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Fig. 1: We propose two orthogonal strategies to accelerate the rendering of Monte Carlo-based visualizations of finite-time Lyapunov
exponent fields: (1) gradient domain rendering for single-scattered participating medium and (2) an acceleration of the light
transmittance estimator. For the latter, we propose (2a) a joint estimator that combines ratio tracking [38] with a pre-computed
Fourier approximation of the transmittance and (2b) a pure Fourier approximation of the transmittance. The above visualizations
compare the method of Günther et al. [17] with our two new approaches after rendering for 75 seconds for the MIXER data set.

Abstract— Time-dependent fluid flows often contain numerous hyperbolic Lagrangian coherent structures, which act as transport
barriers that guide the advection. The finite-time Lyapunov exponent is a commonly-used approximation to locate these repelling
or attracting structures. Especially on large numerical simulations, the FTLE ridges can become arbitrarily sharp and very complex.
Thus, the discrete sampling onto a grid for a subsequent direct volume rendering is likely to miss sharp ridges in the visualization. For
this reason, an unbiased Monte Carlo-based rendering approach was recently proposed that treats the FTLE field as participating
medium with single scattering. This method constructs a ground truth rendering without discretization, but it is prohibitively slow with
render times in the order of days or weeks for a single image. In this paper, we accelerate the rendering process significantly, which
allows us to compute video sequence of high-resolution FTLE animations in a much more reasonable time frame. For this, we follow
two orthogonal approaches to improve on the rendering process: the volumetric light path integration in gradient domain and an
acceleration of the transmittance estimation. We analyze the convergence and performance of the proposed method and demonstrate
the approach by rendering complex FTLE fields in several 3D vector fields.

Index Terms—Scientific visualization, Monte Carlo, feature extraction, finite-time Lyapunov exponents, gradient domain, Fourier

1 INTRODUCTION

For the analysis of large and complex time-dependent vector fields,
feature extraction is among the most promising approaches [42, 43],
as it allows the user to focus on the relevant aspects of the data. The
extraction of features from time-dependent vector fields is still a chal-
lenging and open research problem, both in terms of the definition of
suitable features as well as in their efficient extraction [18]. Hyperbolic
Lagrangian coherent structures [20] are among the most commonly-
observed features for the analysis of the Lagrangian transport behavior
of time-dependent vector fields. A common approximation is the
finite-time Lyapunov exponent (FTLE) [19, 48], which measures the
separation of nearby-released particles by estimating the so-called flow
map gradient. Ridges in this scalar field represent transport barriers
that give order and structure to the flow and thus FTLE fields found
numerous applications and improvements [3, 13, 16, 26, 47, 54]. Since
FTLE is a Lagrangian approach, its computation is rather expensive, as
it requires the tracing of multiple particle trajectories. Aside from the
computational effort involved in the determination of the FTLE value
and its ridges, another great challenge arises: FTLE ridges may become
arbitrarily thin for long integration durations. Shadden et al. [48] have
shown that well-defined ridges minimize the flux across the ridge better
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than poorly defined ridges, and thus sharp ridges are of most interest
when analyzing material separation with FTLE fields. The rendering of
those sharp ridges is challenging, since traditional ray casting methods
suffer two problems. First, the discretization onto a regular grid for
subsequent direct volume rendering can result in visually noticeable
discretization errors and color biases. Second, the step size discretiza-
tion during ray marching can also cause heavy aliasing. The artifacts of
ray casting-based approaches have previously been shown by Günther
et al. [17]. Methods have been proposed to adaptively approximate the
flow map gradient in a hierarchical data structure [3, 47]. The main use
case was interactive exploration and thus quality was sacrificed for per-
formance [3, 4]. If an accurate solution is required, these methods are
unbound in their memory consumption. In order to obtain a high-quality
visualization that avoids grid discretization and ray marching errors,
a conceptually different visualization approach is required, which led
Günther et al. [17] to the use of a Monte Carlo rendering approach. They
formulated the FTLE rendering as a single scattering light transport
problem in a participating medium, which is well-studied in the context
of neutron transport [55], plasma physics [49], recently in computer
graphics for offline light transport in movie production [33, 38, 51–53]
and for scientific visualization [29]. The benefits of Monte Carlo meth-
ods over ray marching have been demonstrated for instance by Yue et
al. [56]. Günther et al. [17] estimated the free-flight distance of photons
to determine scattering locations as well as the transmittance inside the
medium by using a technique called delta tracking [55]. This technique
is unbiased, which means that, given a sequence of n measurements
Mi with i ∈ {1, ...,n} that try to match the unknown quantity Q, the
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expected value of the error Mi−Q is zero. The computation of this
Monte Carlo rendering approach is rather slow, as the rendering of a
single noise-free image may require multiple days.

The goal of our paper is to accelerate Monte Carlo FTLE rendering
in order to make it applicable to the GPU-based offline rendering of
animations, including camera animation, slicing through the data and
time animations. In principle, there are two strategies to accelerate
the computation: either by a flow map approximation (which intro-
duces bias) or by improving the radiance integration. In this paper, we
accelerate the convergence of the rendering side using two different
strategies. First, we extend gradient domain rendering [27,34] to single
scattering in a participating medium. Gradient domain rendering is a
recent denoising technique that estimates not only pixel colors but also
their screen-space derivatives. Both are combined through an optimiza-
tion to reconstruct the image that best explains the estimated colors
and gradients. When reconstructing under the L2 error norm, gradient
domain rendering is unbiased. Second, we investigate accelerations of
the transmittance estimate from the light source. Thereby, we consider
a wide spectrum from the unbiased ratio tracking of Novák et al. [38]
to the approximation of the transmittance using a continuous version of
the Fourier opacity maps of Jansen and Bavoil [24]. Based on the two
above, we propose a joint transmittance estimator that starts with ratio
tracking and heuristically switches to a Fourier approximation to speed-
up the calculation and to reduce variance. In summary, we propose
three technical contributions to the Monte Carlo FTLE rendering:

1. An extension of gradient domain rendering to single scattering.

2. A pure Fourier approximation of the light transmittance, which is
fast but potentially introduces large shading bias.

3. A joint transmittance estimator that combines ratio tracking with
a Fourier approximation, which heuristically bounds the error.

The resulting algorithms allow us to render high quality video sequences
of Monte Carlo FTLE visualizations achieving the same quality error on
a single GPU about 8× faster than previous work. Fig. 1 demonstrates
the techniques after 75 seconds at a small preview resolution of 350×
364 pixels. While the visualization of Günther et al. [17] is still noisy,
our methods show detailed ridges.

2 RELATED WORK

This paper combines concepts from two different research areas, namely
scientific visualization and physically-based volumetric light transport.
In the following, we discuss the relevant concepts in more detail.

