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Abstract

Dynamical systems are commonly used to describe the state of time-dependent systems. In many engineering and control
problems, the state space is high-dimensional making it difficult to analyze and visualize the behavior of the system for varying
input conditions. We present a novel dimensionality reduction technique that is tailored to high-dimensional dynamical systems.
In contrast to standard general purpose dimensionality reduction algorithms, we use energy minimization to preserve properties
of the flow in the high-dimensional space. Once the projection operator is optimized, further high-dimensional trajectories are
projected easily. Our 3D projection maintains a number of useful flow properties, such as critical points and flow maps, and is
optimized to match geometric characteristics of the high-dimensional input, as well as optional user constraints. We apply our
method to trajectories traced in the phase spaces of second-order dynamical systems, including finite-sized objects in fluids, the
circular restricted three-body problem and a damped double pendulum. We compare the projections with standard visualization
techniques, such as PCA, t-SNE and UMAP, and visualize the dynamical systems with multiple coordinated views interactively,
featuring a spatial embedding, projection to subspaces, our dimensionality reduction and a seed point exploration tool.
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o Human-centered computing — Visualization techniques; Scientific visualization;
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1. Introduction

The interpretation of high-dimensional data is challenging, since
humans are used to three dimensions. As computational resources
become more powerful, numerical simulations of dynamical pro-
cesses model more and more variables, which effectively increases
the dimensionality. Dynamical systems are time-evolving processes
that can be interpreted as high-dimensional flows (so-called phase
flows) which are embedded in a high-dimensional space (so-called
phase space). Examples are the trajectories of spacecraft [MQ14],
the evolution of a pendulum [LLOO], and the motion of finite-
sized objects in fluids [BRGG18]. In general, it is not meaningful
to simply project a high-dimensional vector field to lower dimen-
sions and to trace particles in the low-dimensional projection. De-
pending on the projection, this can lead to different conclusions.
Our goal is to find a low-dimensional projection of a given set of
high-dimensional trajectories such that certain characteristics of the
high-dimensional flow are maintained. To this end, we introduce a
projection operator that maintains useful flow properties by con-
struction, e.g., critical points in the high-dimensional space remain
critical points after projection. Since flow maps are preserved, our
approach can be applied to study stable sets, for instance to deter-
mine spacecraft trajectories that lead to the same celestial object.
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The projection is optimized to preserve tangent curve properties,
such as curvature, tangent magnitude, as well as density. To pa-
rameterize our projection, we use tensor products to represent an
explicit multivariate polynomial map. We compare our projection
method to existing dimensionality reduction techniques, including
t-SNE, UMAP and PCA, and apply our algorithm to a number of
different dynamical systems. Among others, our method has the
immediate advantage that further trajectories can be projected eas-
ily, once the projection operator was optimized. We explore the
projection result for varying initial conditions using multiple co-
ordinated views, featuring a spatial 2D/3D embedding, subspace
views, our dimensionality reduction and a seed point exploration
tool. In summary, the contributions of our paper are the following:

e We formalize the projection of a high-dimensional vector field
and describe its local and integrated flow properties.

o We formulate the projection as tensor product and optimize the
projection for varying polynomial degrees.

In order to demonstrate the method, we apply the projection to in-
ertial particles in fluids, to the motion of small objects in the Earth-
Moon gravitational system, and to a damped double pendulum.

Notation. Throughout the paper, we print low-dimensional vectors
in bold letters x and high-dimensional vectors with overlines X.
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2. Related Work

First, we introduce the dynamical systems that we will use to evalu-
ate our projection method. Afterwards, we describe recent work on
dimensionality reduction and high-dimensional flow visualization.

2.1. Dynamical Systems

Dynamical systems describe the evolution of states, typically
through ordinary differential equations (ODEs) [Per13]. Their
modeling is the subject of research in mathematics and many en-
gineering and control problems. We will use second-order ODEs,
where we reserve a(x, v) as a general acceleration field:

., dx d(x v
® = & (V) - (a(x,v)) @

Note that the acceleration field a(x, v) may depend on both the gen-
eralized position X and its generalized velocity v, where general-
ized means that X is not necessarily a physical spatial coordinate,
but could also represent another variable that parameterizes the dy-
namical system, for instance the angle of a pendulum. The trajec-
tory X() of a state arises by numerical integration of a streamline

in the above high-dimensional vector field, using dfi(tl ) — v(X(¢)).

Throughout the paper, we work with three dynamical systems.
The first system describes the motion of finite-sized objects in flu-
ids [CST98], which are also known as inertial particles. The sec-
ond system governs the motion of a small object in the gravita-
tional field of two massive objects, which is the so-called circular
restricted three-body problem [Lag72,MQ14]. Finally, we visualize
the evolution of a damped double pendulum [LLOO], in which the
state is expressed by angles rather than positions. The acceleration
fields of all three systems are given in Appendix A.

2.2. Multi-dimensional Data Visualization

In information visualization, many techniques for visualizing high-
dimensional data have been developed over the past decades,
as recently summarized by Liu et al. [LMW™16]. In this sur-
vey, three main categories were proposed based on their location
in the visualization pipeline. The first category focuses on data
transformation and involves a wide range of techniques focused
on projection-based dimensionality reduction [PEP*11], subspace
clustering [LT15] and topological data analysis [WSPVIJ11]. The
second category represents visual mappings, where data is encoded
onto method-defined axes and specific plot types [LT13,CVW11],
often enhanced with various glyphs [War(08], animations [EDFO08]
and hierarchical views [OHJ*11]. The third category contains
methods that focus on screen space and rendering, which includes
techniques that extract additional shading features from simple data
representations [SW09, MG13] or aim to find a view that reduces
visual clutter [AdOL04]. Our work falls into the first category.

