

f(z2) ~ ?0 + Z ay cos(2mkz) +k§bk sin(27kz), 3)

ax :Z/Of(z) cos(2mkz) dz , by = 2/0f(z) sin(2wkz) dz, (4)

4

where ag and ai, by with k € {1,...,m} are the coefficients of
the Fourier basis functions. Once described in Fourier basis, the
integral of the function f(z) in Eq. (3) is conveniently calculated:

2= [ ez~

Z —— sin(27kd)

b
— (1- 27kd)). 5
+k;2ﬂk( cos(2mkd)). ()
Thereby, the bounds of the domain are reconstructed perfectly:

1

F(0)=0 1)= /0 f(2) dz. (6)
Eq. (5) shows the rate at which the Fourier terms decay when
increasing m. The magnitude of the terms with coefficients a; and
by decays at a rate of # compared to ag [49]. Thus, terms for
k > 5 have a magnitude of about 5% or less compared to ag, and
have thus a small impact on the reconstructed signal. An example
of this decay is later shown visually in Fig. 9 for two pixels.

2.3.2 Discrete Fourier Approximation

In our application, we are interested in summing up a finite set
of discrete values in a certain depth range. Thus, given n discrete
values f; at distance d; € [0, 1], our function f(z) consists of Dirac
deltas: f(z) =Y}, fi- 8(z—d;). Integrating f(z) over the whole
domain exactly recovers the sum of all values:

F)= [ 162

since [7_ f(x)8(x—c) dx = f(c). Inserting Eq. (7) into Eq. (4)
gives the Fourier coefficients in the discrete case:

dz = Zfi, (N
=1

n n
ay =2 Zfi cos(2mkd;) , by = ZZf,- sin(2wkd;).  (8)
i=1 i=1
Note that the approximation of F(d) using Eq. (8) is independent
of the sampling order. The integral from zero to a certain distance
d; recovers the sum of the fragments until f;. Assuming they are
sorted from front to back, i.e., d; < d;11, this is formally:

d i
- [ r@ =Y £ ©)
0 j=1

Thus, after constructing F(d) in Eq. (5) order-independently, the
sum of f; up until d; can be evaluated without the need to store and
sort the values f;. The construction of F(d) is memory-bound, as it
requires only m frequency bands. The selection of m is a trade-off
between performance and approximation quality, which is analyzed
later in Section 5.5.

3 FOURIER OPACITY OPTIMIZATION
3.1

Our order-independent algorithm consists of two main steps, as
illustrated in Fig. 2. First, for each pixel a Fourier approximation of
the accumulated squared importance G(d) is formed along the view
ray. With this, objects can determine whether they occlude relevant
information, which in turn steers the adjustment of their own
opacity. Second, all transparent objects are rendered, for which we
approximate the optical depth 7(d) along the view ray in Fourier
basis. In the following, we elaborate on the two steps and the
subsequent normalization and compositing with the background.

Algorithm Overview
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Fig. 2: Method overview: Input to our method is point, line and surface geometry, equipped with an importance value g;. Using a Fourier
series, we order-independently compute a representation of the accumulated squared importance G(d) along the view ray, which is used
to calculate the optimal opacity ¢; of each fragment i. Using the object-space smoothing of Giinther et al. [23], the opacity is smoothed
across the line and surface geometry. Using another Fourier series, we order-independently approximate the optical depth 7(d) along the
view ray, which is used for our order-independent transparency rendering to produce the final image.

3.2 Order-independent Opacity

To compute the optimal opacity, Giinther et al. [23] constructed and
sorted fragment linked lists, which is not scalable, as it becomes
relatively slow and exhausts memory in large scenes. To overcome
this, we rephrase the optimal fragment opacity ¢, given in Eq. (2).
By denoting importance g; at distance d;, we obtain:

p
p+(1—g)** (r[G(di) — g7] +4[G(1) = G(dy)])

where G(d;) = Z} 1g2 follows from Eq. (9) and G(1) =Y, ¢?
follows from Eq. (7). We approximate the importance sum G(d)
order-independently using

(10)

o =

m /

/ m
-~ ag a
G(d)~ ' d+ Z 57 Sin(2mkd) + Z

b
2k

(1 —cos(2mkd))

n n
a,=2Y gf cos(2mkd;) , by =2Y g sin(2mkd;).  (11)
i=1 i=1

The coefficients a and b; are calculated first by rendering all scene
geometry with additive blending to sum up their contributions. The
resulting coefficients are stored in multiple render targets, which
are read in the subsequent pass to sample G(d) in Eq. (10).