2.1 Finite-Time Lyapunov Exponents
Lagrangian Coherent Structures. In flow visualization, feature

extraction methods can be divided into Eulerian and Lagrangian tech-
niques [18]. The Eulerian techniques consider a single time slice only,
which gives a transient impression of the flow behavior at a certain
moment in time. Lagrangian techniques, on the other hand, observe par-
ticles over time and thereby consider the advection of the flow, which
gives a better view onto the temporal evolution. The Lagrangian per-
spective leads to the definition of material lines (sets of particles) that
behave coherently over time. Haller [20] gave a recent review of the
three types of Lagrangian coherent structures (LCS), which are elliptic
(vortex boundaries), parabolic (jet cores) and hyperbolic (separating
structures). We refer to Onu et al. [39] for a discussion of various LCS
extraction techniques.

Finite-Time Lyapunov Exponents. A frequently-used approxi-
mation to the hyperbolic Lagrangian coherent structures is the finite-
time Lyapunov exponent (FTLE), which measures the separation of
nearby-released particles. The ridges of this scalar field form transport
barriers that particles do not cross [19, 21], which found numerous
applications in predicting ocean pollution, spread of algae in water cur-
rents and the feeding of jellyfish [20]. The FTLE field can be described
by the flow map φ τ

t (x), which maps a particle seeded at location x at
time t to the location it reaches after advection for duration τ . The

spatial gradient of the flow map ∇φ = ∂

∂x φ τ
t (x) characterizes the be-

havior of nearby-released particles. The largest separation of particles
is approximated by the largest eigenvalue of the right Cauchy-Green de-
formation tensor ∇T∇. By considering the integration duration and the
exponential separation, the finite-time Lyapunov exponent is defined
as, cf. Haller et al. [19, 21]:

FT LE(x, t,τ) =
1
|τ|

ln
√

λmax(∇T∇). (1)

To compute FTLE, we use central differences to estimate the flow map
gradient, as suggested by Haller and Yuan [21]. Other approaches
include localized FTLE by Kasten et al. [26] and timeline cell tracking
by Kuhn et al. [30]. We refer to Kuhn et al. [31] for a benchmark
comparison.

Approximations. The FTLE computation is usually rather expen-
sive, as it requires the tracing of many particle trajectories. Thus,
several approaches have been researched to speed up the process. One
approach is to employ adaptive refinement of the flow map. For in-
stance, Garth et al. [13] used Catmull-Rom interpolation, Sadlo et
al. [47] observed filtered height ridges and Barakat and Tricoche [4]
refined around automatically detected geometric structures. Another
thread of research is the acceleration of particle tracing, which also
benefits FTLE computations by concatenating intermediate flow maps
via interpolation and reducing redundant particle integrations [6], using
hierarchical line integration [22], interpolation methods [1, 9] or edge
maps [5]. Barakat et al. [3] implemented a hybrid visualization system
to compute 3D FTLE fields interactively by interleaving the rendering
and the view-dependent adaptive refinement of a hierarchical FTLE
data structure. The method is bound by the available memory and, as it
is based on ray marching, always contains discretization errors.

Interpretation of FTLE as Participating Medium. Depending
on the integration duration, the FTLE field can contain extremely thin
structures, which makes a discretization impractical. For this reason,
Günther et al. [17] developed a Monte Carlo method that renders FTLE
fields without the discretizations introduced by a grid or the finite step
sizes during ray marching. They used transfer functions to map the
FTLE value to color c and extinction σt , which casts the direct volume
rendering into a light transport problem in participating medium. Albeit
they used acceleration data structures, the rendering time for a single
high-resolution image was in the order of days. There are two ways to
improve the performance: approximating the flow map, which intro-
duces bias and errors, and improving on the rendering side to increase
the convergence rate, which we concentrate on this paper. For this,
we extend gradient domain rendering [27, 34] to single-scattered light
transport in participating medium, and we propose two different ap-
proaches to reduce the variance of the transmittance estimation, namely
a pure continuous version of the biased Fourier opacity mapping [24],
which is fast but may contain illumination bias, and a combination of
the unbiased ratio tracking [38] with the Fourier-based approximation
to bound the error.

2.2 Light Transport in Participating Medium

The following section briefly introduces the unbiased rendering of
heterogeneous participating medium. See Fig. 2 for an overview.

Volume Rendering Equation. We cast the rendering of the FTLE
scalar field as volumetric light transport problem. The radiative transfer
equation [7,25] describes the radiance L that arrives at location x on the
sensor pixel of the viewport under the direction ~ω , which is integrated
by collecting all in-scattered light Li along the view ray xs = x+ s ·~ω ,
with s ∈ [0,d]:

L(x← ~ω) =
∫ d

0
Tr(x↔ xs) σs(xs) Li(xs← ~ω) ds. (2)

Thereby, σs is the scattering coefficient that describes the amount of
light being scattered per unit travel distance. At all scattering locations
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Fig. 2: Illustration of single-scattered light transport in participating
medium showing the entry and exit distance dmin and dmax, the view
ray (direction ~ω) and a real scattering event (blue) found at xs, where a
transmittance estimate Tr(xs↔ xL) connects to the light point xL.

xs along the view ray, the in-scattered radiance Li is determined, which
accounts for the amount of radiance reflected towards the viewer:

Li(xs← ~ω) = fp(xs, ~ωL→ ~ω) Tr(xs↔ xL) Le, (3)

where the phase function fp models the amount of light that is reflected
at xs from the incoming light direction ~ωL towards ~ω , i.e., the viewer.
Throughout this paper, we will assume an isotropic phase function,
i.e., fp = 1/(4π). Le is the radiance that is emitted by the light source.
Without loss of generality, we assume a directional light.

In both Eqs. (2) and (3), Tr denotes the transmittance between two
points, which accounts for the fraction of photons surviving the journey
between the points. The transmittance is computed from the optical
depth τ(d), which in turn is the integral of the extinction coefficient σt :

Tr = e−τ(d) with τ(t) =
∫ d

0
σt(s)ds. (4)

The extinction coefficient σt = σs+σa describes how much light is lost
per unit travel distance, either by scattering σs or absorption σa. The
ratio between scattering and extinction is usually modeled per color
channel with the scattering albedo c = σs/σt . In our application, both
c and σt are derived via transfer functions from the FTLE value.

Importance Sampling. The volume rendering equation in Eq. (2)
is solved by Monte Carlo integration, which can be accelerated with
importance sampling. In computer graphics, Raab et al. [45] popu-
larized the usage of delta tracking, which was then frequently used
and extended [12, 33, 38, 51–53]. Delta tracking estimates the free
flight distance of a photon in a heterogeneous medium by sampling xs
along the view ray with probability p(xs) = σt(xs) Tr(x↔ xs), which
in turn concentrates the samples in areas of high transmittance and
scattering. Essentially, delta tracking inserts fictitious particles to reach
a homogeneous medium with upper extinction bound, called the majo-
rant extinction σ̄t . It then repeatedly samples the free flight distance in
the homogeneous medium analytically, which creates either virtual or
real scattering interactions that are distinguished by Russian roulette
sampling. Upon virtual interactions, the photon continues until a real
interaction is found. The runtime of the method depends on the tight-
ness of the upper bound, since the average step size in the homogeneous
medium is 1/σ̄t . The sampling can be accelerated by the use of lo-
cal upper bounds stored in kd-trees [56] or by using piecewise linear
or constants bounds [53]. In this work, we use piecewise constant
bounds. For light sources inside the medium, Kulla and Fajardo [32]
applied multiple importance sampling to select between distance and
equi-angular sampling, which is orthogonal to our approach.