2.3. Dimensionality Reduction

Several approaches exist to reduce the complexity of ODEs [RTO05].
Geometric reduction detects symmetries [BKMM96], whereas
model reduction uses approximations [Ant05, TAJP07]. We sim-
ulate solutions in the original ODE and project the solutions into a

low-dimensional space. Next, we visit several standard dimension-
ality reduction techniques. Principal component analysis [Hot33]
(PCA) forms a linear orthogonal basis, in which the coordinate
axes are ordered with respect to data variance. For reduction, the
axes with the highest variance are chosen. Many extensions have
been developed based on nonlinear techniques such as Kernel PCA
[SSM98]. t-SNE [MHOS] is a nonlinear dimensionality reduction
technique where each observation in high-dimensional space is
modeled by a point in a 2D or 3D space. The relationships be-
tween points in the high-dimensional space are modeled with Gaus-
sian probability distributions which are then recreated for the cor-
responding projections in low-dimensional space with the help of a
Student t-distribution. t-SNE is frequently used [GHS* 19] and was
optimized for performance [CRHC18, PTM*19]. Uniform mani-
fold approximation and projection [MHM18] (UMAP) is a man-
ifold learning technique used for nonlinear dimensionality reduc-
tion. This algorithm builds a weighted k nearest neighbor graph
to establish the structure within the data and then applies a force-
directed layout to optimize the low-dimensional graph representa-
tion. UMAP was applied for instance in biological data analysis
[BMH*19]. We refer to van der Maaten et al. [VDMPVdH09] and
Nonato and Aupetit [NA18] for a general entry to dimensionality
reduction methods. In flow visualization, Rossl and Theisel [RT12]
embedded streamlines by preserving Hausdorff distances. Han et
al. [HTW18] used autoencoders to embed a binary voxelization of
line and surface geometry in a latent space.

2.4. High-Dimensional Flow Visualization

In scientific visualization, several feature extraction algorithms
have been extended to higher-dimensional flows [LMGP97], in-
cluding the analysis of finite-sized particles in fluids. For instance,
Giinther et al. extracted critical points in the high-dimensional
phase space [GG17] and extracted attracting manifolds via back-
ward integration of inertial particles [GT17]. Due to the structure
of the inertial phase space, a globally attracting manifold [MBZ06]
exists that was visualized by Baeza Rojo et al. [BRGG18]. Tricoche
et al. [TGS11] studied area-preserving maps in Hamiltonian sys-
tems. The Lagrangian coherent structure of n-body problems have
been visualized by Sagrista et al. [SJJ*17]. Hofmann et al. [HRS 18]
classified and extracted critical points in 4D spaces and devel-
oped a camera projection for navigation. Recently, Amirkhanov
et al. [AKS™19] developed a system that allows users to explore
all combinations of subspace projections of 4D trajectories. While
the topology of high-dimensional flows is increasingly better un-
derstood, we still lack embeddings in low-dimensional spaces that
convey the high-dimensional flow patterns in an intuitive manner.

3. Phase Space Projection of Dynamical Systems

In this paper, we develop a new energy minimization approach to
reduce the dimensionality of high-dimensional vector fields. First,
we introduce the unknown of the minimization: a differentiable
map that takes a high-dimensional flow to a low-dimensional do-
main. After describing the properties of the map, we formulate an
energy function that rates any given map and present our optimiza-
tion method in Section 4, which finds projections that follow certain
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geometric and user-defined constraints. The resulting projections
are explored in Section 5 using multiple coordinated views.

3.1. Projection of a Vector Field

Our goal is to find an explicit, differentiable map P(X) that takes
an m-dimensional point X € D C R™ to an n-dimensional point
x € D C R", where D and D are the input and output domain,
respectively. With n < m, our map is non-invertible:

x =P(X) @)

By considering the projection of a high-dimensional streamline
X(¢) and by computing its material derivative, we see with Eq. (2)
how a streamline tangent behaves under transformation with P(X):

dx(r) _ DP(X(1))

dr Dt 3)
_ 9P(x(1)) dx(1)
X dt )

Since streamlines are tangent curves of a vector field v(X(r)) =

did(t’) , a high-dimensional flow ¥(X) is projected by Eq. (4) to:

¥(x) = VP(X) -¥(X) )
Likewise, the acceleration of the streamlines is transformed to:

_ Dv(x) _ D’P(X)

a(x) Dt~ D ©®
= Div;:(i) -¥(X) + VP(X) -a(x) @)

= (V(VP(x))-¥(x)) -¥(x) + VP(x) -a(x) ®)

3.2. Streamline Properties

Given a projection operator P and knowing from Egs. (5) and (6)
how V and a are projected to v and a, we can measure geometric
properties to later define an energy that rates a given projection P.

Curvature. In any dimension, the streamline curvature k(X) before
projection and the curvature k(x) after projection are:

- _ VIVIPlal? - (v-2)? K(X):\/HVIPIIaHZ—(V'a)z

K =
®) B ’ e

&)

Intuitively, we consider the high-dimensional streamlines and their
projections to be curves embedded in a Euclidean space, in order to
use their curvatures as similarity measure across dimensions.