3.3 Order-independent Compositing

Once the optimal opacities are computed using Eq. (10) and
smoothed in object-space using the method of Giinther et al. [23],
the transparent geometry has to be blended in the correct order.
The blending equation for a front-to-back compositing is, cf. [24]:

i—1 n
C= ZC a,H 1—ay) + Gy [J(1
=1 i=1

where the n fragments with color C; and alpha value ¢; are sorted
from front-to-back, and Cp, is the opaque background color. Note
that the weight of color C; depends on the alpha values of all
fragments in front, i.e., the blending is order-dependent. Further
note that the colors are not pre-multiplied with their alpha value.
First, we apply an index shift from i — 1 to i so that the left product
ends at element i:

(12)

1 o) + Cbg]‘[ l—o).  (13)
i i —
By introducing the optical depth 7(d;)
1(d;) = Zl; —In(1 — o), (14)
j=1
the products in Eq. (13) are reformulated into sums:

i=1

Then, optical depth 7(d) is approximated order-independently:

a’ L mn /"
7(d) = 70 d+];1 2;}( sin(2mwkd) +];1 3 k(1 —cos(2mkd)),
al = —ZZln(l — ;) cos(2mkd;), (16)
i=1
by ==2Y In(1— o) sin(27kd;), (17)

i=1
and can then be inserted into Eq. (15). Recalling Eq. (7), the optical
depth 7(1) in Eq. (15) is always perfectly reconstructed, since

In](l — (X,').

i=1

et — pmap/2 _ (18)
Because of the index shift in Eq. (13), we can evaluate the optical
depth 7(d;) directly at the location of fragment i, which means
that we do not need to know the location of the fragment in front,
i.e., di_1, as it would be the case if the Fourier approximation was
directly applied to Eq. (12). The division by (1 — o) in Eq. (13),
however, is undefined for ¢; = 1, which is why we clamp all alpha
values in practice to 0.9999. With our Fourier-based approach,
the storing and sorting of fragments is avoided completely, since
both the importance sum G(d) and the optical depth 7(d) can be
approximated order-independently.

3.4 Normalization and Background

The compositing described in Eq. (15) is correct under the
assumption that the optical depth 7(d) is perfectly represented
by the Fourier approximation. Since this is usually not the case,
overshooting and undershooting of 7(d) may result in brightened
or darkened colors, see Fig. 3. In order to avoid these artifacts, we
introduce a normalization step. From Eq. (18), we know that the
blending with the background is always correct, because ¢~ (1) is
the exact transmittance of the background. For the fragments, we
then introduce the normalization via weighted averaging which
effectively composes the fragments into a single layer that is
linearly blended with the background Cp,:

c— i Ciplige ™ '

n —1(d,
llla,e (di)

(1= ") 4 Cpe-e7* . (19)

If 7(d) is perfectly approximated, then Eq. (19) is equivalent to
Eq. (15), since Y7 | +% _e’f(‘” =1—¢~*(), which is proven in the
additional materlal by mductlon Thus, w1th an increasing number
of frequency bands m, Eq. (19) converges to the correct solution.

