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Figure 1: We developed a novel CNN-based reference frame extraction algorithm that is trained to handle inputs with noise and resampling
artifacts. Compared to a linear reference frame optimization [GGT17], our method is more robust to artifacts. The input vector field (w/ and
w/o noise) is shown on the left, and the extraction of vortex centers (orange and yellow), compared to a ground truth (blue) is shown on the
right. By combining filtering and reference frame extraction via CNNs, vortex extraction becomes more robust. Note that in the experiment
above, the CNN has not seen the cylinder flow during training. In fact, it only trained on a synthetic data base that we introduce in the paper.

Abstract
Robust feature extraction is an integral part of scientific visualization. In unsteady vector field analysis, researchers recently
directed their attention towards the computation of near-steady reference frames for vortex extraction, which is a numerically
challenging endeavor. In this paper, we utilize a convolutional neural network to combine two steps of the visualization pipeline
in an end-to-end manner: the filtering and the feature extraction. We use neural networks for the extraction of a steady reference
frame for a given unsteady 2D vector field. By conditioning the neural network to noisy inputs and resampling artifacts, we obtain
numerically stabler results than existing optimization-based approaches. Supervised deep learning typically requires a large
amount of training data. Thus, our second contribution is the creation of a vector field benchmark data set, which is generally
useful for any local deep learning-based feature extraction. Based on Vatistas velocity profile, we formulate a parametric vector
field mixture model that we parameterize based on numerically-computed example vector fields in near-steady reference frames.
Given the parametric model, we can efficiently synthesize thousands of vector fields that serve as input to our deep learning
architecture. The proposed network is evaluated on an unseen numerical fluid flow simulation.

This is the authors preprint. The definitive version is available at https://onlinelibrary.wiley.com/ and at https://diglib.eg.org/.

1. Introduction

The robust extraction of vortices remained to this day one of the
most difficult problems of unsteady vector field analysis [GT18].
Vortices themselves are studied in many different applications,
such as for engine design [RP96, GLT∗07], blood flow analy-
sis [KGP∗13, OJCJP16] or even in the atmosphere of other plan-
ets [HH16]. A vortex is commonly understood as a set of particles
rotating around a common point or axis, if the flow is viewed in
the correct reference frame [Lug79, Rob91]. This dependence on
the reference frame is what makes vortex extraction in unsteady

flows difficult. On the one hand, existing methods concentrated on
vortex characterizations that give the same result for many different
reference frames, such as those arising from a Galilean transfor-
mation [Oku70, Hun87, JH95, WSTH07] or from a smooth rotation
and translation of the reference frame [Ast79, Hal05, HHFH16]. On
the other hand, reference frames have been searched in which topo-
logically relevant structures appear [BPKB14]. Lugt [Lug79] and
Robinson [Rob91] argued that the relevant reference frame is the
one in which the flow becomes steady. Thus, recently Günther et
al. [GGT17] formulated the local search for the steady reference
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frame as an optimization problem. Their method, however, relies on
a regularization that often prevents them from finding a perfectly
steady solution. In the limit case of no regularization, their solution
depends on second-order derivatives that are extremely difficult to
estimate robustly if the data is noisy. Robustness to noise and resam-
pling artifacts is also a major concern when it comes to the local
vortex extraction algorithms [GLL91, PR99] that are applied in the
resulting frame. An algorithm for the robust extraction of the opti-
mal reference frame that is insensitive to noise and other distortion
artifacts is desperately needed in order to achieve a reliable vortex
detection in unsteady vector fields.

Inspired from the recent success of machine learning approaches
in robustly solving image processing tasks [GBCB16], we propose
to train a convolutional neural network (CNN) to locally extract
the optimal reference frame, in which a given unsteady 2D vector
field becomes steady. We thereby concentrate on the robustness of
the extractor by training it on synthetically distorted data, which
includes the adding of noise and a prior resampling. A general
challenge of machine learning is that it typically requires a large
amount of data to successfully generalize. Since machine learning
is a rather young field for flow visualization, we are not aware
of any large benchmark vector fields that could directly be used
for training. A second contribution of our paper is therefore the
synthetic generation and the release of a vector field benchmark data
set that may be used in the future by other researchers, looking for
applications of machine learning in flow visualization. In summary:

• We introduce a novel parametric flow mixture model that is based
on Vatistas [VKM91] velocity profiles. After fitting parameters to
numerical data, we synthesize a large vector field collection that
contains divergence-free and compressible flows.
• We design and evaluate a convolutional neural network to locally

extract the optimal reference frame in which a given 2D vector
field becomes steady.

In terms of performance our method is slightly slower than a linear
optimization [GGT17], but our CNN-based approach has up to
3-4 times lower reconstruction residuals under increasing noise
and resampling artifacts, making our method much more robust
on real-world data. Fig. 1 gives a first impression of the feature
extraction results that are possible on distorted data after computing
the optimal reference frame with either our approach or the linear
optimization [GGT17].