Tangent Magnitude. In addition, we calculate the tangent magni-

tude before projection 8(X) and after projection 8(x):

dx(r)
dr

dx(r)
dr

(10)

N

‘ dP(X(1))

2 2 ‘ 2

Matching the tangent magnitude in the output domain with the tan-
gent magnitude of the high-dimensional input domain preserves the
differences between slow and fast flow regimes.
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3.3. Properties of Projection

Our projection P(X) has a number of useful properties, which we
describe in the following.

Tangent Curves. Consider a high-dimensional tangent curve X(T)
that is integrated for duration 7, starting at X(fp) = Xo.
to+1T

X(1) =X+ V(X(1)) dt (11)

4]
Since P(X) is differentiable, we obtain a continuous tangent curve
x(t) in the low-dimensional space. With Eq. (2), the seed point
is projected to X9 = P(X(). Furthermore, by applying Eq. (5) we
obtain the curve by projection:

fo+T
x(7) = P(X(7)) = P(Xo) + VP(X(1))-v(x(1)) dr  (12)
fo
Every point of a high-dimensional curve is projected onto a low-
dimensional curve, i.e., flow maps are preserved by construction.

Critical Points. Another desirable property is that every critical
point € in the high-dimensional flow is always mapped to a critical
point ¢ in the low-dimensional flow. With Eq. (5), the requirement
is fulfilled by construction:

Vv©)=0 = v(c)=VP()-0=0 (13)

The projection generates critical points everywhere in the low-
dimensional space when VP = 0. In this degenerate case, we would
have P = const, which never occurs in practice due to the regular-
izing effect of the energy terms.

Stable Sets. In dynamical systems, the stable set S(c¢) of a criti-
cal point ¢ is the union of all seed points in domain D that lead
asymptotically to ¢ [Per13]. Before and after projection, we have:

S(e) = {eyu{x e D: 3x(t),1) : X(to) =XA lim X(1) =¢} (14)
S(e) ={c}u{xeD:3x(r),1 : x(tp) = x/\tgnolox(t) =c} (15)

Since flow maps are preserved, we directly retain stable sets, i.e.,
P(S(c)) = S(c). Later, we will use colors to visualize trajectories
that originate from the same stable set. In the past, Giinther and
Theisel [GT16] visualized cross sections of the stable sets, which
were decaying into pieces due to the arbitrary placement of the
cross section. In a differentiable dynamical system, stable sets are
connected components, which are preserved under our projection.

4. Optimization of Projection

The previous section introduced an abstract projection operator
P(X) and described its differential properties. In this section, we set
out to find a desirable projection for a given set of high-dimensional
trajectories X = {X(¢)}. For this, we define an energy E that rates
a given projection P by penalizing undesired behavior. Afterwards,
we describe how projection P is defined, which we formulate com-
pactly as a tensor product.

4.1. Energy Minimization

The search for an optimal projection requires an energy function
that computes a score for a given map. In the following, we in-
troduce a number of energy terms that are eventually combined to
form the full energy.
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Geometric Costs. The first two terms specify geometric properties
of the tangent curves. Since tangent curves are numerically inte-
grated, let X; be the discrete points of tangent curve X(¢). Using the
curvature k(X) as defined in Eq. (9), we minimize the difference
between the high-dimensional and the low-dimensional curvature,
summed up over all curves X(t) € X in the user-defined set X.

Ec=Y /t T () — (%)) dr (16)

xcx /1l
~ Y ¥ (k&) -x(x)) A (17
REX X;EX
Similarly, we use Eq. (10) to minimize the difference in tangent
magnitude between low-dimensional and high-dimensional curves.

Es= ), / ECCREIR (18)
xex

Y Y 3x)—3(x)Ar (19)

XeX X;EX

%

Neighborhood Cost. When multiple streamlines are part of the in-
put set X, we include neighborhood information into the optimiza-
tion. For a discrete high-dimensional curve point X; € X(¢) we de-
note the set of the k closest discrete neighboring curve points as
Ng, C X\ X(r) with k = |[NV|. With this, we define the energy term:

=Y ¥ Y (Pmy)-eny)) @0

XEX XEX §,EN

where d”(x,y) denotes the Minkowski distance. In our experi-
ments, we set p = 2, which corresponds to the Euclidean distance.
This neighborhood term ensures that the distance to nearby trajec-
tories is preserved after projection. In practice, we set k = 10 for all
experiments. Other choices are discussed later in Section 7.5.

Position Constraints. Moreover, users can place g optional con-
straints to pin down the projection at user-defined points, i.e.,
P(ﬁt) :qlfOI'l: {laaq}

Ep=Y (P@)-q)’ 1)

e

i=1

We demonstrate later that these constraints can be used to place
critical points at desired locations.

Total Energy. Finally, the terms above are weighted and summed
up to form the total energy, which we wish to minimize:

EZXKEK+>\.5E5+7\,NEN+)\.}7EP — min (22)

with A, Ag, Ay, Ap being user-defined weights. The weights can ei-
ther be normalized to sum up to one, or one of the weights is pinned
down. We set A = 1 in all examples. If not mentioned otherwise,
we set Ag = 1. Similarly, we set Ay = 1 when including neighbor-
hood constraints, unless specified otherwise. The parameters are
listed for all experiments and are studied later in Section 7.5.

4.2. Parameterization of Projection

In the previous sections, we introduced a differentiable projection
P(X), described its properties and defined an energy that rates the

quality of a given projection. Next, we describe how the projection
is modeled, i.e., what its degrees of freedoms are.