4 IMPLEMENTATION
4.1 Preprocess

As shown by Giinther et al. [23], discontinuities inevitably occur
with pixel-based optimizations whenever lines or surfaces cross
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Fig. 3: Without normalization (left), colors might saturate due to
overshooting. With normalization (right), the resulting color stays
in the convex hull of the input colors due to a weighted averaging.

in screen-space. To remove this artifact, they smoothed the
optimal opacity along the lines and across the surfaces. Following
their approach, we thus form an object-space discretization in a
preprocess. The lines are subdivided into equally-sized segments
by using prefix sums [21]. Surfaces are subdivided into patches in
two steps. First, points are uniformly distributed on the surfaces
using geodesic farthest point sampling, which is based on geodesic
distances [13]. Second, we use the corresponding Voronoi cells as
the surface discretization [22]. With this, each vertex belongs to
one segment or patch. In addition to the segment or patch ID, each
vertex stores the distance to the adjacent line segments or surface
patches, which is used at runtime for the interpolation of opacities
from the line segments and surface patches onto the individual
vertices of the lines and surfaces. The resulting per-vertex opacities
are sent as vertex attributes into the rendering pipeline for the final
blending of the result. Points do not require a preprocess, since
each point is treated as independent element with its own opacity.

4.2 Runtime

At runtime, depth writing is disabled to process every fragment,
while depth tests are enabled to discard fragments hidden behind
context geometry. Each frame, we repeat the following steps:

1) Render all points, lines and surfaces and project their
squared importance 81'2 in the fragment shader at their
depth d; into the Fourier basis in Eq. (11). The Fourier
coefficients a}, and b}, are summed up using additive blend-
ing and are stored in multiple render targets (two bands
per RGBA float texture). Since the resulting opacities
are smoothed later, this pass can be computed at half
resolution to speed up the computation.

2) Render all geometries again and compute the optimal
opacity ¢; of each fragment using Eq. (10) by sampling the
Fourier coefficients a} and b/, from textures and computing
G(d;) at fragment depth d;. By passing the precomputed
segment ID to the fragment shader, a segment opacity is
computed via an atomic min operation of its rasterized
fragment opacities.

3) Smooth the per-segment opacities using Laplacian smooth-
ing and interpolate per-vertex opacities, cf. [23].

4) To render the transparent geometry, pass the vertex opacity
to the fragment shader and project the opacities using
Egs. (16)—(17) into Fourier basis. Sum up the coefficients
) and by with additive blending in multiple render targets
to obtain a representation of the optical depth 7(d).

5) In the final pass, use the coefficients aZ and b}c’ to sample
the optical depth 7(d) and compute the sums in Eq. (19)
using additive blending. Then, draw a full-screen quad
to perform the normalization and blending with the
background. In this pass, we employ temporal anti-aliasing
by jittering the camera to obtain higher quality.

‘ all opaque our method

g4

Fig. 4: Cumulonimbus clouds in the CTBL data set (g = 100,
r =500, A = 3) and VISCOUS FINGERS in a liquid container
(g =200, r =50, A = 2). Left: all points are rendered opaque,
which entails significant occlusion. Right: our method reveals the
important structures.

When rendering very dense geometry, such as large point clouds,
the Fourier approximations of G(d) and 7(d) in steps (1) and
(4) can be efficiently approximated with a % subset of the full
geometric data set, as shown later in Fig. 11. Note that for the final
rendering, still all elements are visualized.

5 RESULTS

Next, we demonstrate the scalability of our Fourier opacity
optimization for points, lines and surfaces in a wide range of
applications. We compare our method with previous work on opac-
ity optimization and order-independent transparency approximation,
and evaluate the performance of our approach. The colors depict
the importance from blue (low = 0) to red (high = 1). We refer to
the video for interactive navigations through all data sets.

5.1

This section shows several application examples where we are
able to navigate through the data interactively and visualize the
important structures therein. The large number of fragments per
pixel that need to be stored and sorted made previous methods [23]
prohibitively slow or even unable to process the necessary geometry
due to lack of memory. Fig. 1 (right) and Fig. 4 show our opacity
optimization for dense point sets. In astrophysics, cosmological
simulations of dark matter in the universe are typically discretized
by particles that interact only gravitationally. In order to achieve
adequate mass resolution, simulations require large numbers of
particles, as in the 16.3 M points DARK SKY data set. Here, star
density is mapped to importance, revealing the cosmic web. In the
CTBL data set, 3.7 M particles were traced in a cloud resolving
boundary layer simulation, which is used in atmospheric research
to derive cloud statistics that parameterize and improve large-scale
climate simulations. A key aerodynamic process in the development
of cumulonimbus clouds is updraft, which is mapped to importance
to reveal thunderstorm cells. The VISCOUS FINGERS data set is
the result of a finite 1.7 M point-based ensemble simulation of a
salt layer dissolving in a liquid container. Using our optimization
framework, the internal viscous fingers are made visible.

