Objective Finite-Time Flow Topology from
Flowmap Expansion and Contraction

Roxana Bujack, Soumya Dutta, Duan Zhang, and Tobias Giinther

Abstract We extend the definition of the classic instantaneous vector field saddles,
sinks, and sources to the finite-time setting by categorizing the domain based on
the behavior of the flow map w.r.t. contraction or expansion. Since the intuitive
Lagrangian approach turns out to be unusable in practice because it requires ad-
vection in unstable regions, we provide an alternative, sufficient criterion that can
be computed in a robust way. We show that both definitions are objective, relate
them to existing approaches, and show how the generalized critical points and their
separatrices can be visualized.

1 Introduction

The topological analysis of time-dependent vector fields remains to this day a very
active research area in flow visualization. Similar to the classic steady case, we
expect that particle motion is guided by a number of topological elements that
have mainly been investigated individually, such as vortices [57, 16, 20], separating
structures [22, 55, 38] and attractors [60]. In this paper, we introduce a finite-
time generalization of the classic 2D vector field topology that maintains physical
meaning in time-varying flows. In particular, we request the following properties for
the topological structures to be meaningful over finite-time windows:
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In steady flows, the method is consistent with classic vector field topology.

The definition of topological elements is objective, i.e. invariant w.r.t. Galilean
transformations of the frame of reference.

The feature definition is pathline-oriented and therefore in accordance with par-
ticle movement.

In a nutshell, the contributions of this work are as follows

e A coherent theoretical framework of an objective Lagrangian finite-time flow
topology that ties together approaches from the literature.

* A non-Lagrangian sufficient definition that exceeds its Lagrangian counterpart in
robustness.

* A simple algorithm for the extraction based on first-order approximation.

» Efficient visualizations of the finite-time topology.

Reviewing related work (Section 2), suggests a Lagrangian definition of finite-
time topology as a logical consequence, because it bridges the gap between several
approaches. Unfortunately, we will see quickly that it is practically useless because
of its lack of robustness (Section 3). Therefore, we will dedicate most of this paper
to the theoretical analysis of a non-Lagrangian alternative, which forms a sufficient
criterion for the intuitive Lagrangian definition (Section 4). Finally, we will showcase
results and suggest visualizations.

2 Related Work

The recent survey [6] on time dependent flow topology provides an overview on the
goals, challenges, and state of the art.

2.1 Classic Steady Vector Field Topology.

Classic steady vector field topology provides us with a compact description of the
asymptotic motion of particles [42, 26]. Governing the asymptotic motion are a num-
ber of topological elements, which were described by Helman and Hesselink [27],
including critical points (sinks, sources, centers, saddles), boundary elements (at-
tachment and detachment points), the manifolds that separate flow regions of homo-
geneous asymptotic behavior (separatrices), and periodic orbits [2]. The extension
to the 3D case [28] gave rise to a broader variety of elements, such as bifurcation
lines [40] (lines to which nearby streamlines are asymptotically drawn to or repelled
away from at an exponential rate) or saddle connectors [53] (individual streamlines
that connect saddles). Aside from characterizations as extremal lines [33] of vortex-
related scalar fields [47, 48], vortex corelines have also been expressed as lines
along which the velocity vector aligns with the single real-valued eigenvector of the
Jacobian matrix [52]. The parallel vectors operator [39] became a very powerful
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descriptor for such line features. In fact, both vortex corelines and bifurcation lines
can be expressed in this way, with the only difference being that vortex corelines
require swirling motion [39] (complex eigenvalues in the Jacobian) and bifurcation
lines require attracting and repelling behavior [44, 38] (negative determinant in the
plane orthogonal to the flow). Extensions include the characterization of higher-order
critical points into sectors of elliptic, parabolic, or hyperbolic behavior [49, 8, 59]
and higher-order bent vortex corelines [45].