2. Related Work

In the following sections, we lay the foundations for our work,
including a summary of visualization methods that utilize machine
learning, and an overview of objective vortex extraction methods.

2.1. Machine Learning in Visualization

Explainable AI. Machine learning and visualization have great
potential for synergies. Explainable AI is currently a highly rel-
evant research area that uses visualization to look into the black
box that deep learning is often considered to be. We refer to
Seifert et al. [SAB∗17], Hohman et al. [HKPC18] and Ancona
et al. [ACOG18] for an introduction into this promising area.

Deep Learning for Visualization. The opposite direction, i.e., the
use of deep learning to solve visualization tasks is still fairly un-
charted territory. Frey [Fre17] trained a neural network to determine
the best progressive sampling strategy to calculate the similarity
of spatio-temporal data sets. In information visualization, Fan and
Hauser [FH18] used CNNs to improve the manual brushing of points
in scatterplots. Berger et al. [BLL17] explored the use of generative
adversary networks to analyze the role of transfer functions in the
image synthesis process of direct volume rendering. For a steady
3D vector field, Han et al. [HTW18] used an autoencoder to learn
a low-dimensional feature space of a voxel representation of ran-
domly generated streamlines or stream surfaces. They plotted the
low-dimensional feature space with t-SNE and selected representa-
tive geometric primitives from a density-based clustering.

CNNs for Vortex Extraction. Lguensat et al. [LSF∗17] used a
classification CNN to identify ocean eddies from sea surface height
maps. Not only interested in the detection of ocean eddies but also
in their tracking, Franz et al. [FRM∗18] trained a classification
CNN that receives the Okubo-Weiss [Oku70, Wei91] criterion as
input and tracked the structures with optical flow and a spatio-
temporal recurrent neural network. Bin and Li [BY18] classified
normalized vector field patches of size 9× 9 with a classification
CNN into clockwise rotating, counterclockwise rotating, saddle
type and others. Ströfer et al. [SWXP18] trained a classification
CNN to identify specific fluid flow features in the domain, such as
recirculation regions, boundary layers and a horseshoe vortex. Deng
et al. [DWL∗18] trained a CNN to recall the instantaneous vorticity
deviation (IVD) of Haller et al. [HHFH16].

All methods above either performed a classification or produced
a region-based vortex measure. Since we have line-based vortex
extraction in mind, numerical stability is of greater concern to us.
Thus, we utilize CNNs to greatly improve the numerical stability by
conditioning the network to noisy and resampled inputs, resulting is
the first deep learning-based reference frame extraction.

2.2. Objective Vortex Extraction

Over the past decades, dozens of vortex extraction algorithms have
been proposed in the flow visualization and fluid mechanics litera-
ture. We refer to Günther and Theisel for a recent overview [GT18].

2.2.1. Definition of Objectivity

The most recent vortex extraction methods [HHFH16, GGT17,
GT19b, GT19a, HMTR19] aspired to be objective. A measure is
called objective if it remains invariant under a smooth rotation and/or
smooth translation of the reference frame [TN65]. Such a transfor-
mation transforms a point (x, t) to the location (x∗, t∗) with:

x∗ = Q(t)x+ c(t) , t∗ = t−a (1)

for a time-dependent rotation matrix Q(t), a time-dependent transla-
tion vector c(t) and a constant time shift a. Objectivity guarantees
that a measure looks the same for different rotations and translations
of the observer. Because of the relativity between the motion of
the vortex and the motion of the observer, this is equivalent to the
guarantee that the measure of a moving feature always look the
same if the feature rotates and/or translates. Objectivity is therefore
useful, when searching for moving features in unsteady flows.
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2.2.2. Reference Frame Transformation of a Vector Field

In order to train a network that recovers a reference frame transfor-
mation Q(t), c(t) in which a vector field appears steady, we have
to generate a large number of unsteady vector fields with a known
ground truth transformation. For this, we start from a steady vector
field and transform it with many random reference frame transfor-
mations, which makes each resulting flow unsteady. In general, a
vector field v(x, t) is transformed into a new frame via [GGT17]:

v∗(x∗, t∗) = Q(t)v(x, t)+ dQ(t)
dt

x+ dc(t)
dt

(2)

The evaluation of this equation requires the transformation of
(x∗, t∗) into the old frame (x, t) in order to sample the given (steady)
vector field v(x, t) at the correct location. Since Q(t) is orthogonal,
rearranging Eq. (1) gives:

x = Q(t)T (x∗− c(t)
)
, t = t∗+a (3)

By inserting Eq. (3) into Eq. (2), we can uniformly sample the space-
time domain (x∗, t∗) of the transformed unsteady vector field onto a
regular grid, which is later fed with the corresponding transformation
Q(t) and c(t) to the neural network during training.