Applications
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our method

all opaque

Fig. 5: Two large line data sets where streamlines show the
magnetic vector potential of a BENZENE molecule (top, ¢ = 20,
r =50, A = 10) and a meteorological air flow simulation on ICON
grids (bottom, g = 400, r =200, A = 1.3).

Fig. 1 (left) shows a DT-MRI data set, containing 18k fiber
tracks, among which connections through the corpus callosum are
mapped to importance, showing communication paths between the
left and right hemispheres. In medical imaging, the visualization
of diffusion tensor tractography allows to infer white-matter con-
nectivity of the brain. Fig. 5 (top) shows an analytic approximation
of a 3D potential field of a benzene molecule, containing 32k
stream lines. In this visualization, the focus is set onto stream
lines close to critical points, which represent the six carbon atoms
(orange structures in the middle) and the six surrounding hydrogen
atoms (orange structures around the teal field lines). Fig. 5 (bottom)
depicts 11.5k atmospheric tracer trajectories in a meteorological
reanalysis simulation. Our opacity optimization reveals the user-
selected flow structures in red, while showing context geometry
in blue. Figs. 3 and 9c use 40k streamlines to visualize the shear-
induced turbulence that is created behind a backward facing step in
the BFS data set, which is a common test case in fluid mechanics.

5.2 Comparison of Importance Approximation

Next, we compare the quality of the Fourier-based importance ap-
proximation G(d) in Section 3.2 with the ground truth computation
of the importance using fragment linked lists as done by Giinther
et al. [23]. To clearly separate the importance computation from
all other subsequent steps (especially the smoothing), we directly
visualize the resulting fragment opacities in Eq. (10) using fragment
linked lists. This means that no subsequent smoothing via segment
binning, iterative Laplacian smoothing or per-vertex interpolation
take place. The results in Fig. 6 show that the Fourier approximation
of the importance sum G(d) leads to slightly brighter or darker
fragments than in the linked list approach. This error, however, is
small, indicating a sufficiently good approximation while achieving
a performance speed-up. We refer to the additional material for
more comparison examples.

5.3 Comparison with Blending Approximations

The rendering of transparent geometry with methods based on
fragment linked lists [62] or ones that require many render
passes [4] are not practical for scenes with large depth complexity.
Common real-time approximations such as weighted average by
Bavoil and Myers [4] and its extension with a correct background
transmittance by McGuire and Bavoil [44] are fast, but lack visual

t=2.85ms SSIM = 0.990
Fig. 6: Comparison of the importance approximation using our
method with decoupled opacity optimization [23], showing the
RMSE, the SSIM index and the GPU render time (t) for the same
energy weights in the TORNADO (g = 60, r = 500, A = 2) data
set. Segment opacity computation via atomic min and per-segment
smoothing (end of step 2 and step 3 of Section 4.2) are skipped
and transmittance is computed using linked lists in both cases.

quality. We propose a blending based on Fourier approximations
of the optical depth, which is a scalable middle ground between
the coarse (and fast) approximations and the exact (and slow)
calculations. For an equal-memory consumption test, we also
compare our method with a binning approach that approximates
7(d) for each pixel with 11 bins along the view ray. When sampling
7(d), we linearly interpolate between the bins. See the additional
material for more results and a comparison with piecewise constant
bins. In Fig. 7, we show from left to right a reference solution
using fragment linked lists by Yang et al. [62], the weighted
averaging of Bavoil and Meyers [4], the extension of McGuire and
Bavoil [44], the binning approach and our Fourier-based method.
The top row depicts magnetic field lines of a topological decay
simulation. The bottom row shows stream surfaces winding around
a synthetic tornado. In both cases, our method preserves the layer
order better than the other approximate techniques. The binning
approach exhibits large errors at bin boundaries and cannot resolve
the order within bins. Jansen and Bavoil [27] similarly observed
that Fourier approximations achieve better quality than binning
methods in the context of shadow computations. See the additional
material for a repetition of Fig. 7 with m = 2 bands.