Applying delta tracking to compute scattering locations xs in Eq. (2),
and using an isotropic phase function fp in Eq. (3) gives a Monte Carlo
estimate, obtained after n iterations, cf. Günther et al. [17]:

L(x← ~ω)≈ Le

4πn

n

∑
i=1

c(xs) Tr(xs↔ xL), (5)

which only requires the sampling of the color c at xs and an estimate of
the transmittance Tr(xs↔ xL) from xs towards the light source xL.

To reduce the number of extinction samples along the view ray, Kutz
et al. [33] decomposed the medium into an analytic and a residual

part, leading to the weighted decomposition tracking. More recently,
Szirmay-Kalos et al. [52] applied control variates to lower the variance
in multiple scattering. These methods are orthogonal to our work, since
gradient domain rendering can be applied on top for single scattering.

Transmittance Estimation. The remaining ingredient is an esti-
mator of the transmittance Tr(xs↔ xL) from the scattering point xs to
the light source xL. The simplest option is to compute the expected
value of a binary experiment, where photons are repeatedly sent using
delta tracking to test if they reach the scattering point (rated 1) or are
absorbed on the way (rated 0), which was applied by Raab et al. [45],
Szirmay-Kalos et al. [53] and Günther et al. [16, 17]. More recent
techniques include the generalized residual ratio tracking [38, 51], the
(spectral) weighted decomposition tracking [33] and the application of
control variates [52], which all utilize a decomposition of the medium
into a homogeneous and a residual part. The unbiased ratio tracking of
Novák et al. [38] computes the joint probability of a photon to survive
the light transport from the light source to the scattering point.

2.3 Gradient Domain Rendering
Gradient domain rendering is a recent research branch that was initiated
by the seminal work of Lehtinen et al. [34], which was shortly later
expanded by Manzi et al. [36]. In principal, gradient domain techniques
trace additional offset paths for each pixel, which are generated by a
shift operator that reconnects the offset path to the base path as soon as
possible. The offset paths allow for an image-space gradient estimation
with low variance. The image reconstruction then becomes a mini-
mization problem that searches for an image that best explains the base
image and the estimated gradients. By now, most light path integrators
have been extended to the gradient domain, including Metropolis light
transport [34], path tracing [27], bi-directional path tracing [35] and
photon density estimation [23]. Recently, Gruson et al. [15] extended
gradient-domain photon density estimation to volumetric light transport
for homogeneous medium. In the context of FTLE rendering, we apply
gradient domain rendering to heterogeneous participating medium with
single scattering, which had still remained an open challenge.

3 ACCELERATED MONTE CARLO FTLE RENDERING

Our main goal is to enable the efficient rendering of high-quality an-
imations of finite-time Lyapunov exponent visualizations. For this,
we present two acceleration strategies of a recent Monte Carlo-based
renderer [17]. In the following, we outline the resulting algorithm.
Afterwards, we discuss the two proposed strategies: a screened Poisson
reconstruction with a correlated image gradient and the Fourier approx-
imation of the light source transmittance that can be combined with
ratio tracking to heuristically bound the error.

3.1 Algorithm Overview
Our rendering algorithm is based on two building blocks, which are
explained below.

Base Image Construction. For each pixel of the image, we re-
peatedly perform the following steps and average the results per pixel:

• Trace a ray through a random location x, positioned on the sensor
pixel of the camera, in direction ~ω into the scene. Intersect this
view ray with the bounding box of the domain to determine the
entry and exit distance dmin and dmax.

• Determine the scattering location xs by applying delta track-
ing [55]. The delta tracking starts its walk along the ray at distance
dmin and returns upon interaction with a real particle the scattering
location xs and the FTLE value f at this location.

• Map the FTLE value f that was computed at the scattering loca-
tion via transfer function to the scattering albedo cs.

• Estimate the transmittance Tr(xs ↔ xL) from the scattering lo-
cation xs towards the light source position xL. While previous
methods used unbiased Monte Carlo sampling strategies [38, 45],
we propose to use a Fourier approximation of the transmittance,
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which can be combined with ratio tracking [38] to heuristically
bound the error. Our approach is biased, but converges faster.

• Multiply the scattering albedo cs with the transmittance Tr(xs↔
xL) and accumulate the result, see Eq. (5).

The final base image is obtained by multiplying with the emitted ra-
diance Le, the (constant) phase function fp, and by dividing by the
number of Monte Carlo iterations, cf. Eq. (5).

Gradient-based Rendering. The gradient domain rendering in-
cludes the following steps:

• Compute a base image and two additional offset images, using the
algorithm above. Note that the offset images must be correlated
with the base image to yield a gradient estimate with low variance.

• Perform a screened Poisson reconstruction to determine the image
that best explains the base image and the estimated gradients.

3.2 Single-Scattered Gradient Domain Rendering
Gradient domain rendering is a powerful technique to reduce variance,
which is orthogonal to almost all other acceleration strategies, such as
FTLE approximations, free path samplers and transmittance estima-
tors. For single-scattered medium, gradient domain rendering becomes
remarkably simple and straightforward to implement. In principle,
three quantities are approximated by a gradient domain Monte Carlo
integration, i.e., the base image Ib and its gradients Idx and Idy:

Ib
x,y =

1
n

n

∑
i=1

Îx,y(i) , (6)

Idx
x,y =

1
n

n

∑
i=1

Îx+1,y(i)− Îx,y(i) , Idy
x,y =

1
n

n

∑
i=1

Îx,y+1(i)− Îx,y(i) , (7)

where Îx,y(i) is the Monte Carlo estimate at pixel (x,y) in iteration
i. The image-space gradients are estimated by finite differences [44],
which converge over time with increasing number of Monte Carlo
iterations n. Thus, by denoting the finite-difference operators for an
image by Hdx and Hdy, we get:

lim
n→∞

HdxIb
x,y = Idx

x,y , lim
n→∞

HdyIb
x,y = Idy

x,y , (8)

Thus, after an infinite number of Monte Carlo iterations, the finite
differences that are computed from the base image will coincide with
the estimated image-space gradients. This means the estimates of the
base image Ib and the gradient images Idx and Idy explain the same
image and can be combined to derive a better estimate of the image I.