2.2 Streamlines vs. Pathlines.

More recent research concentrated on the definition and extraction of topological
structures in time-dependent flows [41], in which we face two major challenges. First,
aside from periodic flows, the temporal domain is usually bounded, which does not
permit the observation of asymptotic motion. Second, the topology of streamlines
(i.e. the observation of individual time slices) is irrelevant for pathlines, which was for
instance demonstrated for vortex corelines [57]. The difference between streamline-
oriented and pathline-oriented topology was discussed by Theisel et al. [54] in
detail. Wiebel et al. [60] demonstrated in a simple 2D rotating petri-dish example
that most existing techniques fail to detect the attracting vortex center that moves
on a circular path. In the literature, this flow is sometimes also referred to as the
Beads problem [58]. Integration-based methods can find the coreline, including the
particle density estimate to extract the preferential particle settling [60] and the
vortex coreline in the vector field in which streaklines are tangent curves [58]. Local
methods failed due to lack of rotation invariance in the feature definitions, which can
be obtained by a deformation from Cartesian to polar coordinates [18].

2.3 Reference Frames.

A number of methods suggest to reduce the time-dependent topology back to the
steady case by a suitable choice of the reference frame. Wiebel et al. [61] and Bhatia et
al. [3] used flow decompositions to subtract a flow component that is irrotational and
incompressible, i.e. harmonic. Fuchs et al. [14] selected a reference frame in which
the velocity vanishes at locations at which the acceleration is zero. Bujack et al. [5]
selected extrema in the determinant of the Jacobian to determine the reference frame.
To determine a reference frame in which the vector field becomes steady [37, 43],
reference frames have been calculated by local [16, 19] and global [20] linear
optimizations, as well as by deep learning [32]. Alternatively, several local feature
definitions possess a certain reference frame invariance. However, most of them,
are only invariant to equal-speed translations, e.g., vorticity, 4> [30], and the Q-
criterion [29]. Objectivity is achieved only by a few, such as by the instantaneous
vorticity deviation [24].
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2.4 Lagrangian Coherent Structures.

In contrast to the local approaches, a large body of research searched for structures
that behave coherently over a finite-time window. This research includes region-based
vortex methods [24], coherent sets [13], and coherent line and surface structures,
typically called Lagrangian coherent structures (LCS) [23]. The latter results in
material lines that order the flow, including jet cores (parabolic LCS), vortex bound-
aries (elliptic LCS) and separating structures (hyperbolic LCS). As approximation
to hyperbolic LCS, Haller [25] suggested to use the finite-time Lyapunov exponent
(FTLE) [50], which measures the separation of nearby-released particles over a
finite-time window. A number of approaches to compute FTLE exist, including a
discretization of the flow map [25], localized FTLE [31], timeline cell tracking [34],
a direct sampling of an advected circle [56] and Monte Carlo rendering [17]. Later,
Haller [22] suggested to extract hyperbolic LCS by looking for the biggest separation
orthogonal to a material surface. Similarly, Friederici et al. [12, 11] analyzed the
finite-time separation orthogonal to a separatrix in steady flows.

2.5 Time-dependent Saddles.

Theisel et al. [54] categorized pathlines into attractors, repellors, and saddle-like tra-
jectories based on whether their surrounding pathlines converge toward it in forward
integration, in backward integration, or neither. In the fluid dynamics community,
Haller [21] defined uniformly hyperbolic trajectories as pathlines with the property
that half of their neighboring pathlines converge toward them in forward direction
and the other in backward direction. Further, he introduced the concept of hyper-
bolicity time as the maximal amount of time a pathline spends in a region in which
the Jacobian determinant is strictly negative and shows that the local maxima of
hyperbolicity time are a first approximation to the uniformly hyperbolic trajectories.
Inspired by Haller’s hyperbolic trajectories [21], Sadlo and Weiskopf [46] general-
ized the concept of saddle-type critical points to time-dependent vector fields using
the intersections of forward and backward FTLE ridges. The motivation behind this
choice is that just like saddles, these areas show divergent behavior in forward as
well as backward direction in time. As introduced by Wiebel et al. [62], they used
these points as seeds for generalized streaklines, which form a generalization of
separatrices to time-dependent flows. Later, Uffinger et al. [55] extended the concept
to 3D. To approximate the path of a saddle, i.e. a bifurcation line in 2D space-time,
Machado et al. [38] applied the reduced velocity criterion [52, 39] and iteratively
aligned the extracted bifurcation line with the flow to obtain a pathline. In his re-
cent survey on LCS, Haller [23] formulated four desirable properties: objectivity,
finite-time nature, Lagrangian invariance, and spatial convergence. He points out
that most classic definitions of material stability look strictly in forward direction
to assess repelling behavior and strictly in backward direction to assess repelling
behavior. Instead, repelling and attracting behavior should be assessed over the full
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(a) Timestep 0. (b) Timestep 5. (c) Timestep 10.  (d) Timestep 15.  (e) Timestep 20.

