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1 FURTHER RESULTS

In the following, we provide further examples of the comparisons
shown in the main paper.

1.1 Comparison of Importance Approximation

In Section 5.2 of the main paper, we concentrated on the approxima-
tion of the importance sum using Fourier series. To isolate the effect
of the importance approximation from the subsequent smoothing
steps, we directly displayed the fragment opacities without any
object-space smoothing. Fig. 1 shows more results.

1.2 Comparison with Blending Approximations

In Section 5.3 of the main paper, we compared multiple blending
approximations with each other. Fig. 2 shows another example of
a HELICOPTER in forward flight close to the ground. Close-ups
of the front vortex and the wake turbulence show that our method
preserves the order of lines best.

1.3 Comparison with Decoupled Opacity Optimization

In Section 5.4 of the main paper, we compared our method with
decoupled opacity optimization [2], where we show results of
the complete pipeline. Fig. 5 adds two more examples for the
TORNADO and the ECMWF data set.

1.4 Subset for Fourier Approximation

In Section 5.5.3 of the main paper, we showed that it is possible
to use a small percentage of the entire geometry, that is, a subset
1
n of the data, to approximate the coefficients for the squared
importance approximation without losing important structures in
the visualization. Fig. 3 shows a close-up of the effect that the
skipping of points can produce, here in the DARK SKY simulation
and the VISCOUS FINGERS data sets. The larger n, the more
the context geometry (blue) fades away. Note, however, that the
important constellation network (red) is still always visible.

2 ADDITIONAL EXPERIMENTS

To shed further light on the behavior under more restricted
parameter constraints, we performed two additional experiments.
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Fig. 1: Further comparisons of the importance approximation
between our method and decoupled opacity optimization [2],
showing the RMSE, the SSIM index and the GPU render time
(t) in ms for the same energy weights in the TREFOIL (q = 50,
r = 200, λ = 2), DT-MRI (q = 300, r = 200, λ = 0.26) and
CTBL (q = 100, r = 500, λ = 3) data sets. The segment opacity
computation via atomic min and the per-segment smoothing (end
of step 2 and step 3 of section 4.2 of the paper) are skipped. In
both cases, the transmittance is computed directly using fragment
linked lists.

2.1 Restricted Time Budget

In Section 5.3 of the main paper, we compared our method with
other color blending approximations [1], [3] that are faster than
our method. Our method, however, achieves better results due to
the additional representation of the depth order. Still, our method
would be slower if the number of bands m is set to a very small
number (1 or 2), which might give unsatisfactory results due to the
coarse depth approximation. We found that using m = 5 is a good
trade-off between performance and accuracy. Using this number in



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2
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Fig. 2: In this figure, we show an additional comparison of multiple blending approximations, from left to right: fragment linked lists
(reference solution) by Yang et al. [4], weighted averaging by Bavoil and Myers [1], the extension with exact background term by
McGuire and Bavoil [3], binning of τ(d) into 11 bins, and our Fourier-based method. Here, the HELICOPTER (q = 10k, r = 6k, λ = 0.38)
data set is shown. We list the structural similarity index (SSIM), the root-mean-square error (RMSE) and the GPU time (t) in ms for each
data set. All other methods are faster than our method, but ours retains the order of fragments best, as shown in the zoom-in images,
which makes a correct perception of the layer order possible and results in the lowest approximation errors.

all, 395.6ms all, 32.2ms
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Fig. 3: Results and total GPU render time when using varying subset sizes for the construction of G(d) and τ(d) in the DARK SKY (left,
q = 100, r = 20, λ = 1.3) and the VISCOUS FINGERS data set (right, q = 100, r = 500, λ = 3). While the importance of the context is
underestimated when using only a subset of the geometry, the important structures always remain visible.

the experiments in the main paper, showed the advantages of using
our method (correct perception of layer order) compared with faster
but too simple previous methods. There might be cases where the
user has a restricted time budget and would prefer to drastically
lower the number of bands. In order to provide an intuition of
how our method would behave, Fig. 6 shows a repetition of the
experiment in the main paper using only m = 2 frequency bands
in the Fourier series. Note that visually, it is difficult to perceive
the difference, and the most noticeable effect is a slight increase or
decrease of transparency in the geometry due to the low-frequency
approximation, which leads to a decrease of the SSIM and an
increase of the RMSE.