5.4 Comparison with Decoupled Opacity Optimization

Finally, we perform an end-to-end comparison of our complete
method, using both Fourier approximations, compared with the
linked list-based decoupled opacity optimization of Giinther et
al. [23], which is the reference solution that our method aims
to approximate. Fig. 8 left compares our approximated images
qualitatively and quantitatively, using the root-mean-square error
(RMSE) and the structural similarity index (SSIM) [58], using
surfaces in the wake turbulence of a DELTA WING. Further
comparisons between the two methods using point and line
geometry are provided in the additional material. We approximate
the reference with almost imperceptible differences, which is also
shown by the SSIM metric for all examples.

5.5 Parameter Study
5.5.1 Number of Coefficients

The number of frequency bands m used in the function approx-
imation directly affects the quality of the reconstruction. Fig. 9
shows the approximation of function G(d) at two different pixels
of the BFS data set for varying number of bands m. As the number
of bands increases, the approximation gets closer to the reference
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Yang et al. [62]
,eierence)

Binning approach

Bavoil and Myers [4]  McGuire and Bavoil [44]

&\‘\.

i

SSIM = 0.983, RMSE =
0.015,r =2.44ms

SSIM = 0.961, RMSE —
0.041,t =2.43ms

SSIM = 0.995,
0.008, t =3.9ms

SSIM = 0.987, RMSE =
0.018, ¢t =3ms

MSE =

SSIM = 0.931, RMSE =
0.017,t =2.18ms

SSIM = 0.932, RMSE =
0.016,t =2.18ms

SSIM = 0.987, RMSE =
0.019, t =2.30ms

Fig. 7: Comparison of multiple blending approximations, from left to right: fragment linked lists (reference solution) by Yang et al. [62],
weighted averaging by Bavoil and Myers [4], the extension with exact background term by McGuire and Bavoil [44], binning of 7(d)
into 11 bins, and our Fourier-based method. The rows show the TREFOIL (top, ¢ = 50, r = 500, A = 2) and the TORNADO (bottom,
q =10, r =500, A = 2) data sets. We list the structural similarity index (SSIM), the root-mean-square error (RMSE) and the GPU render
time (¢) in ms for each data set. Bavoil and Myers [4] always require 19 MB of storage on a 1000 x 1000 pixel resolution and McGuire
and Bavoil [44] need 23MB. While all are faster than our method, they cannot retain the order of fragments, which makes a correct
perception of the layer order impossible. This is especially noticeable with colored fragments. The binning method shows artifacts at bin
boundaries that are specially noticeable for large depth domains (see additional material). Our method, on the other hand, approximates
the depth-dependent transmittance better and resembles the reference more closely, as shown in the zoom-in images.

SSIM = 0.997, RMSE =
0.003, t =3.43ms

5.5.2 Discretization
our method

reference [23]
For the object-space smoothing of opacities, we discretize the
lines into 20k — 150k equally-sized segments and the surfaces into
roughly 500 equally-sized patches. We refer to Giinther et al. [20],
[22] for the implementation details of the discretization and also
for visualizations using varying numbers of segments and patches.
Note that in the object-space optimizations for lines [20], [21]
and surfaces [22], the number of elements had a direct impact on
the runtime of the optimization. With the pixel-based decoupled
optimization [23] and in our Fourier-based approach, this is no
longer the case, since the discretization only affects the subsequent
smoothing. If more line segments or surface patches are used, the
opacity can adapt more locally.

SSIM = 0.997
Fig. 8: Comparison with decoupled opacity optimization [23],
showing RMSE, SSIM index and GPU render time (t) for the same
energy weights in the DELTA WING (¢ = 50, r =10, A = 2).

t=2.75ms

t =3.6ms

solution. We observed that using more than 5 bands does not

significantly improve the quality, which is also evident in the
coefficient plots in Fig. 9b by the small contribution of higher
frequency bands. Thus in all examples, we used m = 5 frequency
bands to approximate G(d) and 7(d). This means we calculate the
coefficients ap, a; and b; for i € {1, ...,5}, which we store in three
RGBA float render targets. See Fig. 10 for a visual comparison of
different numbers of bands in the TREFOIL data set.