Fig. 1: The Lagrangian definition is not robust. Categorization of the pathlines of the
accelerated translation of a steady saddle is visualized through color coding: red—
source; blue— sink; white— saddle. Theoretically, the saddle in the center of timestep
0 should move once around the origin of coordinates on a circle. Instead it is fully
driven away by the expanding regions.

time window, i.e. both forward and backward from the current point in time. He
rejecteds Shadden’s definition of LCS as second derivative ridges [50] and suggests
shrink lines and stretch lines as LCSs [9, 10].

3 Intuitive Approach

Many attempts to generalize classic vector field topology to a time-dependent setting
are based on translating the convergence and divergence properties of the classic
critical points to pathlines. Most approaches deal with saddles [46, 21, 22, 4]. A
few take into account sources or sinks, too [54, 60]. In this paper, we also define
our categorization by pulling together existing work into one coherent framework.
Intuitively speaking, we consider a pathline a Lagrangian finite-time saddle if part
of its neighborhood has attracting behavior and part of its neighborhood has repelling
behavior. We consider it a Lagrangian finite-time sink if all of its neighborhood has
attracting behavior, and a Lagrangian finite-time source if all of its neighborhood
has repelling behavior. The term Lagrangian or Lagrangian invariant refers to the
ability of a structure to move with the flow, i.e. to be invariant w.r.t. advection [23].
We translate this into a concise mathematical definition.

Definition (Lagrangian Finite-time Topological Categories) We consider a point
and time (xo,7) € R? x R a Lagrangian finite-time saddle for a given time interval
t € [to,t;] C R if for any € > 0, we can find a plane containing 4 points xj, ..., x4 €
Be(xp) in its e-neighborhood (numbered in positive orientation around xp) so that
the pathlines starting at (x, ¢) and (x3,7) will expand from x( forward in time until
t; while (xp, f) and (x4, 7) contract. We consider it a Lagrangian finite-time sink if
there is an € > 0 such that for all € : € > € > 0, a pathline starting at any point
X € Bc(xp) in its e-neighborhood will contract to xo and a finite-time source if it
expands. O
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(a) FTLE ridges for the saddle under accelerated ~ (b) FTLE ridges intersect almost everywhere for
translation do not intersect. the saddle under accelerated translation.

Fig. 2: Lagrangian intersection of forward and backward FTLE is not robust.

To categorize the steady flow behavior in finite-time, we define contraction and
expansion as follows:

Definition (Finite-time Contraction and Expansion) We consider two trajectories
xo(t), x;(t) : R — R expanding in forward time for a given finite-time interval
t € [to, 11]if || x0(t0) — xi(t0)|| < ||x0(21) = x;(#1)|| and contracting if || xo(#0) — xi(%0)|| >
[|x0(t1) — x;(#1)||. Expansion in forward time is equivalent to contraction in backward
time and vice versa. O

Definition 1 is objective [51] and Lagrangian invariant [23], i.e. it is advected by
the flow. It is not able to classify centers and it does not always coincide with the
steady topology, for example for linear fields. It is straightforward and very intuitive
and nicely ties together different related work, but it suffers from a significant
drawback. In practice, it is pretty much unusable because it is not robust. The
categorization of the different pathlines at time #y works just fine, but to determine
where these areas of a category go, we have to integrate along unstable manifolds
that strongly deflect the pathlines, Figure 1.

Impossibility of integration purely along stable manifolds.