Sample Generation. In each Monte Carlo iteration i, a base path
is traced for each pixel (x,y), which results in a radiance estimate Îx,y(i).
Afterwards, offset rays are generated by a suitable shift mapping to gen-
erate estimates Îx+1,y(i) and Îx,y+1(i). For this, a ray is traced through
the right and upper adjacent pixel. In traditional gradient domain ren-
dering, the offset paths reconnect to the base path as soon as possible,
so that most vertices of the paths coincide [27, 34]. This way, the
estimate of the gradient has low variance. In single scattering medium,
with only one vertex inside the medium, there are no connecting light
paths between the base path and the offset paths. Thus, the correlation
between base path and offset paths only depends on the correlation of
the underlying random number generation during the path construction.
In practice, we render the estimates Îx,y, Îx+1,y and Îx,y+1 with the same
random number generation seed.

Reusing Offset Paths. At first sight, the calculation of the base
image and the gradient estimates requires the tracing of three rays per
pixel (two of them with an offset) with identical random seeds. Since
each pixel uses different random seeds, the cost of a gradient domain
iteration is three times higher than for a traditional rendering of only the
base image. The additionally traced images Îx+1,y and Îx,y+1, however,
can be reused for the base image estimate of the adjacent pixels, i.e.,

for Ix+1,y and Ix,y+1. Thus, every estimate can be used to reduce the
variance of the base image. This means gradient domain rendering has
no overhead compared to the traditional base image rendering, except
for the final reconstruction, which is described in the following.

Screened Poisson Reconstruction. Given an estimate of the
base image Ib, and the estimates of its gradients Idx and Idy, we use
a screened Poisson reconstruction to determine the image I that best
explains all observations [34]:

argmin
I

[∥∥∥∥(Hdx I
Hdy I

)
−
(

Idx

Idy

)∥∥∥∥p

+
∥∥∥α(I− Ib)

∥∥∥p
]
, (9)

where p ∈ {1,2} denotes the utilized Lp-norm and the α-weight in
Eq. (9) determines a compromise between the estimate of the base
image and the estimated gradients. Results of the screened Poisson
reconstruction for different α values can be found in the additional
material. Lehtinen et al. [34] recommended a default value of α = 1,
which we used in the paper.

L1 vs. L2 Norm. While the reconstruction with the L2 norm was
proven to be unbiased [34], a minimization under the L1 norm may
give better results, as it is less sensitive to bright noise spots caused
by low-probability path contributions, known as fireflies. In single-
scattered light transport such artifacts cannot exist, and thus the L1 and
L2 norm give visually indistinguishable results. For the minimization of
Eq. (9), we use the Poisson solver provided by Kettunen et al. [27]. To
minimize under the L1 norm, they use the iteratively reweighted least
squares method (IRLS) to convert the L1 optimization to a series of L2
optimization problems. The L2 minimization can directly be rephrased
using the normal equations, casting it into a standard linear problem,
which is solved using (preconditioned) conjugate gradients. Given that
gradient domain with L2 norm reconstruction is faster, unbiased and
on par with the L1 norm in our light transport problem, we used it in
all our examples. A Delta tracking method (as in [17]), as well as the
ratio tracking of Novák et al. [38], would converge to the same image
after enough iterations, since both approaches are unbiased. Thus, we
used our gradient domain (or ratio tracking) approach to generate the
ground truth images of this paper.

3.3 Fourier Approximation of Transmittance
For every scattering point xs found along the view ray, we have to
estimate the amount of light reaching this scattering point from the
light xL. The ratio of light arriving at the scattering point is expressed
by the transmittance Tr(xs↔ xL), for which we need an estimator.

Motivation. We found that a small bias in the shadows is acceptable
to us if it enables a more efficient computation. Instead of stochastically
estimating the transmittance, we precompute the transmittance from
the light source and store it in a suitable and compact representation.
Generally, several choices are imaginable, such as the discretization
of Tr(xs ↔ xL) on a dense grid or a hierarchical and adaptive data
structure. In this paper, we opt for a continuous function approxi-
mation using a Fourier series, as it is compact in terms of memory,
it readily avoids bandwidth-related sampling artifacts and allows for
an efficient estimation of integrals along the light ray. Our choice
is inspired from real-time shadow computations for semi-transparent
geometry. Namely, Jansen and Bavoil [24] proposed Fourier opacity
maps, which compactly store the transmittance of a discrete set of
surfaces in Fourier basis for each pixel. The technique can be inter-
preted as a kind of shadow mapping, comprising a view and projection
matrix for the light source that project every point in the domain onto
a shadow map, which stores a Fourier approximation of the transmit-
tance along the light rays. This approach has recently been used for
order-independent transparency in opacity optimization [2]. Jansen
and Bavoil demonstrated that the method is superior to dense and hi-
erarchical representations such as opacity shadow maps [28], density
clustering [37] or deep shadow maps [57] if the underlying signal to
approximate has low frequency. We found this to be a reasonable and
useful assumption, since an accurate preservation of hard shadows may
introduce numerous distracting discontinuities in image space.
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Derivation. Our method can be seen as a continuous version of
Fourier opacity maps. Given is the extinction σt(z) along the light ray,
ranging from entry to exit of the domain bounding box with z ∈ [0,P],
see Fig. 3. A Fourier approximation with m frequency bands is:

σ̂t(z) =
a0

2
+

m

∑
k=1

ak · cos
(

2πkz
P

)
+bk · sin

(
2πkz

P

)
, (10)

where the Fourier coefficients ak and bk with k ∈ {1, ...,m} are:

ak =
2
P

∫ P

0
σt(z) · cos

(
2πkz

P

)
dz, bk =

2
P

∫ P

0
σt(z) · sin

(
2πkz

P

)
dz .

(11)

The coefficients ak and bk can be approximated by Monte Carlo in-
tegration. For this, the extinction σt(z) is evaluated at n uniformly-
distributed discrete locations di with di ∈ [0,P]:

ak ≈
2
n

n

∑
i=1

σt(di) · cos
(

2πkdi

P

)
, bk ≈

2
n

n

∑
i=1

σt(di) · sin
(

2πkdi

P

)
.

This means a Fourier approximation can be computed for the extinction
σt(z) even if it can only be numerically sampled, which is the case
for the extinction derived from FTLE fields. Given the Monte Carlo
approximations of ak and bk for the Fourier representation of σ̂t(z) in
Eq. (10), the optical depth τ(d) is conveniently computed using:

τ(d) =
∫ d

0
σ̂t(z)dz =

a0

2
d +P

n

∑
k=1

ak

2πk
· sin

(
2πkd

P

)
(12)

+P
n

∑
k=1

bk

2πk
·
(

1− cos
(

2πkd
P

))
. (13)

Given the optical depth τ(d), the transmittance Tr(d) = e−τ(d) is easily
computed. The Fourier coefficients a0, ai and bi are precomputed using
a finite number of 100 uniformly distributed samples along each light
ray. Details on the performance follow later in Section 5.4. We tested
different numbers of samples per pixel and settled for 100, since we
did not experience further improvements when increasing further. This
is because of the band limits inherently given by the number of Fourier
frequency bands. The selection of the number of Fourier frequency
bands is discussed later in Section 5.1.