2.2.3. Objective Region-based Vortex Extraction Methods

In order to derive an objective version of the vorticity tensor, Drouot
and Lucius [DL76] and later Tabor and Klapper [TK94] indepen-
dently proposed the relative vorticity tensor, which is viewed in
the strain rate basis. The strain rate tensor is objective and thus, all
measures viewed in its eigenvector basis become objective as well.
Astarita [Ast79] formally proved the objectivity of this approach
and further introduced an objective index measure that classifies the
domain into regions that either perform extension-like motions or
rigid-body-like rotations. Haller [Hal05] introduced the Mz crite-
rion, which first uses the strain rate acceleration tensor to classify
the domain into elliptic and hyperbolic regions. By taking a La-
grangian perspective, their approach identifies coherent vortices
using particles that stay for a long time in elliptic areas, i.e., they
perform rotating motions. Vortex boundaries are also seen as elliptic
Lagrangian coherent structures [Hal15]. More recently, Haller et
al. [HHFH16] identified coherent vortices objectively using the orig-
inal vorticity tensor Ω. They introduced a Eulerian measure called
instantaneous vorticity deviation (IVD), which subtracts the spatial
mean vorticity of the neighborhood, and the integral of IVD along a
pathline called Lagrangian averaged vorticity deviation.

2.2.4. Reference Frame Optimization

An objective vortex coreline extractor has recently been proposed
by Günther et al. [GGT17]. Since we use their method as baseline
in our comparison, we briefly explain the approach in more detail.
In the late 1970s, Lugt [Lug79] characterized vortices as closed or
spiraling streamlines in a reference frame in which the flow field
becomes steady. Similarly, Robinson [Rob91] identified them as
closed streamlines in a reference frame that moves with the vortex
center. While it was clear early on that not a single reference frame
exists in which all vortices become steady [Lug79], since they might
move into different directions, it was recognized that the frame has to
be searched locally [PC94]. For this reason, Günther et al. [GGT17]
solved an optimization problem to find a local reference frame in

which the vector field becomes steady. Their goal was to minimize
the time partial of the transformed field v∗ earlier shown in Eq. (2)
in a local neighborhood U :∫

U

∥∥∥∥∂v∗(x∗, t)
∂t

∥∥∥∥2

dV → min (4)

Thereby, the unknowns are the rotation Q(t) and the translation
c(t) of the reference frame. Important to us is how the rotation
Q(t) and the translation c(t) can be discretized. When computing
the time partial of v∗ in Eq. (2) we only need up to second-order
partials [GGT17]. Further, we can restrict the transformation at
time t to Q(t) = I and c(t) = 0 to obtain our vortex features at the
same locations as in the input field v. Thus, the only unknowns
are the first-order and second-order derivatives of the rotation and
translation, evaluated at time t:

Q̇ =
dQ(t)

dt
, Q̈ =

d2Q(t)
dt2 , ċ = dc(t)

dt
, c̈ = d2c(t)

dt2

In 2D, these are six numbers (two angles and two 2D vectors).
Günther et al. [GGT17] have shown that this minimization can be
efficiently solved as a linear optimization problem. Recently, they
extended their method to affine transformations [GT19a]. Mean-
while, Hadwiger et al. [HMTR19] formulated the search as a global
optimization problem. They avoided the choice of a suitable neigh-
borhood and instead regularized the method by the assumption of
isometry, i.e., the reference frame transformation is given by an
approximate Killing field. Prior to the search for steady reference
frames, other approaches have been followed to find a distinguished
reference frame for unsteady flow, including the subtraction of the
harmonic vector field component found by a Helmholtz-Hodge
decomposition [Wie04, WGS07, BPKB14] and reference frames de-
rived from a Galilean-invariant topology that is based on an analysis
of the determinant of the Jacobian [BHJ16].

3. Synthetic Generation of Vector Fields

We propose an end-to-end approach that combines preprocessing
(smoothing) and feature extraction (reference frame extraction) to
compute for a possibly noisy unsteady vector field the reference
frame transformation in which the flow becomes steady. To train the
model, we first synthetically generate a large data base, containing
thousands of vector field patches.

3.1. Parametric Mixture Model for Vector Fields

If enough diverse real-world training data was available, vari-
ational autoencoders [KW13] or generative adversarial net-
works [GPAM∗14] could be used to synthesize further training data.
In our work, we incorporate experimental observations [VKM91] to
formulate an explicit parametric vector field mixture model that is
specialized on vortices. As shown later, it generalizes to other flow
features. Our analytic model is readily available to everyone, and
works without a large flow data base.