To advect in a robust way, an idea would be to make use of the backward integra-
tion [46, 21, 22]. But advecting the forward time attracting regions (sinks and part of
the saddles) in the forward time direction and advecting the backward time attracting
regions (sources and the other part of the saddles) in the backward time direction does
not work either, because the saddle lies on a repelling manifold for both directions.
This part will be deflected no matter from where we integrate. Figure 2 illustrates
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the problem in space-time. Theoretically, the saddle lies on the intersection line of
the attracting manifolds in forward and backward directions. But due to the strong
deflection, the surfaces may not intersect at all or become aligned.

4 Theory

In this section, we will provide a definition of a non-Lagrangian finite-time topology,
which is a necessary condition for the intuitive Definition 1, but allows for a robust
extraction. We will study its properties and derive an algorithm for its efficient
computation based on its first-order approximation.

4.1 Mathematical Definition

Analogously to the Lagrangian Definition 1, we state a concise mathematical def-
inition that concisely describes the intuitive physical categorization of the domain
into contracting and expanding regions. The first of the two main differences is that
we no longer require these regions to be Lagrangian, which means that instead of
categorizing pathlines, we categorize points in space and time. Second, we explicitly
consider these point’s contracting and expanding behavior (Definition 2) in forward
and also in backward time.

Definition (Finite-time Topological Categories) We consider a point in space and
time (xo,7) € R¢ x R a finite-time saddle for a given time interval # € [fp,#;] € R
if for any € > 0, we can find 4 points xi, ..., x4 € Be(xp) in its e-neighborhood
(numbered in positive orientation around xg) so that the pathlines starting at (xy, 7)
and (x3, t) will expand from x( forward in time until #; and contract backward until
to while (x, 1) and (x4, ) do the opposite. We consider it a finite-time sink if there
is an ¢ > 0 such that all € : g > € > 0, so that a pathline starting at any point
X € Be(xp) in its e-neighborhood will contract to x¢ forward in time until #; and
expands backward until 7y and a finite-time source for the opposite. O

4.2 Relation to the Lagrangian Definition

Definition 3 is sufficient for Definition 1, which means that every point in space and
time that is classified as a finite-time saddle/source/sink lies on a pathline that is
classified as a Lagrangian finite-time saddle/source/sink.

To see that, let

F iRxRxRY S RY 1xtg X x0 > Fyl(x0), (1)



8 Bujack, Dutta, Zhang, Giinther
with ,
F[(;)(‘xo) :x07
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Ftlz (F I (X())) :th(x())a

fo 0

(@)

denote the flow map describing how a flow parcel at (xo, o) moves to th‘ (xp) in the
time interval #; — f9. Then, we can compactly write the conditions in Definition 3.
For a saddle, there exist x,44, Xeven Such that:

| F}" (X0aa) = F" (xo)ll > | Xoaa — xoll,

”Fttl (Xeven) — Fttl (xO)” < ||Xeven — xoll,

(3)
”Ftto(xodd) - Ftto(x())” < ”xodd - )C()”,
“Ftto(xeven) - FtIO(XO)” > ||Xeven — xoll,
for a sink for all x; holds:
I1F" (xi) = F* (xo)ll < Ilxi = xoll, @
I1F°(xi) = F° (xo)ll > llxi = xoll,
and for a source for all x; holds:
I (i) = F' (o)l > [lxi = xoll, )

I (xi) = F*(xo)l < [l = ol

From this, we can directly derive the properties of the pathline through (xo,t). We
will show this for the case of a source. Assume (5) holds then at time #, all points
(F(x;), o) in the neighborhood of the starting location of this pathline (F*(xo), 7o)
satisfy

®) ®)
IF () = B (xo)ll < llxi = xoll < [1F;" () = F" (x0)l ©)

which is the condition for the pathline to be a Lagrangian finite-time source. The
size of € in Definition 1 depends on the respective flow field, but its existence is
guaranteed if it is continuous, because the flowmap is as many times differentiable
as the vector field [1]. The other cases work analogously.