2.2 Binning approach

For the binning approach shown in Section 5.3 of the main paper,
we used a linear interpolation between the bins to approximate τ(d).
For completeness, Fig. 4 shows a comparison of the results when
using piecewise constant bins or linear interpolation. The piecewise
constant approach results in very noticeable depth discontinuities
at the bin boundaries, which are very apparent during camera
navigation.

3 PROOF OF NORMALIZATION

To cope with overshooting and undershooting in the Fourier approx-
imation of the optical depth τ(d), we introduced a normalization in
the main paper in Eq. (19) that is based on the following theorem.
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linear interpolation between bins

SSIM = 0.987, RMSE = 0.018

SSIM = 0.899, RMSE = 0.047

SSIM = 0.987, RMSE = 0.019

piecewise constant bins

SSIM = 0.984, RMSE = 0.019

SSIM = 0.800, RMSE = 0.074

SSIM = 0.959, RMSE = 0.024

Fig. 4: Comparison of results using the binning approach with
linear interpolation (left) or piecewise constant bins (right) for
the approximation of τ(d). The piecewise constant approximation
leads to noticeable artifacts at bin boundaries.

Theorem 1. For any n ∈ N: ∑
n
i=1

αi
1−αi

e−τ(di) = 1− e−τ(1) .

Proof. By Eqs. (14) and (18) of the main paper, Theorem 1 is
equivalently expressed as:

n

∑
i=1

αi

i−1

∏
j=1

(1−α j) = 1−
n

∏
i=1

(1−αi) (1)

The equivalence of Eq. (1) is shown by induction. For the base
case n = 1, we have α1 = 1− (1−α1), which is true. Assuming
that Eq. (1) holds up to n, we show that it holds for n+1, i.e.:

n+1

∑
i=1

αi

i−1

∏
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(1−α j)
!
= 1−

n+1

∏
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(1−α j) (2)

First, the left hand side of Eq. (2) is split:

n+1
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i−1

∏
j=1

(1−α j) =
n

∑
i=1

αi

i−1
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∏
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Fig. 5: Further comparisons with decoupled opacity optimiza-
tion [2], showing RMSE, SSIM index and GPU time in ms for the
same energy weights in the TORNADO (q = 60, r = 500, λ = 2)
and ECMWF (q = 400, r = 50, λ = 4) flow.

Next, we insert the inductive hypothesis, i.e., Eq. (1), into Eq. (3):

n+1

∑
i=1

αi

i−1

∏
j=1

(1−α j) = 1−
n

∏
j=1

(1−α j)+αn+1

n

∏
j=1

(1−α j) (4)

By factoring out ∏
n
j=1(1−α j) on the right of Eq (4) we obtain:

n+1

∑
i=1

αi

i−1

∏
j=1

(1−α j) = 1− (1−αn+1)
n

∏
j=1

(1−α j) (5)

which is equivalent to Eq. (1) after joining (1−αn+1) into the
product:

n+1

∑
i=1

αi

i−1

∏
j=1

(1−α j) = 1−
n+1

∏
j=1

(1−α j)
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Yang et al. [4] (reference) Bavoil and Myers [1] McGuire and Bavoil [3] Binning approach Our method
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Fig. 6: In this figure, we compare multiple blending approximations with each other, from left to right: fragment linked lists (reference
solution) by Yang et al. [4], weighted averaging by Bavoil and Myers [1], the extension with exact background term by McGuire and
Bavoil [3], binning of τ(d) with 3 bins (equal-memory comparison to our method) and our Fourier-based method using only m = 2
frequency bands. The rows show the TREFOIL (top, q = 50, r = 500, λ = 2), the HELICOPTER (middle, q = 10k, r = 6k, λ = 0.38) and
the TORNADO (bottom, q = 10, r = 500, λ = 2) data sets. We list the structural similarity index (SSIM), the root-mean-square error
(RMSE) and the GPU time (t) in ms for each data set.