3.4 Joint Ratio-Fourier Tracking
The Fourier-based transmittance approximation using Eq. (13) is well-
suited to capture smooth extinction transitions. The method, however,
may give poor approximations in areas of high-frequency changes, such
as around transitions from empty to fully opaque regions. To remove
this artifact, we employ a combination of ratio tracking [38] and the
above Fourier transmittance approximation. Instead of terminating the
path when finding a real scattering location, ratio tracking iterates the
full light ray repeatedly sampling the free path travelled by the photon

xs

xL

τ(d)

P

0
domain

Fig. 3: The Fourier approximation of transmittance τ(d) is computed
over the domain [0,P] along the light ray, where d = 0 is the entry
distance and d = P is the exit distance. The Fourier coefficients of the
approximation are stored for each pixel in the orthographic light view.

and calculates the joint probability of colliding with virtual particles
along the way, which gives a transmittance estimate with lower variance
compared to the binary estimator [45] used by Günther et al. [17]. Let
(x1,x2, . . .) be the sequence of scattering locations visited along a light
ray by ratio tracking, and let (d1,d2, . . .) be the corresponding distances
to the entry point of the light ray into the domain. Starting from a ratio
tracking, we switch to the Fourier approximation τ(d) in Eqs. (12)–
(13) as soon as the Fourier approximation of the extinction σ̂t(dk) in
Eq. (10) approximates the real extinction σt(xk) sufficiently well. The
transmittance estimator can be formalized as follows:

〈Tr(d)〉=
k

∏
i=1

(
1− σt(xi)

σ̄t

)
︸ ︷︷ ︸

ratio tracking

· e−τ(di)

︸ ︷︷ ︸
Fourier

for k : |σt(xk)︸ ︷︷ ︸
real

− σ̂t(dk)︸ ︷︷ ︸
Fourier

|< ε.

(14)

Thereby, ε is an error tolerance set by the user, which balances between
accuracy and speed. In all examples, we selected ε conservatively based
on the majorant extinction σ̄t , i.e., ε = σ̄t/100, targeting an accurate
approximation. Different choices are discussed later in Section 5.3.

4 IMPLEMENTATION

In the following, we share details of our implementation. All algorithms
were implemented on the GPU using compute shaders that parallelize
the computation across the screen pixels.

Offset Path Computation. In addition to the base path, the gradi-
ent domain computation requires the tracing of two additional offset
paths. Instead of writing a GPU kernel that calls three ray casts succes-
sively, we split the tracing into three separate kernel launches of the
same light integration kernel. In our execution model, each thread is
responsible for one pixel. The free path sampling and the transmittance
estimator require a random number sequence for which we employ
a linear congruential generator [40], which is represented by a state
variable. Each pixel stores its random number state in global memory,
which is only modified by the third kernel launch. This way, the base
path and the two offset paths use identical random number sequences,
which greatly reduces the variance in the gradient estimate. The pixel
offsets (no offset, right neighbor and top neighbor) for the generation
of the view ray are respectively stored in a constant buffer during the
three kernel launches, which is coherently accessed by all threads being
executed in parallel. The resulting image estimates Îx,y(i), Îx+1,y(i) and
Îx,y+1(i) of iteration i are written to textures and a separate kernel com-
bines the images into the accumulated values in Eqs. (6)–(7). Note that
the estimates Îx+1,y(i) and Îx,y+1(i) can be reused for the accumulation
of the radiance in the adjacent pixels. Thereby, the values have to be
read by a gathering operation to avoid race conditions, i.e., each pixel
collects the contributions from its neighboring pixels.

Fourier Coefficient Maps. We store the Fourier coefficients in
four-component float variables in global memory. The calculation of
the cosine and sine terms is vectorized and always computed for two
bands at a time by storing the cosine and sine term of the first band in
the first two components and the cosine and sine term of the second
band in third and fourth component. Thus, the storage of 13 Fourier
frequency bands (a0 and ai, bi with i ∈ {1, . . . ,13}), requires 7 four-
component variables (using 31 floats). We always used a resolution of
512×512 pixels for the Fourier maps, which we found to be sufficient.
A study of the impact of different Fourier map resolutions can be found
in the additional material. In total, 28 MB are required to store the
transmittance approximation using 13 frequency bands in the Fourier
representation. The projection of the extinction coefficients into Fourier
basis happens once in a preprocess. For this, we sample the light ray
between entry and exit in the domain bounding box at 100 uniformly-
spaced locations and project the sampled extinction values into Fourier
basis, which requires the calculation and mapping of FTLE values.

Spatially-Varying Majorant Extinction. The runtime of both delta
tracking [55] and ratio tracking [38] depends on the tightness of the
upper extinction bound σ̄t , which is why upper bounds should be
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RMSE = 0.082, SSIM = 0.72

(a) m = 4, with 4.1sec per iteration.

RMSE = 0.066, SSIM = 0.75

(b) m = 7, with 4.3sec per iteration.
RMSE = 0.065, SSIM = 0.75

(c) m = 13, with 4.5sec per iteration.

RMSE = 0.064, SSIM = 0.75

(d) m = 15, with 4.6sec per iteration.

Fig. 4: Comparison of our Fourier transmittance estimator for different
numbers of frequency bands. All images were computed with 100
iterations of gradient domain in the ECMWF flow. We also list Root-
mean-square error (RMSE) and structural similarity index (SSIM).

estimated locally [53, 56]. We store piecewise constant upper bounds
in a regular grid [53]. Since a tight upper FTLE bound is not known
apriori, we start with an estimate and progressively converge with each
visited sampling location as described by Günther et al. [17]. The ray
traversal through the majorant extinction grid requires care at the voxel
boundaries. Both delta tracking and ratio tracking perform free path
sampling steps in the virtual homogeneous medium, with the majorant
extinction being read from the current voxel. If the tentative scattering
location was found inside the next voxel, the traveled world distance
inside the next voxel has to be converted into the corresponding optical
depth (by multiplying with the majorant extinction of the last voxel)
and then translated back into the correct world distance (by dividing
by the majorant extinction of the next voxel). The grid resolution of
the majorant extinction grids was chosen manually, as by Günther et
al. [17]. This manual step could be avoided by using a kd-tree with a
subdivision heuristic [56] to store the majorant extinction grids.

5 RESULTS

In the following sections, we discuss parameter choices, performance
and compare the proposed methods with previous work.

5.1 Frequency Bands in Fourier Approximation

The number of frequency bands m used to compute the extinction in
Eq. (10) determines the quality of the approximated σ̂t(z). In the limit,
it converges to the real extinction σt(z). Fig. 4 shows a comparison of
the approximation of transmittance using different numbers of bands
in the ECMWF flow, reporting the RMSE and SSIM when comparing
to a ground truth image generated with 1k Monte Carlo iterations of
our gradient domain with ratio tracking (t = 2.16h). When using a
small number of bands, the reconstructed signal overestimates the
transmittance and misses high frequencies, which results in darker and
softer shadows. We found that smooth shadows are visually more
pleasing, which comes to our advantage since it allows us to obtain
convincing images with a relatively small number of frequency bands.
It can be seen in Eq. (13) that the terms ak and bk decay at a rate of
1

πk and thus components for k > 10 have a magnitude of about 3% or
less compared to a0. Differences between 13 and 15 bands are already
almost imperceptible which is why we selected 13 bands.