3.1.1. Vatistas Vortex Velocity Profile

Since we are later mainly interested in vortices, we make use of
Vatistas [VKM91] experimentally-obtained vortex velocity profile.
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With rc being the radius with maximal velocity, the tangential flow
velocity v0(r) of a rotationally-symmetric unit vortex is:

v0(r) =
r

2πr2
c

(
( r

rc
)2n +1

) 1
n
. (5)

This equation was taken from Bhagwat and Leishman [BL00], who
formulated the model for varying vortex radii. Note that Vatistas’
vortex model contains other well-known vortex models as special
cases, such as the Kaufmann vortex [Kau62] (for n = 1) and the
Rankine vortex (for n→∞). Thus for increasing n, the behavior
near the critical point becomes linear. For n = 2, Vatistas model is
similar to the Lamb-Oseen vortex model [Ose12]. Note that Eq. (5)
denotes the radius r in absolute values, rather than being relative to
rc as in the literature [BL00]. The different vortex models are shown
in Fig. 2. We leave the core radius rc and the shape exponent n as
degrees of freedom in the parametric model.

3.1.2. Parametric Mixture Model

Based on Vatistas velocity profile v0(r) in Eq. (5), we define a steady
flow primitive vp with a critical point at t = (tx, ty) as:

vp(x,y) =
[

dx cx
−cy dy

](
x− tx
y− ty

)
· v0(

√
(x− tx)2 +(y− ty)2)√
(x− tx)2 +(y− ty)2

(6)

with the physical meaning that c = (cx,cy) describes the vortical
motion and d = (dx,dy) denotes the in-flow and out-flow. In total,
each primitive has eight degrees of freedom: cx, cy, dx, dy, tx, ty,
rc, and n. Depending on the parameterization, a range of different
flow structures appear, including vortices, sinks, sources and saddles.
Different instances of the model are shown in Fig. 3. By restricting
the above parameters, it would be possible to incorporate additional
domain knowledge, for instance, by concentrating on divergence-
free flows only. We used the full range of all eight parameters to test
the limits of a general model.

Since our vector field patches might contain multiple critical
points, we use a mixture model of m flow primitives:

v(x,y) =
m

∑
p=1

vp(x,y) , (7)

which in general results in 8m parameters. To find physically plau-
sible parameter configurations, we fit the above mixture model to

Figure 2: Plot of common vortex velocity profiles. Starting from the
center, the tangential velocity increases up until a certain maximum
(here at rc = 1). Afterwards, it decays with increasing distance. The
Vatistas model [VKM91] contains Kaufmann [Kau62] for n = 1 and
Rankine for n→∞ as special cases. For n = 2, Vatistas is similar
to the Lamb-Oseen model [Ose12].

|vp| : 0 0.15

c = (1,1), d = (0,0),
t = (- 1

2 ,-
1
2 ), rc = 1, n = 2

c = (0,0), d = (1,−1),
t = ( 1

2 ,
1
2 ), rc = 3, n = 8

c = (1, 1
2 ), d = (1,1),

t = (0,0), rc = 2, n = 2

Figure 3: Examples of steady 2D flows, generated by our model in
Eq. (6). Here, shown for the spatial domain D = [−2,2]2 .

patches of a numerical data set, which we describe next. Other
approaches to formulate a model are discussed later in Section 6.

3.1.3. Parameter Space Fitting

Eq. (7) gives rise to a large number of different vector fields, which
leads to two questions to answer: how can we restrict the parameter
space to physically-plausible flows and are there flows that cannot
be captured by the model? To answer these questions, we fit the
above model to numerically simulated vector fields. Since we are
aiming for a vector field collection that represents flows in optimal
near-steady reference frames, we first extract the optimal reference
frame with the approach of Günther et al. [GGT17]. Since the pa-
rameters in Eq. (7) are non-linear, we first use 200 iterations of
simulated annealing, which is followed by further 200 iterations of
gradient descent to settle into the local minimum. Fitting a vector
field requires a distance metric between vector fields. In this paper,
we use an L1 distance with gradients, which was introduced by Kim
et al. [KCAT∗18] in the context of velocity reconstruction using
CNNs. They introduced two metrics: one for divergence-free flows
and one for compressible flows. Since we do not constrain the pa-
rameter range in our parametric model in Eq. (6), we opt for the
more general distance metric for compressible flows:

L(v̂,v) = ||v̂−v||1 +λ||∇v̂−∇v||1, (8)

where v̂ and v are the vector fields to compare, and λ is a weight
for the gradient difference. In practice, we use λ = 1, as it gives
lower residuals than for λ = 0 or for the L2-norm (Mean Squared
Error), as shown in Appendix A. Fig. 4a shows a heat map in the
CYLINDER flow, displaying for each voxel in the domain, how
closely we could fit the numerical data with our parameteric mixture
model. It becomes apparent that obstacles are not well represented
in the model, but the remainder of the domain is approximated
well. Below in Fig. 4b, individual patches of the domain are shown,
displaying how closely the mixture model matches the numerical
data for the varying numbers of model components m. For m = 3,
we achieve a high accuracy, and we thus use m = 3 models later
during the vector field synthesis. Finally, Fig. 4c shows histograms
of the individual parameters. The histograms are used in the next
section to sample further vector fields. In Appendix B, additional
fitting results are shown for the BOUSSINESQ vector field.