The projection P(X) takes an m-dimensional input coordinate to
an n-dimensional output. To obtain a differentiable map, we use
an n-dimensional component-wise multi-variate polynomial expan-
sion of degree d, which we express compactly as tensor product:

d | . .
=\ L uip(s). <
P(x) = L VP(X)-X (23)
i=

With this, derivatives are easy to calculate:

VP =Y (l_j 1)’V’P(i) X! (24)

i=1 :
An example of the tensor product expansion into polynomials is
shown in Appendix B for a mapping from 4D to 3D. The expansion
is analog for mappings from higher dimensions. The total number
of coefficients in this map is n(’”jd). In practice, we used expan-
sions up to polynomial degree d = 2 or d = 3. Other choices are
discussed later in Section 7.5.

5. Visual Analysis of Second-Order Dynamical Systems

Next, we devise an interactive visualization system that allows us
to explore the projections of high-dimensional trajectories.

Overview of the System. In order to visualize the behavior of
high-dimensional trajectories, we combine a number of coordi-
nated views. Each view sheds light onto different aspects of the
data. The first two views display selected subspaces, which is nec-
essary to obtain a spatial embedding and to get a glimpse of the
structures in the spatial domain and the velocity domain. The next
two views show the result of our projection and a visualization of
the energy residuals, which allows us to assess the quality of a pro-
jection with respect to the energy costs. Finally, the last view shows
us the projection for a range of different trajectories, i.e., we obtain
a quick overview of the seed point dependence, supporting the user
in the exploration. An overview of our views is given in Fig. 1.
Colors used to label different trajectories were selected according
to [GA10]. In the following, we explain each view in detail.

Spatial Embedding. Second-order ODEs of the form given in
Eq. (1) describe the state of a system using generalized positions
and velocities. If the dynamical system uses generalized coordi-
nates that do not directly translate to spatial coordinates, a co-
ordinate transformation is necessary to obtain meaningful spatial
embeddings. For example, the double pendulum in Eq. (27) is ex-
pressed in terms of angles, from which we can calculate the ex-
act joint and rod locations. Depending on the dimensionality of
the spatial domain, we either use an interactive 2D or 3D view, as
demonstrated in Fig. la. In all examples, trajectories are rendered
with illuminated streamline shading [ZSH96] and shadow projec-
tions to provide visual depth cues. Curves are animated to give a
sense of direction and to visually encode the tangent curve mag-
nitude. Whenever available, critical points of the high-dimensional
flow are visualized by colored spheres after projection.

Subspace View. For debugging purposes and to develop a general
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position velocity

N

(a) Spatial embedding

e

(b) Subspace view

(¢) Our projection

-

“

~ \ tangent magnitude ‘ P b g
! "" i b =

curvature 4 L2 -

(d) Residual plots (e) Seed exploration

Figure 1: Overview of our visualization system for a single high-dimensional trajectory in a DAMPED DOUBLE PENDULUM. (a) The spatial
embedding shows the spatial coordinates of the dynamical system in 2D or 3D. (b) The subspace view visualizes the generalized coordinates
in which the system is simulated. (c) Our projection reduces the domain to 3D. (d) The residual plots show how well the individual energy
terms are minimized. (e) The seed point exploration shows projections for different seed points. Color distinguishes curves or stable sets.

understanding of structures, symmetries and value ranges, we pro-
vide two subspace views onto the generalized positions and gen-
eralized velocities. Fig. 1b gives an example of symmetries visible
in the subspaces. Across all views, selected curve points can be
animated, showing the correspondence across views. If the gener-
alized coordinates directly translate to a spatial domain, the spatial
subspace and the aforementioned spatial embedding are the same.
For more than three generalized coordinates for position or veloc-
ity, dicing methods could be used to explore subspaces [EDFO08].

Projection View. The projection view in Fig. 1c shows our opti-
mized 3D embedding. Since the energy minimization is carried out
asynchronously, the user can observe how the output space is trans-
forming as the optimization is running. We refer to the video for an
example. Here, and also in all other views, we can color-code the
energy residuals, color each trajectory differently, or encode the
sink that is reached asymptotically in order to reveal stable sets. A
user interface allows the adjustment of energy weights and param-
eters, and the placement of optional positional constraints.

Residual Plots. The residual plots in Fig. 1d are a useful aid in the
adjustment of energy weights. For a selected optimized trajectory,
each energy cost term is visualized in form of two lines in a line
plot, where the horizontal direction encodes the integration dura-
tion. We plot the high-dimensional per-point tangent magnitudes as
a dark blue line, with the matching low-dimensional values in light
blue overlay. Similarly, we use a red line for the high-dimensional
curvature and an orange overlay for its low-dimensional counter-
part. Curvature is completely matched for the given example con-
figuration. This plot allows us to identify, how well the individual
constraints are met, which informs further weight adjustment.

Seed Point Exploration View. Due to the high dimensionality of
the input domain, it is difficult to quickly see how the seed point in-
fluences the resulting trajectory. Our goal is to show the smoothness
and stability of the projections. as we vary the seed points of the in-
put trajectories by small amounts. Inspired by multi-dimensional
stacking [GT16,SJJ*17,HG18], we tile the 2D display showing the
result of a different seed point in each tile. If multiple trajectories
are present in the scene, we employ a focus and context encod-
ing. For this, the selected trajectory is highlighted in full saturation,
whereas context trajectories are transparent in the background. Col-
ors identify trajectories or stable sets, depending on the application
task. In this view, similarities and differences can be quickly iden-
tified, which guides the exploration of the high-dimensional flow.