5.2 Comparison with Previous Work
In Fig. 5, we visually and quantitatively compare the different tech-
niques in the WALL-MOUNTED CYLINDER (left) and in the CTBL
flow (right). In the first row, we applied our gradient domain rendering
to generate a ground truth image of the WALL-MOUNTED CYLINDER
using 1k iterations and 10k iterations of ratio tracking for the CTBL.
The second row shows delta tracking as used by Günther et al. [17],
which is the noisiest, since it uses a binary transmittance estimator. In
the third row, we again use gradient domain rendering with delta track-
ing, which results are smoother than the previous due to the gradient
estimate used by the screened Poisson reconstruction. The fourth row
uses the ratio tracking of Novák et al. [38] to estimate the transmittance
towards the light source. This method computes the joint probability
for a photon to reach the scattering point, which has lower variance
than the binary estimator. The fifth row shows our joint ratio-Fourier
tracking with gradient domain rendering applied on top. In the WALL-
MOUNTED CYLINDER the noise is visibly reduced, while there is still
no improvement achieved in the CTBL data set. The last row shows
a pure Fourier approximation with gradient domain rendering applied
on top. Here, the noise is significantly reduced in both scenes. In the
CTBL flow, a difference in the illumination is apparent (reflected in
a higher RMSE), which seems acceptable, since all structures are still
well visible. The structural similarity index (SSIM), which predicts the
perceived quality of pictures, is nevertheless higher than delta for our
methods, since the smoothing is visually more pleasant than noise.

5.3 Error Tolerance
In Fig. 6, we study the error tolerance ε of our joint ratio-Fourier
transmittance estimator in Eq. (14) in comparison with the ratio track-
ing estimator of Novák et al. [38] and a Fourier approximation using
Eqs. (12)–(13). The ECMWF flow is a particularly challenging test
case, as it contains numerous thin ridge structures that are difficult to
estimate with a low number of Fourier frequency bands. For the ground
truth image, we used 1k Monte Carlo iterations of our gradient do-
main with ratio tracking (t = 1.85h). Fig. 6a shows an early reference
solution after 300 iterations. For ε = σ̄t/100 our joint ratio-Fourier
transmittance estimator in Fig. 6b gives acceptable results that are very
similar to the reference solution. For a value of ε = σ̄t/10, however,
artifacts appear in Fig. 6c, which are caused by the local extinction-
based error estimate in Eq. (14). In scenes with less variation in the
illumination, we found this threshold to be acceptable as well, giving
a greater performance increase. A transmittance approximation based
on Fourier only, as in Fig. 6d, gives by far the fastest convergence,
since the light transmittance has zero variance. In this difficult case, the
changes in the illumination are clearly visible when comparing with
the reference solution. A close up of this figure can be found in the
additional material.

5.4 Convergence and Performance
In this section, we analyze the runtime and convergence of our method.
All results were rendered with an Intel Core i7-6700K CPU with 4 GHz,
32 GB RAM and NVIDIA GeForce GTX 1080 GPU. Table 1 lists the
runtime in sec per Monte Carlo iteration for delta tracking (D), gradient
domain (G), gradient with ratio tracking (GR), gradient domain with
pure Fourier approximation (GF) and ratio-Fourier tracking (GRF).
The precomputation time of the Fourier approximation of σ̂(z) is listed
in the eighth column and the last column reports the time required
for the final screened Poisson reconstruction of Eq. (9). We observe
that the pure Fourier approximation can be 2− 3× faster than our
joint ratio-Fourier tracking. The cost for individual iterations is not
only lower, it also contains less noise, since the pure Fourier-based
transmittance approximation has no variance at all. The joint ratio-
Fourier method, however, can bound the illumination error, which
might also be desirable. The time required for computing the Fourier
approximation gives an indicator for the overall cost of pathline tracing
in the data sets, since all examples use the same resolution of 512×
512 pixels for the Fourier coefficient map. The time required for the
Poisson reconstruction scales with the screen resolution. Results for
high resolutions are shown in the additional material. In general, we
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Fig. 5: Equal-time comparisons for 360sec in the WALL-MOUNTED CYLINDER flow (left) and for 680sec in the CTBL flow (right). From top
to bottom: ground truth image with gradient domain (1k iterations, left) and ratio (10k iterations, right), delta tracking as used by Günther et
al. [17], gradient domain rendering applied to delta tracking, the ratio tracking of Novák et al. [38], our joint ratio-Fourier tracking with gradient
domain rendering and a pure Fourier approximation with gradient domain rendering. We list root-mean-square error (RMSE) and structural
similarity index (SSIM). In the WALL-MOUNTED CYLINDER, our methods visibly reduce the noise with little bias. In the CTBL, our joint
method shows only a small improvement. The pure Fourier approximation, however, reduces the noise successfully, but also contains a visible
bias in the illumination. Since all FTLE structures can still be perceived well, this bias is an acceptable trade-off for the reduced noise.
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RMSE = 0.018, SSIM = 0.93

(a) Ratio-tracking only (reference solu-
tion), 10.7sec per iteration.

RMSE = 0.020, SSIM = 0.91

(b) Our ratio-Fourier with ε = σ̄t/100,
8.9sec per iteration.

RMSE = 0.046, SSIM = 0.82

(c) Our ratio-Fourier with ε = σ̄t/10,
7.4sec per iteration.

RMSE = 0.064, SSIM = 0.80

(d) Fourier approximation of transmit-
tance only, 5.4sec per iteration.

Fig. 6: Comparison of our joint ratio-Fourier transmittance estimator with ratio tracking [38] (6a) and our pure Fourier approximation of the
transmittance (6d). All images were computed using 300 Monte Carlo iterations with gradient domain. We list the root-mean-square error
(RMSE) and the structural similarity index (SSIM) when comparing to a ground truth image. This example in the ECMWF flow contains
numerous thin ridge structures, which is a particularly difficult case for the Fourier approximation. The reference solution in 6a is best reached for
ε = σ̄t/100 with our joint method in 6b. A value of ε = σ̄t/10 contains very noticeable artifacts in 6c, and our approximation only based on
Fourier in 6d gives the fastest convergence, but also shows the largest illumination differences.

MIXER ASTEROID

Fig. 7: Logarithmic convergence of MIXER and ASTEROID data sets.