3.1.4. Sampling of the Parameter Space

The histograms in Fig. 4c characterize the distribution of model
parameters needed in order to generate further vector field patches
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|1− v̂/v| : 0 1

m
=

1
m
=

2
m
=

3

(a) Heat maps of the fitting residual for varying number of mixture model
components m. The higher m, the lower the residual. Obstacles are not yet
contained in the parametric flow model.

m = 1 m = 2 m = 3 reference
(b) Fitting results for selected vector field patches. The fitting improves with
more degrees of freedom, i.e., for a higher number of models m.

(c) Histograms of the individual model parameters, showing the near-
Gaussian distribution of the individual parameter values.

Figure 4: Fitting results for the CYLINDER flow, showing that our
parametric flow mixture model approximates numerical data well.

of similar type. We individually approximate the distribution of
each model parameter (cx, cy, dx, dy, tx, ty, rc, and n) by a separate
Gaussian distributionN . The mean and standard deviation of each
component are shown in Fig. 4c. In order to sample more flows,
similar to the CYLINDER flow, the correlation between the random
variables would have to be accounted for. In order to span a wider
range of vector fields, we purposefully neglect the correlations and
sample each variable independently. This means, we sample each
Gaussian in Fig. 4c, and insert the resulting parameters into the

parametric model in Eq. (7), resulting in a new analytic vector
field. Since the sampling process is computationally cheap, we can
quickly synthesize thousands of vector field patches in order to train
a convolutional neural network for reference frame extraction, as
we describe next.

4. Deep Learning of Reference Frame Extraction

4.1. Overview

In this paper, we propose a convolutional neural network that spans
two stages of the visualization pipeline: the filtering and the fea-
ture extraction. By combining both in an end-to-end fashion, the
reference frame extractor can easily be conditioned to handle noisy
inputs and data with resampling artifacts. During our supervised
learning, we teach the network pairs of unsteady vector fields and
their corresponding optimal reference frame transformation. These
training examples are generated by transforming a steady vector
field into an unsteady reference frame. By distorting the input data,
the network learns to undo artifacts, which greatly improves robust-
ness and helps in subsequent feature extraction tasks, such as the
detection of vortex centers, which we demonstrate later. The follow-
ing sections introduce the network architecture and the generation
of the training data in more detail.

4.2. Architecture

We build our network as a form of typical CNN as seen in Fig. 5.
The first part of our CNN consists of 3D convolutional kernels.
In this part, the dimension reduction is performed for the feature
extraction with a kernel size of 3× 3× 3 and strides of 2× 2× 2,
followed by a batch normalization and a rectified linear unit (ReLU)
layer. The size of the filter is doubled starting from 64 to maximally
1024. With input 2D unsteady fields v∗ ∈ RT×H×W×2, the number
of convolutional layers is calculated by n = log2max(H,W )− 2,
and the output dimension of last convolutional layer would be
max( T

2n ,1)× H
2n × W

2n ×min(64n,1024). The second part of our net-
work exploits fully connected layers instead of convolutional filters
for the final inference from identified high-level vortex features.
Batch normalization and a ReLU layer are followed same as convo-
lutional layers, and a dropout with the probability of 0.1 is used to
avoid overfitting. Note that we infer the first and second-order deriva-
tives of the reference frame transformation Q̇,Q̈, ċ, c̈ in 2D. Here
we denote them as a 6-dimensional parameter vector [θ̇, θ̈, ẋ, ẏ, ẍ, ÿ].

𝐯∗: 5 × 16 × 16 × 2

1024

512

ሶθ, ሷθ, ሶ𝐜, ሷ𝐜

6

Figure 5: Our CNN Architecture. The numbers below each box
represent the dimension of feature maps.
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Steady Field Unsteady Field Degenerated Field

Figure 6: Examples of training data pairs. From left to right, steady
field, transformed unsteady field and distorted field. You can see
some spots on magnitude plots of degenerated flows.

4.3. Data Sets

We synthesize our data set based on Vatistas velocity profile as
described in Section 3. Once a 2D steady field is generated by a
super-position of three models with sampled parameters, we build
unsteady vector fields by applying a reference frame transformation,
followed by degrading with varying degrees of additive uniform
noise (i.e., white noise) and down-up resampling. For simplicity we
chose white noise during training, but we also test the network on a
data set that was corrupted with Gaussian noise.