4.3 Objectivity

We consider objectivity [51] important because this property ensures that two ob-
servers do not get different answers from looking at the same physical phenomenon.
Within the flow, smaller features get advected by larger ones, which results as a
mixture of different "best’ reference frames to look at the flow. Definition 3 is
objective, i.e. invariant w.r.t a Euclidean transformation of the reference frame
x" = Q(t)x + ¢(t) with a time-dependent orthogonal matrix Q : R —e SO(d)
and a translation ¢ : R — R?. This follows from the transformation properties of
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the flowmap under Euclidean transformations F ’;(‘)(xé) = 0t )Ft’()1 (xg) — (1) [36],
because of which the difference suffices

F/p(x0) = F'1'(x)) = Q1) Fy (x0) = e(11) = Q1) F" (x) + e(11)

n f (7
= Q(t1)(Fy, (xo) - F;' (x1))

and the distance

IF" () = F GeI? = (F78 () — B/ ()T (B8 () — FY1 ()
2 (Q(1)(F! (x0) = F ()T (Q(01)(FL (x0) = F* (x7))
= (Fy!(x0) = F"(x)" Q(t1)" Q(t1)(Fy! (x0) — F' (x;))
= (F! (x0) = F ()T (F!* (x0) = F!'(x0))
= |F{ (x0) = F (oI
@®)

4.4 Linear Approximation

The difference between two close points can be approximated using Taylor’s theorem.
In our case, the conditions (3) to (5) can be expressed using the deformation gradient
VF : Rdxd

F{'(x0) = F{"(xi) = VF/"(x0)(xi = x0) + O([|x; = xo|I*). ©)
For the limit € — 0, we can write its magnitude as

IF (x0) = F" (a)lIP = (F/ (x0) = F/" (x0))" (" (x0) = F/* (%))

(10)
= (x0 = x))" (VF" (x0))" VF" (x0)(x0 — x;).
The first part of condition (5) can be rewritten as the ratio
141 _ 1 .
I o) = F Gl an
llx0 — xil
With the unit vector
50— ] (

and the Cauchy-Green strain tensor Ctt(; (x0) = (VF,’Ol ()co))TVFt’O1 (xp) from continuum
mechanics, the ratio (11) can be estimated through

IF" (x0) = F" () II?
llxo — x:I?

= n (VF/ (x0))" VE" (xo)n = n® CI' (x0)n. (13)

Because of
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I1F (x1) = F/"(x3)ll e IF (x1) = F' (x3)]|?
llx1 — x| [lx1 — x3]|?

>1 en C'x)n > 1, (14)

the conditions in (3) to (5) can be expressed through the eigenvalues of C. Since
the eigenvectors maximize max =1 |nT Cnl, the conditions are transferred to the
eigenvalues. In particular, for a point (xo, ¢) to be a first-order approximation to the
finite-time saddle in the interval [fo, #;], the tensors Cfl (x0) and Cfo(xo) must each
have eigenvalues greater as well as smaller than 1. The eigenvalues need to be both
smaller than 1 for Ctt] (x0) and both greater than 1 for Ct’"(xo) for a point to be
a first-order approximation of a finite-time sink and the opposite for a finite-time
source.

The linear approximation is also objective. Because of V,x = % = QT and the
chain rule [36], the deformation gradient suffices:

VE, (') = Q) VEy (x)Q(10) (15)
and the Cauchy-Green strain tensor
Cy (') = (VE, () VE! (1)
= (Q(t)VE1(x)Q(t0)") Q(11)VF,! (x)Q(t)"
= Qto)(VF, ()" VF,! (x)Q(t0)"
= Q(1o)C;} (x)Q(to)" .