Resolution D G GR GF GRF σ̂(z) L2
ABC 500×500 0.07 0.2 0.28 0.11 0.29 0.13 20.74
ASTEROID 480×360 9.86 30.18 24.88 17.8 24.3 22.4 15.76
CTBL 450×240 7.66 23.66 33.72 10.3 33.7 13.2 10.39
W-M CYL 500×300 5.15 15.45 17.43 5.35 17.8 1.81 14.03
DKRZ 800×800 3.53 10.95 14.99 7.18 9.04 21.4 43.99
ECMW 350×200 2.43 7.13 7.78 4.96 7.35 15.9 6.77
MIXER 500×500 4.32 13 17 7.53 15 40.2 23.2

Table 1: Runtime in sec for a single iteration of delta (D), gradient
domain (G), gradient ratio (GR), gradient Fourier (GF) and gradient
ratio-Fourier (GRF), the precomputation of the transmittance approxi-
mation σ̂(z) and the final Poisson reconstruction using the L2 norm.

found that 200 gradient domain Monte Carlo iterations with the pure
Fourier approximation of the transmittance are usually sufficient to
obtain frame-coherent high-quality visualizations of FTLE fields.

Fig. 7 shows convergence plots for the MIXER and the ASTEROID
data sets after 80 iterations. In the additional material, we show the
convergence over time. For our two methods, gradient domain with
Fourier (GF) or with ratio-Fourier (GRF), the error is measured with
respect to their own ground truth images. For delta tracking (D), gra-
dient domain (G) and gradient ratio (GR), the error is measured with
the same ground truth image generated by 1000 iterations of gradient
domain. These plots show that, to have an error measure similar to
our gradient with Fourier (GR), delta tracking needs around 10× more
Monte-Carlo iterations. A detailed comparison between images after 80
iterations for the MIXER data set are shown in the additional material,
as well as several time-lapse convergence animations in the video.

5.5 Applications
The two proposed approaches enable the practical rendering of anima-
tions over time, movements along camera paths and moving clipping
planes through the data domain, allowing domain scientists a more in
depth exploration and understanding of the data. In the following, we
present some data sets where our animations led to new insights on the
data. We refer to the video for the full animations.

ASTEROID. This data set is a numerical multi-physics hydrody-
namics simulation using the xRage code [14] that aimed to gain new

insights into possible water impact scenarios. We used the yA31 series,
where the asteroid impacts the water with an angle of 45◦ and no airbust.
In Fig. 8 top, two frames of the animation are shown, where we can
observe the corridor formed by the falling asteroid, the uplift paths of
particles rising up into the stratosphere and the high degree of turbu-
lence that followed the strong impact. We refer to the video to observe
the vortical motion left of the impact site and below the entry corridor,
which could be formed by the forward rising water vapor plume and the
strong shear along the entry corridor, respectively. Time-varying effects
such as the vortical motion would not be visible in a single image.

CLOUD-TOPPED BOUNDARY LAYER. Fig. 8 middle shows a
cloud-resolving boundary layer simulation. The data set has a 25 me-
ters spatial resolution, uses double-periodic boundary conditions and
homogeneous surface forcing. By creating a rotating animation, we can
observe from all possible angles the detailed convection structures and
the turbulent plumes of rising cumulus clouds, which exhibit higher
FTLE values and therefore more red ridges. In fact, the rising vortex
ring in Fig. 5 (right) has not been known to exist in the first introduction
of Monte Carlo FTLE [17] and was only discovered later after reren-
dering the same scene from a different view [16]. This feature could
have been discovered earlier if the render time would have been lower.

ROTATING MIXER. This sequence is an unsteady flow containing
the simulation of a liquid that is stirred into motion by a small propeller.
The FTLE field is shown in Fig. 1 with the delta tracking approach
used by Günther et al. [17] and using our two novel methods. With our
methods, the thin FTLE structures are apparent already after a minute,
whereas the previous approach [17] still contains a significant amount
of noise. In the presence of noise, multiple nearby ridges are easily
mistaken for a single ridge. Further, obtaining noise-free previews
earlier eases the setting of transfer functions and camera parameters. In
the additional material, we compare all techniques after 80 iterations to
show that we need 10 hours to render a 60 frames noise-free animation,
whereas the approach by Günther et al. [17] takes 72 hours.

CLOUD EVOLUTION. Fig. 8 bottom shows selected frames of a
slicing animation through this air flow. The camera setup of Rimens-
berger et al. [46] shows the atmospheric air flow profile from South to
North over Germany, with the ground at the top and the stratosphere
at the bottom. We explored this complex 3D data set by animating a
clip plane that slices through the domain from East to West, allowing
us to observe the thin horizontal movement layer near the ground, the
tropopause (shown at the bottom of the domain by horizontal wind
shear-induced FTLE structures) and the vertical energy transport be-
tween the ground and the tropopause. Due to the high extinction, the
tropopause layer passing horizontally through the entire domain would
not have been visible without the slicing animation.

ECMWF. Our next use case demonstrates another meteorological
air flow. Following Günther et al. [17], we select a time-averaged tro-
pospheric air flow in the Northern hemisphere. The air flow is shown
in Fig. 6, where the thin and complex ridge surface structures make
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Fig. 8: Two frames of the ASTEROID time animation (top), the camera
flight around the CTBL simulation (middle) and a slicing animation
through the CLOUD EVOLUTION (bottom), all using 200 it per frame.

the transmittance estimation challenging. In this flow, convective flow
features are apparent, such as vortices (cyclones) and stream-like pat-
terns that guide the transport of trace gases. Such FTLE visualizations
provide a Lagrangian perspective on the mixing and transport behavior.

WALL-MOUNTED CYLINDER. Our last example contains a Large-
Eddy simulation (LES) around a WALL-MOUNTED CYLINDER. Due
to a high Reynolds number of Re = 200,000, this flow contains a
significant amount of turbulence, leading to rapid mixture, which is
visible by the highly-folded FTLE structures. In Fig. 5 (left), we used
this vector field to compare our gradient domain-based methods with
existing approaches. The accompanying video contains a time series
animation of this data set, showing the temporal evolution of the FTLE
structures, showing the interaction of hyperbolic LCS during mixing.

5.6 Discussion
Illumination Bias. The use of the Fourier-approximated trans-

mittance accelerates the rendering considerably at the cost of losing
accuracy in the illumination, which is visible in Fig. 5 (right). For this
reason, we introduced the joint ratio-Fourier estimator, which heuristi-
cally bounds this error. The adjustment of the threshold ε between the
unbiased method [38] and our Fourier approximation then becomes a
trade-off between speed and accuracy. When the user is more concerned
about time, such as for video generation, switching to a purely Fourier
approximation is recommended even though some areas of the image
can be darker or lighter than the ground truth. These changes are hardly
visible in most examples and, in extreme hard illumination cases such
as flows containing numerous internal ridge structures, the illumination
difference could be avoided with the ratio-Fourier approach.

Approximation Artifacts. In addition to the illumination bias, in-
troducing a Fourier-based approximation of the transmittance can gen-
erate ringing artifacts in the shadows when estimating high frequency
changes of light with only few coefficients. Using more coefficients
hardly eliminates this artifact due to the low impact of larger k coeffi-
cients in the overall signal. Thus, changing to a ratio-Fourier approach
is more effective in this case. Detailed figures of approximation and illu-
mination artifacts can be found in the additional material. In Fig. 6, we
used the ECMWF data set to show a difficult situation for the Fourier
transmittance approximation, which led us to a conservative choice
for the error tolerance ε . Setting the value too high results in artifacts,
since when the difference is small enough, the Fourier approximation is
used, which is darker than the reference, which creates visible changes.