(© 2020 The Author(s)
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6. Implementation

The optimization of our projection requires the minimization of
the energy defined in Eq. (22). In the tensor product formula-
tion, our differentiable map is defined by polynomials and our un-
knowns are their monomial basis coefficients. For a polynomial
degree larger than one, the optimization problem becomes non-
linear. We perform the minimization with Ceres [AMO], a library
designed for large-scale nonlinear optimization. The gradients re-
quired for the solver are obtained using built-in auto-differentiation
feature. For comparison, we use the public Python implementation
of UMAP [MHM18]. For t-SNE, we used the reference Python im-
plementation with Barnes-Hut optimization present in scikit-learn
package [PVG™11]. We point out that recent GPU implementations
of t-SNE obtain far superior performance [CRHC18,PTM*19].

7. Results

Next, we apply our method to a number of dynamical systems,
study the properties of the projection, and compare with existing
dimensionality reduction algorithms that were designed for projec-
tion of points rather than curves. Unless stated otherwise, we set the
number of neighbors for UMAP to 10 and use a perplexity of 15 for
t-SNE. We employ the Euclidean distance metric in both methods.

7.1. Undersampling Stability

Ideally, the projection of a manifold is independent of its sampling.
To measure projection stability given the same initial conditions,
we conduct two experiments, where we vary the integration dura-
tion, but fix the time step, and another one vice versa. Undersam-
pling stability is important in situations where a dense sampling
is computationally infeasible. Fig. 2 presents the first experiment,
where we show results for PCA, t-SNE and UMAP next to our
method. Note that PCA is dominated by the higher variance in the
velocity subspace, giving it an almost disk-like appearance. Even
when recomputing t-SNE and UMAP multiple times, we could not
obtain projections that were similar across different integration du-
rations. In comparison, our projection is stable for the same initial
conditions, even when the duration of the simulation is changed. In
the second experiment in Fig. 3, we vary the time step of the sim-
ulation. Neither t-SNE nor UMAP have a consistent shape across
different subsampling scenarios. In contrast, our method keeps a
similar shape throughout. We omitted PCA here, since it gave re-
sults very similar to those in Fig. 2.
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n = 10,000

n=25,000

PCA

t-SNE

UMAP

Ours

Figure 2: Comparison of dimensionality reduction methods for a
single trajectory with varying number of integration steps n in the
CRTBP problem. PCA is dominated by the variance in the velocity
subspace. In contrast to t-SNE and UMAP, our projection already
reaches stable results with fewer vertices. Initial conditions for po-
sition and velocity are xg = (0.42,0)T and vy = (0,0.5)T, while
the simulation timestep is At = 10~2. We initialize the coefficients
of the projection map using normal distribution with unit variance
and use polynomial degree d = 2.

7.2. Flow Map Preservation

Both t-SNE and UMAP work well for general purpose dimension-
ality reduction, where the main quality assessment lies in the algo-
rithm’s ability to cluster similar points and spread apart dissimilar
ones. When applied to line geometry, this tends to result in disjoint
sets of points, which disregards flow map characteristics. Note for
instance in Fig. 4, how UMAP segments the trajectory into pieces.
The broken links are encoded with red arrows. In our approach,
flow maps are preserved by construction. As a result, there are no
sudden discontinuities along the curves.

7.3. Stable Set Visualization

An important task in the analysis of dynamical systems is the iden-
tification of stable sets, i.e., sets of initial conditions that lead to the
same outcome. In Fig. 5, we compare our approach with UMAP
and t-SNE in a scene that contains four trajectories that approach

Ar = 0.005 Ar =0.01

UMAP

Ours

Figure 3: Comparison of dimensionality reductions for a single
trajectory with varying integration step sizes in the CRTBP prob-
lem. While t-SNE and UMAP obtain different results, our embed-
ding is not drastically changed when undersampling the curve by
factor two or four. For t-SNE we used a perplexity of 15 and for
UMAP we used a neighborhood size of 10, both with Euclidean
distance metric. Initial conditions for position and velocity are
xo = (0.42,0)T and vy = (0,0.5)T witht=50, v =Ag =1,d = 2.

(a) UMAP projected curve (b) Associated point projections

Figure 4: With UMAP, trajectories can decay into pieces, i.e., flow
maps are not preserved. The red arrows in (a) indicate curve dis-
continuities. In (b), the underlying point set is visualized, which
shows the gaps. Here, 1500 time steps in the CRTBP problem.

two critical points in the limit. Even though UMAP and t-SNE man-
age to separate all trajectories, it would be more desirable to group
them with respect to stable sets. Unlike the other methods, our ap-
proach shows the two critical points, and the pairs of trajectories
that enter the same critical point are mapped to similar locations.

By coloring the trajectories according to the sink that they reach
asymptotically, we are able to reveal stable sets. By using the seed

(© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John Wiley & Sons Ltd.