4.3.1. Training Data

As described in Section 2.2.2, we transform each 2D steady vector
field to an unsteady 2D vector field. Note that parameters for the
rotation and translation [θ̇, θ̈, ẋ, ẏ, ẍ, ÿ] are uniformly sampled. Then,
we degrade it by adding uniform noise and down-up resampling,
which is designed to simulate a general degeneration in a data
acquisition system. The number of samples is 30,000 and the data set
for training and testing is split into the ratio of 9:1. Some examples
of the training data are illustrated in Fig. 6. We refer to Section C
for details about each operation.

4.3.2. Numerical Data for Validation

After training, we have validated our neural network on the CYLIN-
DER data set. As the input window size of our CNN is fixed, we
have evaluated this data set by sliding a lookup window over the
entire domain. In order to evaluate the CYLINDER flow, which has
a resolution of 5× 80× 640, we slide a lookup window of size
5×16×16 with the stride 1 and sequentially predict parameters for

the center pixel. (e.g., 159 steps for 40,625 windows with a batch
size of 256).

Patch Normalization Since the training data set is defined in the
2D unit domain (i.e., X̄ × Ȳ × T̄ = [−1,1]3), input patches of nu-
merical data sets are also scaled into this domain. Thus, given veloc-
ity patch slices vp : X ×Y ×T → X ×Y , defined in the domain
X ×Y ×T = [xmin,xmax]× [ymin,ymax]× [tmin, tmax], we compute
v̄p in the unit domain via:

v̄p(x) =

[
tmax−tmin
xmax−xmin

0
0 tmax−tmin

ymax−ymin

]
vp(x). (9)

Furthermore, we globally normalize the magnitude of the training
data to [−1,1] during training. Thus, re-scaled patches from the val-
idation data set are finally normalized by the same factors that have
been applied to the training data before it was fed to the network.

4.4. Implementation

We implemented our convolutional neural network (CNN) using
Keras [C∗15] with Tensorflow [ABC∗16] as backend. The networks
are trained on each data set for 300 epochs using an Adam opti-
mizer [KA15] with a learning rate of 0.001 and the mean squared
error (MSE) loss function. We chose a batch size of 256. Finally, the
model is selected, which shows the minimum test error during train-
ing. All visualizations were created with the visualization toolkit
Amira [SWH05].

5. Result

In the following sections, we first apply our network to synthetic
data generated with our parametric mixture model, before testing
it on the reference frame extraction from unseen numerical data.
Afterwards, the performance is discussed.

5.1. Training and Testing on Synthetic Data

As baseline, we compare our method with the linear reference frame
optimization by Günther et al. [GGT17] on a synthetic data set,
generated as described in Section 3.1.4 with a 1% noise-to-signal
ratio in the normalized domain. We compute the mean-squared error
on the inferred parameter vector of the test split, and our CNN
shows not only visually more plausible results it also obtains up to
two orders of magnitude lower time partial residuals than the linear
optimization method, as shown in Fig. 7. Our method therefore
passes the first test: outperform the baseline on synthetic flows
similar to the ones seen during training.

5.2. Validation of Network on Numerical Data

Next, we apply our network to unseen numerical data to evaluate
how well the network generalized, given its synthetic training data.

5.2.1. Robustness

By feeding a patch of voxels into the network, the CNN has enough
information to learn proper smoothing and filtering kernels, such
that noise and resampling artifacts can be compensated. To test the
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Linear opt. (1.09e-2) Ours (2.13e-4) Ground Truth

Figure 7: Results of vortex extraction on test splits. The numbers in
parenthesis are MSE, and our method robustly handles degenerated
flows where linear optimization method fails.

numerical robustness, we introduce varying degrees of noise and
resampling artifacts into the unseen validation data, and compare
the network output to the linear optimization.

Error Metric. As error metric, we use the reference frame trans-
formation obtained by the network or by the linear optimization,
respectively, in order to transform the non-distorted unsteady vector
field back into its steady frame. In the resulting frame, we calculate
the time partial derivative, which ideally becomes zero, i.e.,

vt(x, t) = v∗t (x, t)+ Q̇v(x, t)+ Q̈x+ c̈− [J(x, t)+ Q̇] · [Q̇x+ ċ]
(10)

If |vt | = 0, the network successfully found the reference frame
transformation, despite the presence of noise.

Quantitative Experiment. We use the CYLINDER flow as bench-
mark. In this vector field, the swirling strength of the vortices reduces
over time, due to numerical dissipation and viscosity, which means
that vortices become weaker. As the angular velocity magnitude
decreases down the flow, the influence of the artificially added noise
becomes stronger, causing errors in the linear optimization [GGT17]
that are discussed later in Section 6 and can be seen in Fig. 1. In con-
sequence, not all vortices are detected. Since our CNNs have seen
resampling artifacts and noise during training, they robustly recover
the reference frame in all areas of the domain even for different
levels of degeneration as seen in Fig. 8.