5.5.3 Subset for Fourier Approximation

As shown in Section 5.6, our method is mainly bounded by
overdraw. In dense scenes, such as the DARK SKY simulation,
the Fourier approximation maps can be constructed by using only
a fraction % of the full data set, as long as it is representative for
the importance and opacity distribution in the full scene. Note
that in the final rendering pass, still the entire geometry is shown,
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contribute less than 5% to the reconstructed signal.

Fig. 9: Fourier approximations of the squared importance sum G(d)
for different numbers of Fourier frequency bands m at two pixels
(important and context) of the BFS data set.

thus relevant information is not skipped. Fig. 11 shows the speed-
up that is obtained when using a point subset for the Fourier
approximations. The important structures (the star clusters of the
cosmic web) remain visible, while only the visibility of the blue
context is gradually reduced. Thus, when skipping too much (large
n), unimportant parts are lost. We refer to the additional material
for zoom images and additional results on another data set.

5.5.4 Energy Weights

The weights g, r, and A of the energy in Eq. (10), as well as the
smoothing iterations s, determine how clear the important structures
are displayed. Fig. 12 shows a typical workflow of the parame-
ter adjustment, which is consistent with the decoupled opacity
optimization [23]. Given is a cluttered view with fully opaque
geometry. When increasing the g-term in Eq. (1), unimportant lines
(in blue) that are directly in front of important lines (red) become
transparent. The A exponent emphasizes the important lines. The
r-term removes background clutter and finally, the opacities are
iteratively smoothed, as in the decoupled opacity optimization [23].
We always use s = 15 smoothing iterations by default. Throughout
the paper, the energy weights are listed in the captions. For more
examples of varying parameters, we refer to Giinther et al. [23].

5.5.5 Importance

The importance is the main tool to declare which structures are
relevant and should be visible. What may be considered important
depends on the application and the analysis task. Thus, we do not
prescribe any particular measure. The user-defined importance can
be based on geometric properties (size, curvature), information

SSIM = 0.959, RMSE — 0.036,
m=1,t=3.0ms

= ! == .3 !
SSIM = 0.975, RMSE = 0.032,  SSIM = 0.984, RMSE = 0.027,
m=3,t=3.1ms m=>5,t=4.3ms
Fig. 10: Results for varying number of bands m in the TREFOIL
data set (¢ = 50, r =500, A =2, s = 0). When decreasing the
number of bands, the approximated functions get smoother and
are unable to represent strong importance changes as shown in the
middle of the magnetic rings, where unimportant lines (blue) that
are very close to important lines (red) are not transparent enough.

F o :

o> 35, 117.5ms 135, 106.7ms
Fig. 11: Results and total time when using varying subset sizes for
the construction of G(d) and 7(d) in the DARK SKY, for g = 100,
r =20, A = 1.3. While the importance of the context is increasingly
underestimated, the important structures remain visible.

all,395.6ms 1 132.8ms 4

theory (linear and angular entropy), statistics (directional variance)
or application-specific properties (vorticity, distance to domain
boundary). It can also prioritize certain types of geometry as in
Fig. 6, where points have a higher importance than lines.

5.6 Performance

In this section, we measure and discuss the performance, memory
consumption and complexity of our method and compare it with the
decoupled opacity optimization [23]. All timings were measured
on an Intel Core 17-4790K CPU with 4 GHz and 32 GB RAM, and
an NVIDIA Quadro P6000 GPU.