Nemanja Bartolovic, Markus Gross & Tobias Giinther / Phase Space Projection of Dynamical Systems

(a) Our embedding (b) UMAP embedding

(¢) t-SNE embedding

Figure 5: Visualization of four trajectories, asymptotically mov-
ing into two different sinks. Unlike UMAP and t-SNE, our method
shows critical points and the asymptotic convergence. Initial con-
ditions: (%,%2,0,0)T, (%,2,6,2.5)T, (1,1,0,0)T, (7.7,7.7,0,0)".
Polynomial degree d = 3.
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Figure 6: Projections of multiple trajectories in the double pen-
dulum system, obtained from linearly varying seed velocity in the
domain [r, ] X [21,2n). Thereby, (ug,vo) are the initial values for
(91 792). Colors indicate the stable set that the trajectory belongs
to. Below, close-ups are shown for selected configurations. Polyno-
mial degree d = 2.

point exploration view, we show the projections for multiple seed-
ing configurations at a glance. For instance in Fig. 6, we vary the
initial velocities of the two bobs in the damped double pendulum.
The color mapping pre-attentively encodes which sink is reached,
giving a quick overview of the areas that have coherent asymptotic
behavior. As context, the projections of unselected trajectories are
shown transparently in the background.

Another example of a stable set visualization using the seed
point exploration is given in Fig. 7. Here, the trajectories of finite-
sized particles are explored in the forced-damped Duffing vector
field [GT15], cf. Eq. (25). This vector field contains two attracting
focus critical points, around which hyperbolic LCS are winding.
Constrained by the LCS, inertial particles reach either the left or
right critical point, which is here encoded by color. With our visu-
alization the stable sets become apparent, while also conveying an
impression of the shape of the projected trajectories.
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Figure 7: Projections of inertial particle trajectories for varying
seed position (xg,yq) in the phase space of forced-damped Duffing
oscillator. We vary the initial position of the particle in the domain
[—1,1] x [=1,1]. Colors indicate the critical point that the trajec-
tory approaches asymptotically. Polynomial degree d = 2.

(¢) Post-Optimization
projection of orange
trajectory

(a) Joint optimization  (b) Joint optimization
of all three trajecto-  of yellow and purple
ries trajectories

Figure 8: Since we obtain an explicit map, additional curves can be
projected after optimization. Left: optimization of all three trajecto-
ries, middle: optimization of yellow and purple trajectories, right:
optimization of yellow and purple trajectories with the orange be-
ing projected afterwards. The initial velocity was set to v = (0, O)T,
initial positions were set to x; = (1, 1)T (yellow), x, = (0.670)T
(purple) and x3 = (—0.5, 1)T (orange). Poly. deg. d = 2.

7.4. Post-Optimization Projection

Unlike t-SNE and UMAP, we compute an explicit projection which
allows us to project further trajectories after the optimization. If the
additional lines behave similar to the ones we optimized the projec-
tion for, this property is very useful to obtain quick previews and
to explore seeding configurations. In Fig. 8, an example is shown
for the forced-damped Duffing oscillator of the previous section.
In this example, a third trajectory (orange) was projected after the
joint optimization of the first two trajectories (yellow and purple).
We see that the low-dimensional representation of the orange curve
has a very similar shape compared to the result that is obtained
when optimizing the projection for all three trajectories together.
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Variable Def. Value  Description

Ax 1 Curvature constraint weight

Ag 1 Tangent magnitude constraint weight
AN 1 Neighbor distance constraint weight
Ap 1 Position constraint weight

d 2 Degree of the polynomial basis

k 10 Number of neighbors in neighbor-

hood distance constraints

Table 1: Variables and default values. Neighborhood related vari-
ables, such as Ay and k are only relevant when multiple trajectories
are present in the input. Similarly, position constraint weight Ap is
only used when positional constraints are specified.

Ex (high-dim) Ey (low-dim) Ej (high-dim) Eg (low-dim)

TP Wp G H

curvature cost only

tangent cost only

T

Ex (high-dim) Eg (low-dim) Ej (high-dim) Eg (low-dim)

& & & &
L

Figure 9: Parameter study of the weights for the geometric energy
costs. The residual plots show for a selected trajectory how well
the energy terms are minimized, which helps users to balance the
energy weights. Here, for a trajectory in the CRTBP. Polynomial
degree d = 3.

all geometric costs

7.5. Parameter Study

Our method has a number of parameters that allow the user to con-
trol the embedding, see Table 1 for an overview. In Fig. 9, we
demonstrate the influence of the geometric energy terms. The first
two rows show the result for a projection in which either only the
curvature cost or the tangent magnitude cost is enabled. In addi-
tion to the residual plot, we also color-code the geometric proper-
ties on the projected line geometry, encoding both the quantity in
the high-dimensional space (left) and after projection (right). If the
geometric properties are matched well, the two color-codings are
identical. It comes at no surprise that geometric properties that are
not included in the optimization are not matched well. However,
by color-coding the residuals, we see where the energy is not mini-

(a) Position subspace b)yd=1 c)d=2
%' \) S \p
k4
(d) Velocity subspace e)d=3 ®d=4

Figure 10: Parameter study of polynomial degree d in the CRTBP
problem. The more degrees of freedoms are added, the more the
curve can be untangled. Initial conditions for position and veloc-
ity are Xg = (0.4,0)T and vy = (070.5)T. The trajectory contains
10,000 points with a time step 0f10_2.

(a) w/o dist. constraint  (b) w/ dist. constraint  (c¢) pin critical points

Figure 11: Users can control the preservation of distance relation-
ships among multiple trajectories. Left: no explicit position con-
straints, middle: preserve neighborhoods of the high-dimensional
domain, right: pin down critical points at user-defined loca-
tions. We use as initial conditions: (%,%,O,O)T, (%,%,6,2.5)T,

(%,2,55,0)", (%,2,0,5)". Poly. deg. d =2. In (c), Ap = 100.

mized. In the last row, all geometric terms are enabled, which gave
the best results.