This approximation is not necessarily objective, because it has two time dependencies
that the definition of objectivity does not encompass, but its eigenvalues are objective.
Let v be an eigenvector of C’ with eigenvalue 4, i.e. Cv = Av, then ¥ = Q(#y)v is an
eigenvector of C with the same eigenvalue

(16)

5 2 QM)Cli (1)Q(0) 7 = Qt0)Cly (x) = Qo) Av = QM) = A7 (17)

4.5 Strength

As can be seen in Figure 1, Definitions 1 and 3 usually do not produce isolated
points but areas of coherent classification. For each connected component of one
category, we can choose a point as a representative through demanding that it shows
the corresponding contracting or expanding behavior in locally the strongest way,
for example for the saddle through maximizing
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F'i(x — F''(x -
M[t()l(xo, 1) = max min Il t (Xoda) t ( 0)”’ . | Xeven x()t” ,
Xodd>Xeven EBE(XO) ”x()dd - X()” ||F,1(xeven) - Ftl(.xo)”
|X0aa — xol| ”Ftto(xeven) - Ftto(xO)” )
IFP (Xoaa) = FLGo)lT NXeven = %oll 7
(18)
for the sink through maximizing
F''(x;)) = F'(x X; — X
LA R ALC I T S
X1 €Be(x0) llx; — xoll |F,° (xi) = F° (xo)ll
and for the source through maximizing
X; — X F(x;) — F(x
M,tol(x(),t) := min min( o I 0,!' , 17" (xi) = Fy 0)”). (20)
X; €Be(x0) ”Ft (x;) - F, (xo)l| [|l2; — xol|

The inner most min refers to the minimum of the forward and backward terms to
avoid the detection of examples that only exhibit the behavior in one direction. The
second min avoids line sinks and sources, which do not have expanding or contracting
behavior in one direction. The outer most maximization refers to the candidate points
Xo that exhibit the respective behavior in locally the strongest way.

4.6 Weighting Related to FTLE

The first-order approximation shows that our measures of strength are related to
FTLE, where the largest eigenvalue A,,,, of the Cauchy-Green strain tensor C is
evaluated. To consider the dependence on the size of the time interval and the
potentially rapid growth of the expansion, 4,,, is weighted via

log Amax(Czt(; (xO))
- v 21
Tas(Cl)(a0) 1= FTLEf) 1) = — @b

Analogously, we can weight the largest and smallest eigenvalue A,;,4x, Amin Of the
Cauchy-Green strain tensor for weighted first-order approximations of our measures
of strength. The logarithm changes the limit where changes between the categories
happen to 0, which leads to the following cases

saddle  if Apax(Cl') > 0 A Apin(CI) < O A Apax(C0) > 0
/\/imin(clfo) <0A Vmax(C;I) H Vmin(Ctto)a
(xo,1) is aqsource if A /imi,,(C;‘) >0A /imax(Cf") <0, (22)
sink if A dpax(C) < O A Apin(C0) > 0
neither else.
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Please note that for a first-order saddle, we additionally have to make sure that the
directions of the strongest expansion in forward and backward time do not coincide
to guarantee that there are really 4 separate points x; as demanded in Definition 3
instead of x,44 as suggested in forward time to coincide with x.,., as suggested by
backward time, which would occur for example for a blue sky bifurcation, i.e. a flow
that is first a sink and then turns into a source or vice versa.

That also means that we can directly use the absolute value of the weighted
eigenvalues to determine how strong the contracting or expanding properties of each
point are. In particular, we use the minimum over all four 1

Y A(CH
T R (G| o

i€{0,1} je{min,max} |ti —tl
If a point does not fall into a category (for example, it is a source in forward
time and saddle in backward time), we set the strength to zero. If a point is a saddle,
we additionally weight it by the scalar product across the eigenvectors to exclude
areas where they coincide in forward and backward direction. All in all, we get the
measure of strength

Mtg (x0,1) if source or sink,
M3 (x0,) = { Vmax (C}) Vinin (CL)| My (x0, 1) if saddle, N .2
0 else.

We compute this scalar measure of strength for the whole domain, which will allow
us to determine strong representatives for coherent regions of the same behavior
and to remove weak occurrences for reducing clutter in the visualizations. Since, the
eigenvectors are orthogonal, we do not need to consider the other pair.