5.6.1 Runtime and Memory

Table 1 shows the comparison of the total GPU time needed with
the decoupled approach and with our method. In previous work,
the optimal opacity and the final compositing were computed
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Decoupled OO [23] Fourier Opacity Optimization
Data set Figure Resolution VRAM (bytes)  Total (ms) | Total (ms) 1 2 3 4 5.1 5.2
DARK SKY Figs. 1 (right), 11 1000 x 1000 | 1°345°156°752 1065 106.71 5.5 28.2 1 6.17 65.8 0.04
’ 1500 x 1500 - - 192.2 575 506 1.17 6.08 127 1.6
BENZENE Fig. 5 (top) 1000 x 1000 552°823’360 145 16.94 1.51 215 0.14 7.6 5.43 0.11
1500 x 1500 - - 54.98 8.61 6.7 0.14 256 1375 0.18
VIscous Fig. 4 (bottom) 1000 x 1000 4407842192 346 12.62 126 331 0.06 1.15 6.8 0.04
CBTL Fig. 4 (top) 1000 x 1000 239°874°688 245 14.55 1.6 3.1 0.12  1.28 84 0.05
BFS Figs. 3,9 1000 x 1000 149°219°232 65.05 16.58 2.18 1.6 014 7.8 4.8 0.06
DT-MRI Fig. 1 (left) 1000 x 1000 99°636°592 43.5 10.13 1.7 0.65 0.09 5.12 2.5 0.07
HELICOPTER | Additional material | 1000 x 1000 36°725’664 6 2.62 032 0.31 0.03 1.15 424 0.11
ICON Fig. 5 (bottom) 1000 x 1000 44°363°840 60 14.19 2.63 282 037 4.02 0.5 0.06
TREFOIL Figs. 7 (top), 12 1000 x 1000 34°122°416 43 39 0.58 025 0.09 191 0.95 0.12
TORNADO Fig. 7 (bottom) 1000 x 1000 24°201°104 5.5 1.46 022 0.11 012 058 036 0.07
ECMWF Additional material | 1000 x 1000 20590384 22.8 2.03 0.3 0.15 0.05 096 048 0.09
DELTA Fig. 8 1000 x 1000 11570864 3.6 2.75 0.6 0.7 0.15 0.6 0.6 0.1

TABLE 1: Runtime in ms and memory consumption for the decoupled opacity optimization [23] and our method. Our method always
operates with 46 MB to approximate a function with 5 bands for a resolution of 1000 x 1000 pixels, and with 103 MB at 1500 x 1500
pixels. The steps are: (1) projection of importance to Fourier, (2) optimal opacity by sampling Fourier maps, (3) per-vertex opacity
smoothing and interpolation, (4) projection of opacity to Fourier, (5.1) accumulate colors using optical depth from Fourier maps, (5.2)
normalization and compositing with background. The bottleneck is printed bold.

S AR S O\ :;w,:" \’\
ant (d) Reduce (e) Smoothing
clutter r =500 s = 15

26 X\ o 215 N AN
(a) Opaque ge- (b) Reduce oc-(c) Impo
ometry clusion ¢ = 50 lines A =2

Fig. 12: Examples for varying energy terms in the TREFOIL data
set. From left to right, we subsequently add one term to the energy
minimization with final weights ¢ = 50, r =500, A =2 and s = 15.

by sorting all rasterized fragments by depth. The storage and
sorting of all fragments introduced a bottleneck in the render
time and exhausted memory on large data. For instance, the
DARK SKY simulation used 1.25GB of the allocated memory
pool to store the rasterized fragments. By using the two Fourier
approximations, the computations are up to 10x faster and avoid
memory problems, since we only need to store the coefficients
of the approximated functions, which are bound to 46 MB for
m =5 bands at 1000 x 1000 pixels. For two data sets, we also
show the runtime at higher resolution (1500 x 1500), where the
previous method [23] runs out of memory. For our approach, we
list detailed measurements for each pipeline step, described in
Section 4, indicating the bottleneck in bold letters, which was
in almost all cases either the approximation of t(d) or the final
compositing of all fragments. This is because these render passes
are done at full resolution, while the importance approximation is
computed at half resolution. The video displays the performance
statistics during camera navigation, showing that the performance
depends as expected on the pixel fill rate due to the rasterization.