Noise Type Experiment. In Fig. 9, we applied our network (trained
on 1% uniform noise and with resampling artifacts) to a data set
with 1% of Gaussian noise. Since the results are very similar, our
network also seems to handle this type of noise well. For higher
noise magnitudes, differences will start to appear and then it will be
better to train the network with Gaussian noise.

(a) Plots of the time partial for comparison on different types of flow degener-
ation. The left plot shows the robustness of each method on different levels of
resampling without noise, and the right plot shows the one on different noise
levels without resampling.

L
in

ea
rO

pt
.

O
ur

s

(b) Results of the reference frame optimization on the resampled CYLINDER

data set with the factor of 5.
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(c) Results of the reference frame optimization on noise-added CYLINDER

data set. The ratio of noise to the maximum magnitude of flow is 0.01 (1%).

Figure 8: Study of robustness for different levels and types of de-
generation in the CYLINDER flow. Our method shows robust perfor-
mances for various degradations. In this experiment, the network
was trained for 1% noise and with resampling artifacts.
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Figure 9: Results of our CNN-based reference frame optimization
on two different types of noise in the CYLINDER flow. During train-
ing only uniform noise was seen by the network (1% magnitude).

Noise Magnitude Experiment. In order to study the behavior of
our network under a stronger influence of noise, we retrained the
network and introduced for each patch up to 10% of white noise
(uniformly sampled from 0% to 10%) and applied our CNN at
testing time to data with 1%, 5% and 10% of noise. The results
are shown in Fig. 10. In this comparison, we also tested how much
prior Gaussian smoothing (3 iterations using a 7× 7 filter kernel)
helps the linear method, i.e., the preprocessing is done explicitly
before the reference frame extraction. For small noise magnitudes,
smoothing helps, however, smoothing also affects the position of
the vortex core. Especially for large noise ratios, the CNN-based
method recovers the reference frame better. Without prior smoothing
the linear method removes almost no ambient motion, keeping the
dominant downstream ambient motion of the input flow.
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(a) Results of the reference frame optimization on noise-added CYLINDER

data set. The ratio of noise to the maximum magnitude of flow is 0.01 (1%).
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(b) Results of the reference frame optimization on noise-added CYLINDER

data set. The ratio of noise to the maximum magnitude of flow is 0.05 (5%).
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(c) Results of the reference frame optimization on noise-added CYLINDER

data set. The ratio of noise to the maximum magnitude of flow is 0.1 (10%).

Figure 10: Comparison of robustness of vortex extraction methods
on different levels and types of degeneration on CYLINDER flow.
Our method shows robust performances for various degradation,
although it has not seen them during training. For the noise exper-
iments, we also show results of the linear method [GGT17] after
applying Gaussian smoothing to the noisy input vector field.

5.2.2. Temporal Coherence

To demonstrate the temporal consistency of our results, we show
the paths of vortex cores in space-time in Fig. 11. While the vortex
corelines resulting from the linear optimization are disconnected
and partially missing on noisy data, our method finely extracts the
corelines, which are almost identical to the results of the linear
optimization on the original data.

5.3. Performance

In the following, we provide timing measurements of our CNN-
based approach, compared to the linear optimization [GGT17]. All
measurements were taken with an 8GB NVIDIA GTX 1080 GPU
and an Intel i7-6700K CPU at 4.00 GHz with 32 GB memory.
Generating the 30,000 training patches took in total about 37 seconds
(24 seconds to compute the unsteady flow patches and 13 seconds
to compute the steady ground truth). The training takes roughly
10 minutes and the size of the resulting network model is 20.9
MB in HDF5 file format. Our method takes 22ns on average for a
feed-forward evaluation of a single patch (5.63ms per batch). Our
method takes a constant evaluation time for a single batch. However,

the batch size is limited by the GPU memory, and it makes our
computation time linear in the number of local patches over the
whole domain. For instance, in the CYLINDER data set a slice batch
with resolution 5× 80× 640, takes about 0.893s, while the linear
optimization method takes 0.366s. Note, however, that our local
patch estimation is scalable to the number of available GPUs.

6. Discussion

Limitations. The generalization capacity of a supervised learning
approach is always limited to the data that was seen during training.
At present, our network has not seen obstacles or boundary data. In
the future, we plan to expand the training data to also include wall
velocity profiles. As shown in Appendix B, our parametric mixture
model is not yet expressive enough to approximate turbulent and
small-scale structures accurately. The optimal choice of model
parameters m also depends on the patch size, which we currently
assume to be constant. In the future, we would like to explore scale-
space approaches that look for optimal frames at different patch
sizes. Since the time partial residual can be evaluated, the best patch
size could be selected automatically. Further, we concentrated on
2D time-dependent data. A natural next step is the extension to 3D.