Parameter Adjustment. For the adjustment of the transfer func-
tions and camera parameters, we inspect the early results, obtained after
10–20 iterations. For a more interactive preview, it is imaginable to use
other techniques such as the interactive method of Barakat et al. [3].

Multiple Scattering. In this paper, we concentrated on single
scattering, as it is more suited for visualization. Multiple scattering
essentially diffuses the radiance, which results in color bleeding that
might lead to misinterpretations of color-coded attributes. For the
visualization of smoke and clouds [32,38], multiple scattering is highly
relevant. In that case, our Fourier-based transmittance estimators are
applicable in the final connection of a path to the light source.

Other Function Approximations. We followed Jansen and
Bavoil [24] in their choice to Fourier-approximate an extinction signal,
since Fourier approximations are compactly stored, continuous, smooth
and can be analytically integrated. Our joint ratio-Fourier estimator
could similarly be combined with any other function approximation,
such as a grid discretization [28], an adaptive representation [37, 57] or
another continuous approximation using any other orthonormal basis.

Denoising. To reduce the noise, orthogonal denoising approaches
such as the recent work by Chaitanya et al. [8] could be used to let
machine learning reconstruct Monte Carlo rendered image sequences.

6 CONCLUSIONS

In this paper, we accelerated the Monte Carlo rendering approach of
Günther et al. [17] for the visualization of finite-time Lyapunov ex-
ponent fields. Our technique enables the practical rendering of FTLE
animations, including time sequences, camera paths and slicing through
the domain. For this, we improved on the light transport simulation us-
ing two complementary strategies. First, we extended gradient domain
rendering [27, 34] to single scattering in heterogeneous participating
medium, which leads to a variance reduction due to an estimate of corre-
lated gradients that are considered in a screened Poisson reconstruction.
Second, we approximated the transmittance from the light source using
a Fourier representation, which we combined with ratio tracking [38] in
a joint transmittance estimator. The joint estimator provides a trade-off
between the unbiased ratio tracking and the efficient Fourier-based
approximation of the transmittance. Our improvements enable for the
first time the efficient Monte Carlo rendering of high-quality FTLE
visualizations, which enables the computation of video sequences.

In the future, we would like to investigate orthogonal strategies
to increase the performance of the FTLE computation, namely flow
map approximations [1, 9], and to reduce the noise, like the use of
reconstruction filters [58].
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[31] A. Kuhn, C. Rössl, T. Weinkauf, and H. Theisel. A benchmark for evaluat-
ing FTLE computations. In Proceedings of 5th IEEE Pacific Visualization
Symposium (PacificVis 2012), pages 121–128, Songdo, Korea, 2012.

[32] C. Kulla and M. Fajardo. Importance sampling techniques for path tracing
in participating media. Computer Graphics Forum (Proc. Eurographics
Symposium on Rendering), 31(4):1519–1528, 2012.

[33] P. Kutz, R. Habel, Y. K. Li, and J. Novák. Spectral and decomposition
tracking for rendering heterogeneous volumes. ACM Transactions on
Graphics (Proceedings of SIGGRAPH 2017), 36(4):111:1–111:16, 2017.

[34] J. Lehtinen, T. Karras, S. Laine, M. Aittala, F. Durand, and T. Aila.
Gradient-domain metropolis light transport. ACM Trans. Graph.,
32(4):95:1–95:12, July 2013.

[35] M. Manzi, M. Kettunen, M. Aittala, J. Lehtinen, F. Durand, and
M. Zwicker. Gradient-domain bidirectional path tracing. In Proc. Euro-
graphics Symposium on Rendering, volume 1, page 3, 2015.

[36] M. Manzi, F. Rousselle, M. Kettunen, J. Lehtinen, and M. Zwicker. Im-
proved sampling for gradient-domain metropolis light transport. ACM
Transactions on Graphics, 33(6):178:1–178:12, Nov. 2014.

[37] T. Mertens, J. Kautz, P. Bekaert, and F. V. Reeth. A self-shadow algorithm
for dynamic hair using density clustering. In Proceedings of the Fifteenth
Eurographics Conference on Rendering Techniques, EGSR’04, pages
173–178, Aire-la-Ville, Switzerland, Switzerland, 2004. Eurographics
Association.

[38] J. Novák, A. Selle, and W. Jarosz. Residual ratio tracking for estimat-
ing attenuation in participating media. ACM Transaction on Graphics
(SIGGRAPH Asia), 33(6):179:1–179:11, 2014.

[39] K. Onu, F. Huhn, and G. Haller. LCS tool: a computational platform
for Lagrangian coherent structures. Journal of Computational Science,
7:26–36, 2015.

[40] S. K. Park and K. W. Miller. Random number generators: Good ones are
hard to find. Commun. ACM, 31(10):1192–1201, Oct. 1988.

[41] J. Patchett and G. Gisler. Deep water impact ensemble data set. Los Alamos
National Laboratory, LA-UR-17-21595, available at http://dssdata. org.

[42] A. Pobitzer, R. Peikert, R. Fuchs, B. Schindler, A. Kuhn, H. Theisel,
K. Matkovic, and H. Hauser. The state of the art in topology-based
visualization of unsteady flow. Computer Graphics Forum, 30(6):1789–
1811, 2011.

[43] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch. The state
of the art in flow visualisation: Feature extraction and tracking. Computer
Graphics Forum, 22(4):775–792, 2003.

[44] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Nu-
merical recipes in C, volume 2. Cambridge university press Cambridge,
1996.

[45] M. Raab, D. Seibert, and A. Keller. Unbiased global illumination with
participating media. In Monte Carlo and Quasi-MC Methods 2006, pages
591–605. Springer Berlin Heidelberg, 2008.

[46] N. Rimensberger, M. Gross, and T. Günther. Visualization of clouds and
atmospheric air flows. In IEEE Scientific Visualization Contest 2017, 2017.

[47] F. Sadlo and R. Peikert. Efficient visualization of Lagrangian coherent
structures by filtered AMR ridge extraction. IEEE Trans. on Visualization
and Computer Graphics (IEEE Visualization), 13(6):1456–1463, 2007.

[48] S. C. Shadden, F. Lekien, and J. E. Marsden. Definition and properties
of Lagrangian coherent structures from finite-time Lyapunov exponents
in two-dimensional aperiodic flows. Physica D: Nonlinear Phenomena,
212(3-4):271–304, 2005.

[49] H. R. Skullerud. The stochastic computer simulation of ion motion in a
gas subjected to a constant electric field. Journal of Physics D: Applied

10



To appear in IEEE Transactions on Visualization and Computer Graphics

Physics, 1(11):1567, 1968.
[50] B. Stevens. Introduction to UCLA-LES, 2013.
[51] L. Szirmay-Kalos, I. Georgiev, M. Magdics, B. Molnár, and D. Légrády.
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