In Fig. 10, we show projection results for varying polynomial
degrees, along with the embedding of the position and velocity
subspaces. For d = 1, the projection resembles the velocity sub-
space, as it has higher magnitude than the positions. Across all ex-
periments, we found that the most organized results were achieved
using degrees 2 and 3, which comparably represent the best trade
off between quality and computation time. With degrees of 4 and
higher, convergence is significantly slower, while the overall error
did not reduce significantly compared to lower-degree solutions.

Next, we investigate the incorporation of distance-based con-
straints. Fig. 11 shows the simulation of a damped double pendu-

(© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John Wiley & Sons Ltd.



Nemanja Bartolovic, Markus Gross & Tobias Giinther / Phase Space Projection of Dynamical Systems

K
(N
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(a) k = 2 constraint (b) k = 10 constraint

Figure 12: Embeddings for different choices of the number of
neighbors k in our neighborhood costs. Different numbers of neigh-
bors do not change the projection drastically, but still help to
spread apart dissimilar trajectories. Polynomial degree d = 2.

lum. Here, we set up the simulations such that each trajectory ends
up in a different critical point of the phase space. In the first image,
we show the result of the optimization using only geometric terms.
In the second picture, we include the neighborhood cost, which un-
clutters the view. In the last image, we also enable fixed point costs,
which allows us to specify the position of critical points after pro-
jection. This optional term allows us to control the position and
spacing between different trajectories.

Finally, Fig. 12 shows results for different choices of the num-
ber of neighbors k& in the neighborhood cost computation. A larger
neighborhood places more restrictions to the final spacing when a
high amount of trajectories are present in the input data set. Other-
wise, the projection remains stable.

7.6. Higher Dimensional Trajectories

While most of the experiments and examples that we have pre-
viously presented contained 4D phase spaces, our method is not
limited to this particular dimension. Fig. 13 contains two exam-
ples of dynamical systems in 5D and 6D, respectively. The 5D
problem in Fig. 13a describes the motion of a finite-sized ob-
ject in a time-dependent 2D cylinder flow, simulated with Ger-
ris [Pop04, GGT17]. Here, the phase space contains position (2D),
velocity (2D) and time (1D). In such time-dependent systems, crit-
ical points do not exist in the phase flow, since the change in the
time dimension is always one, and therefore never equal to zero.
Thus, stable sets cannot be observed. Nevertheless, our phase space
projection can be applied to embed 5D trajectories in a 3D space.
Here, the rotating motion of inertial particles around two vortices
is shown. The bend on the left is due to the initial acceleration.

The dynamical system in Fig. 13b visualizes the trajectories
in the full 3D form of the circular restricted three-body prob-
lem CRTBP. Here, objects can be released in the z-dimension,
resulting in an oscillating motion in this spatial dimension. In the
high-dimensional space, this oscillation is manifested as a rotation,
which becomes apparent in our projection.

7.7. Performance

In Table 2, we report the runtime in seconds for the data sets used
throughout the experiments. The hardware setup consists of an Intel
Core 17-8700k running at 4.7 GHz and 16 GB of DDR4 RAM. On
average, the nonlinear optimization needs between 10 and 100 iter-
ations to converge depending on the initial conditions. Higher-order

(© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John Wiley & Sons Ltd.

(@) Projection of many time-
dependent flow trajectories

(b) Projection of a 6D CRTBP
trajectory

Figure 13: Examples of higher dimensional projections. Left: 5D
time-dependent inertial particle flow with response time r = 0.05,
cf. Eq. (25). Right: 6D variation of the CRTBP, with starting con-
ditions xo = [0.4,0,0.2]T vy = [0,0.5,—0.2]. Poly. deg. d = 3.

Dataset-points (dim) UMAP t-SNE Ourd =2 Ourd =3

CRTBP-1500 (4D) 1.7 5.5 2.1 8.6
CRTBP-10K (4D) 5.7 56.5 7.5 345
CRTBP-25K (4D) 145 1579 20.6 76.3
Dbl Pend-4K (4D) 7.1 524 12.7 512
Dbl Pend-8K (4D) 146 1214 19.6 66.4
InertialDuff-6K (4D)  10.8 27.8 7.2 26.7
InertialCyl-12K (5D)  11.7 69.1 41.3 147.5
CRTBP6-10K (6D) 7.0 53.1 28.3 115.1

Table 2: Computation time (in seconds) of our dimensionality re-
duction for varying total numbers of vertices. Here, listed for the
data sets in the paper. For the double pendulum and inertial parti-
cles, we used multiple trajectories and enabled the neighborhood
cost with Ay = 1. The polynomial degree is denoted with d.

polynomials typically require more iterations, in addition to being
more computationally expensive. About 75 percent of the computa-
tion time is spent inside the solver, while the evaluation of Jacobian
matrices and residuals takes up the remaining computational cost.

7.8. Discussion

Uniqueness. Similar to other optimization methods with a non-
convex cost function, our minimization can reach a local minimum.
Moreover, it can happen that the local minima differ across multi-
ple optimization runs. This is illustrated in Fig 14, where the most
common solutions are shown.

Intersecting Projections. Two points could be mapped onto the
same location. With neighboring constraints enabled, this is pre-
vented by the optimization. However, when projecting further tra-
jectories after optimization, no guarantees can be given due to the
non-invertibility of the map.