Choice of Basis. There are several other options to form the para-
metric vector field model than the approach we described in Sec-
tion 3.1.2. Standard basis functions would be imaginable, such as
monomial, Chebyshev and Fourier basis functions. While those op-
tions have an orthogonal basis, our primitives have a strong prior,
since they are derived from models that were fit to experimental
data [VKM91]. In the context of vector field design, radial basis
functions have been used to combine primitives [ZMT06], which
gives more intuitive results than adding them up. Whether this is
closer to observational data or whether it helps a CNN to pick up
the flow patterns remains to be explored in future work.

Noise in Linear Method. Our experiments have shown that noise
can have a significant impact on the linear method [GGT17]. Even
though, the linear method fits a reference frame transformation
to a spatial neighborhood (which has a spatial smoothing effect),
there is no smoothing over time. Further, the second-order accurate
finite differences are particularly prone to noise. Adding noise of
only 1% to v in the CYLINDER flow already increased the noise
level in the time partial vt by 14%. This increase is also dependent
on the temporal resolution, since for higher grid resolution the
noise in the time domain is more high-frequent. We found in Fig. 8
that smoothing can help to some extent. Our CNN-based approach
removes the noise implicitly. The global optimization of Hadwiger
et al. [HMTR19] also requires the time partial vt . It remains to be
tested, whether a high noise level on vt also influences their result.

7. Conclusion

In this paper, we developed a convolutional neural network that
extracts the reference frame in which a given unsteady 2D vector
field becomes steady. In such a reference frame, features such as
vortices are no longer hidden by ambient motion. To increase the
robustness to noise and resampling artifacts, we trained our network
on distorted inputs, which significantly improves the quality over a
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(a) Linear optimization on noisy data. (b) Our CNN-based approach on noisy data. (c) Linear optimization on original data.

Figure 11: Comparison of vortex corelines in space-time in the CYLINDER flow. Despite the noise and resampling artifacts our CNN recovers
the reference frame well, so that vortex corelines can be extracted as cleanly as with the linear optimization [GGT17] on the original data.
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Figure 12: Heat maps of the fitting residual for different vector field
distance functions. The mean relative distances are 0.2028, 0.1947
and 0.1906, from top to bottom.

linear optimization. In order to generate the required training data,
i.e., patches of vector fields, we developed a parametric vector field
mixture model that is based on Vatistas’ experimentally obtained
vortex velocity profile. To parameterize the model, we fitted it to
numerical data and afterwards sampled thousands of training data
sets. Our work shows the great potential of deep learning for end-to-
end combinations of preprocessing and feature extraction.

In the future, we would like to increase the generality of our
method, for instance by training on other classes of reference frame
invariances, such as affine invariance. We would like to incorporate
further training data to obtain more generality, such as for modeling
obstacles and boundaries. Finally, we plan to further improve our
parametric mixture model by studying other basis functions and by
automatically selecting the patch size in a scale-space approach.

Acknowledgements. This work was supported by the Swiss Na-
tional Science Foundation Ambizione grant no. PZ00P2_180114.

Appendix A: Comparison of Distance Metrics

For the fitting of our parametric mixture model to numerical data,
we used the distance metric of Kim et al. [KCAT∗18], cf. Eq. (8).
Following their recommendation, we chose the L1 distance with
the gradient weight λ = 1. Fig. 12 presents fitting results for other
parameter choices, showing that the chosen distance metric is best.

Appendix B: Further Fitting Results

In addition to the CYLINDER flow, we fitted our parametric mixture
model to a more turbulent BOUSSINESQ flow. This data set contains

m = 1 m = 2 m = 3

Figure 13: Heat maps of the fitting residual in the BOUSSINESQ

data set for varying number of mixture model components m.

smaller structures that are more difficult to fit with only m = 3
mixture model components. From the results in Fig. 13, we conclude
that the optimal choice of m is data-dependent.

Appendix C: Parameters for data synthesis

Table 1 lists the parameters of our reference frame transformations.
The domain is scaled to the unit box, and the resolution is set to
5×16×16 both for computational efficiency and since objective
reference frame transformations are local operations. In fact, the
temporal derivative to minimize only depends on up to second-
order derivatives [GGT17]. Given the unit domain and its resolution,
parameters for the transformation are set at a moderate level.

PARAMETER DESCRIPTION VALUE

Ω Domain [−1,1]× [−1,1]× [−1,1]
T,H,W Resolution of the domain Ω (time, height and width) 5×16×16
θ̇ Range of the first-order derivative of the rotation Q̇ [−0.3,0.3]
θ̈ Range of the second-order derivative of the rotation Q̈ [−0.01,0.01]
ẋ, ẏ Range of the first-order derivative of the translation ċ [−0.3,0.3]× [−0.3,0.3]
ẍ, ÿ Range of the second-order derivative of the translation c̈ [−0.01,0.01]× [−0.01,0.01]
α Range of uniform noise [−0.01,0.01]
β Down-up resampling factor 0.5

Table 1: Common parameters for data synthesis and analysis.
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