5.6.2 Time and Space Complexity

Both the approximation of the importance sum G(d) (Section 3.2)
and the optical depth 7(d) (Section 3.3) have a time complexity of
O(nm), where n is the number of fragments per pixel and m is the
number of bands used in the Fourier series. No serialization and
no unordered memory accesses are required and the approximation
can be accelerated by using subsets of the geometry, as done for
the DARK SKY (1/100), the VISCOUS FINGERS (1/30) and the cloud
topped boundary layer CTBL (1/100). Existing methods for the
rendering of transparent geometry are either very approximate [4],

[46] (they do not preserve depth information, which is a strong
limitation for visualization purposes) and therefore require only
O(n) in time, or they compute a ground truth solution which
requires n render passes [4], [17] or the creation and full sorting
of fragment linked lists [10], [62], which is at O(nlogn). The
latter requires serialized memory accesses during the linked list
construction and a large number of unordered memory accesses
during the sorting, which is not optimal for a GPU implementation.
Further, the ground truth solution has an unbound space complexity
of O(n), whereas we only need O(m) for a small constant m,
making it possible to render large scenes. By adjusting the number
of frequency bands m, our method is a scalable middle ground
between existing approximate solutions and ground truth solutions.

5.7 Discussion
5.7.1 Approximation Artifacts

The Fourier approximation of a high-frequency signal with only
few bands results in a coarse approximation with potential ringing
artifacts. This might become noticeable whenever sudden impor-
tance changes are exhibited along the view ray. In these cases, our
method can underestimate or overestimate the values surrounding
the change in the approximated function. Fig. 10 shows an example
of the possible artifacts introduced by the approximation. A poor
approximation of the importance can lead to visible unimportant
lines (in blue) that are too close to important lines (in red) therefore
receiving an incorrectly high opacity. These artifacts are often
reduced by the subsequent object-space smoothing, as can be seen
in the additional material for a version of Fig. 7 with only m =2
bands. Overall, for a sufficiently high m our results are visually
indistinguishable from the reference solution [23], since the human
perception is not sensitive to subtle changes in transparency, which
comes to our advantage as it allows for approximations. When
using only a subset of the data (Section 5.5.3), artifacts in the form
of faded context geometry can also occur. Close-ups of this effect
can be seen in the additional material.

5.7.2 Decay Rate of Coefficients

In general, the rate at which the magnitude of the Fourier
coefficients decays is related to the smoothness of the function
to approximate [59]. Our changes in the transparency, modeled
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as Dirac functions, become a piece-wise constant function after
integration. Since F(d) has discontinuities, the rate of decay in
the k'"-Fourier coefficient is proportional to % [49]. As shown in
Section 2.3.1, it can be seen by Eq. (5) that the terms a; and by
even decay at a rate of ﬁ and thus, components for £ > 5 have a
magnitude of about 5% or less compared to ag. Throughout our
experiments, we found that it is safe to set n > m. As shown in
Fig. 9, increasing m does not noticeably improve the quality.

5.7.3 Transparency Issues

Our optimization is image-based and therefore only adjusts the
opacity of the content that is visible on the screen, keeping the
invisible parts opaque. During camera navigation, the additional
temporal smoothing can cause the previously clipped geometry to
appear opaque before its transparency is adjusted. Alternatively,
it would be possible to initialize the geometry as invisible or to
internally enlarge the viewport and thus conservatively adjust the
opacity of nearby off-screen elements as well. Another known
visual issue with faded transparencies is that it can be confused
with depth cueing. Possible ways to side step the problem include
the addition of visual cues such as halos [9] or to modulate the line
width [29]. In our work, we implemented depth-dependent halos
of Everts et al. [18] to indicate line crossings.

6 CONCLUSIONS

The interactive exploration of large scientific data is essential
to advance research in numerous scientific disciplines, including
meteorology, health science, astrophysics and many more. We
introduced a general opacity optimization algorithm that enables an
interactive, view-dependent and frame coherent navigation through
large data sets, containing points, lines and surfaces. For this,
we computed Fourier approximations of the accumulated squared
importance and the optical depth in an order-independent and
memory-bound way, which are needed to compute the optimal
fragment opacity and to blend the transparent layers. With our
method, occlusion is avoided and relevant objects are made visible.

In the future, we extend our method to time-dependent
data, which requires fast geometry subdivision for object-space
smoothing. In addition, we would like to explore the automatic
placement of geometry during the navigation, which will allow for
an unlimited level of detail, instead of using precomputed geometry.
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