Scalability. The computational cost of a single optimization step
is on the order of O(N - n-m®) with total number of points N, in-
put dimension m, output dimension n and polynomial degree d. We
limit d to 2 or 3, which provides an adequate model complexity for
a moderate amount of trajectories (less than 100) and input dimen-
sions m less than 10. An increase in dimensions might require a dif-
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Figure 14: Different minima for random initializations of projec-
tion P. The initial energy starts at the order of 10* and ends up at
14%x107",75%x 107 and 2.5 x 107, respectively. Trajectories
contains 10,000 points in the CRTBP with a time step of 1072,
optimized for a polynomial degree d = 2.

ferent optimization approach due to the computational cost. Larger
input data sets require more degrees of freedom for the projection.

Constraint Balancing. Increasing the energy weight of a cost term
too much hinders the minimization of other cost terms, for instance
in case of neighboring and positional constraints. To guide the user,
we visualize the residuals and corresponding properties in color-
coded plots at every intermediate optimization step, see Fig. 9. In
general, energy weights of different units need balancing.

Positional Constraints. Most of our constraints operate on tan-
gents and derived properties. If the projection is optimized without
a position constraint, the problem will have a null space. We pin the
solution by translating the projections to the origin of the scene.

8. Conclusions

Dynamical systems are commonly used to describe the motion of
objects. The governing equations of motion, however, are often
high-dimensional and therefore difficult to visualize. In this paper,
we presented a novel approach to perform dimensionality reduc-
tion of high-dimensional vector fields. By describing the projection
as differentiable map, we formulated an energy that preserves geo-
metric properties and user constraints, in addition to the preserva-
tion of critical points and flow maps, which are inherent by con-
struction. We applied the method to the trajectories in a number
of second-order dynamical systems, including finite-sized objects
in fluids, the circular restricted three-body problem and a damped
double pendulum. We analyzed the motion with multiple coordi-
nated views, including spatial embeddings, subspace views, our
projection, residual plots and seed point exploration. The latter en-
abled an analysis of stable sets, which are significantly better pre-
served with our method compared to existing dimensionality reduc-
tion techniques, such as t-SNE, UMAP and PCA.

To improve scalability in the future, other orthogonal basis for-
mulations with a computational framework to choose these basis
functions adaptively could be explored. It remains to be shown how
well the method scales to much higher dimensional systems, and
how useful the method is to domain scientists in more complicated
systems. Further, GPU acceleration will improve the performance.
An additional direction of improvement could be the quality of the
projection, by identifying additional constraints and their relation
to the underlying phase-space manifolds. Finally, we would like
to explore the idea of selecting optimal seed points in the high-
dimensional space such that the projection yields lowest residuals
at lowest computational cost.

Acknowledgements. This work was supported by ETH Research
Grant ETH-07 18-1.

Appendix A: Dynamical Systems

Inertial Particles. Given a fluid flow u(x), the motion of a finite-
sized object that is floating in the fluid is given by [CST98]:

u(x)—v

a(x,v) = (25)

r
where r is a parameter that determines the inertia. In our experi-
ments, we use r = 0.05. We refer to Baeza Rojo et al. [BRGG18]
for more details and further generalizations.

CRTBP. In celestial mechanics, the circular restricted three-body
problem (CRTBP) [Lag72,MQ14] describes the motion of a small
object in the gravity field of two massive objects placed at x| =
(—u, 0) and xp = (1 —p, 0). In a reference frame rotating uniformly
with the two massive bodies, the acceleration of the third body is:
a(x,v) =x+2xv+

(X1 =x) + (x2 —x)

(26)

Thereby, u is the mass ratio between the two bodies. For instance,
for the Earth-Moon problem, we have y = 0.012150585609624.

Ll _r
[l —x]* [lx2 —x]*

Double Pendulum. As example for a mechanical system, we use

a double pendulum. Let /; and /, be the lengths of the rods with

masses m; and my at their ends. The system is described by the

angles 01, 0, and their changes 01, 0, i.e.,a= (01,0,,01,0;) with:
—a : = — 0

h-afr 4 g, = 2=%fi _

=== 2l ¢h 27
1= oo . 2 ) @7

0, = =
! 1—aj0n

where € is the damping rate and with the terms o1, 0, f1, f2 being:

L m I

o = =—————cos(0; —6,), oy = —cos(6; — 6 28

L N (61 —62) 2= (81 —62) (28)

L my . g .
— 2™ §2Gn0,—6,)— Ssind 29

A I my 7sin(0; — 63) I sin @ (29)
I .

fr = L}sin(0; — 0,) — £ sind, (30)
153 153

This system is derived using Lagrangian mechanics [LLOO].

Appendix B: Tensor Product Mapping

In Section 4.2, we used a tensor product notation to describe our
map. In the following, we give an example for its translation to a
polynomial expansion of degree k. A projection from 4D to 3D is:

k ab c d |Papea

— xXyzw

PE) =) WMMPM} 31
i=0 a+b+ctd=i 7T

Tabed
0<a,b,c.d<k

where X = (x,y,2,w) and py b ¢ 4> Ga,b.c.d> Ta,b,c.d are the coefficients
that we optimize for. The partial derivatives in the gradient VP(X)
are straightforward to calculate, for example:

aP(i) k Z X4~ lybzc Wd |:Pa.lz.c.d:| 32)
= T a~a s oy | Yabcd
ox i=0 a+b+c+d=i (a - 1) blcld! Tabcd

1<a<k, 0<b,c,d<k

The other partial derivatives are analog.
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