The measure of strength is also objective. We already know that the eigenval-
ues are objective from (17) and we can see that the product of the eigenvectors
vl(Ctt' (xo))Tvz(C,[O(xo)) is objective, too, because their transformed equivalents suf-

fice
VI )T VHC () 2 (@)W1 (C (x0))T Q(e)va(CP (x0))

(25)
= v1(C}' (x0)) v2(C (x0)).-

4.7 Separatrices

It is common practice to use generalized streaklines [62] seeded around the locally
strongest saddles, sometimes also called bifurcation lines in space-time, [46, 55, 38].
In particular, we seed pathlines with a small offset in both directions of the eigenvector
Vimax (Cf "(x0)) corresponding to the bigger eigenvalue for the forward separatrix
advection and analogously with a small offset in both directions of the eigenvector
Vmax(C°(x0)) for the backward separatrix. Then, we generate surfaces from them in
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(a) Timestep 1. (b) Timestep 5. (c) Timestep 10.  (d) Timestep 15.  (e) Timestep 19.

Fig. 3: The non-Lagrangian definition correctly categorizes the pathlines of the
accelerated translation of a steady saddle. Red: source, blue: sink, white: saddle,
black: neither. We show the strength of each region by overlaying (24) ranging from
black for low strength to transparent for high strength.

space-time. Figure 5 shows a visualization. The temporally local sepratrices can be
produced from slicing the volume at one timestep.

5 Experiments

In this section, we concentrate mainly on experiments for which we actually know
the ground truth to demonstrate the correctness of the proposed method. For this
purpose, we use two analytic data sets. The first one is a steady saddle

v =2 (x t;) .5) V0T (26)

that is moved through an accelerated translation. A Euclidean transformation
x" = 0(t)x + c(t) 27
changes a velocity field via
v (x,1) = Q(W(QT (1)(x = (1)) + O(1)(x = (1)) + ¢(1). (28)

We use c(t) = %(sin(@) +1,cos(0))” with @ = 272/|T|* and |T| denoting the number
of time steps, which moves the saddle clockwise on the circle with radius 0.5 around
(0,0)" starting at (0,0.5)”. The motivation of using accelerated moving reference
frames is that this is the most complicated case. If a method detects this one correctly,
it will also work for constant movements. We have already seen the results of the
Lagrangian categorization for this dataset in Figure 1. The results of the robust
categorization using the suggested sufficient first-order approximation suggested in
this work can be found in Figure 3. This figure shows the expected behavior with
the accelerated movement around the origin. On top of the category, we also encode
the strength of the occurrence fading out weak areas into black. This approach is
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(a) Categories of saddle under (b) Separatrices of saddle under (c) Categories and separatrices
accelerated translation. acc. translation. of translation.

(d) Categories of saddle under (e) Separatrices of saddle under (f) Categories and separatrices
accelerated rotation. acc. rotation. of rotation.

Fig. 4: Visualizations of the finite-time topology in space-time for two examples
of Euclidean transformations. Left: isosurfaces of the strength colored by category.
Red- source; blue— sink; white— saddle. Middle: separatrices, i.e. streak surfaces
forward (red) and backward (blue) in time seeded at the strongest saddle offset in the
direction of the eigenvectors of the Cauchy Green strain tensor. Right: both. The path
of the saddle is one full circle in both cases. The shapes of the sinks, sources, and
separatrices reveal that the top movement is a pure translation, whereas the bottom
is a rotation.

consistent with color-coding black areas that belong in no category. Please note that
the two sources (red) and two sinks (blue) around the saddle (white) are a result
of the Gaussian weighting in combination with the saddle. The actual expanding
and contracting character of these regions can be well perceived in the particle view
Figure 1 offers.

The second analytic dataset is the same saddle (26) performing an accelerated
rotation with Q(¢) € SO, being the rotation matrix by @ = 27>/|T|?. For both flows,
we use the spatial domain [-2,2]? with resolution 812 and the full 21 time steps
[t1, 1] = [0, 20]. To avoid boundary artifacts, we computed the flowmap on a bigger
domain. Both transformations are purely Euclidean. They can be interpreted as a
change of the reference frame of the observer and an objective method should be
able to detect the saddle on the circle.
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Figure 4 shows the results of the classification and the separatrices for both
transformations in space-time. We visualize the different categories using the same
color coding. Saddles are white, sources are red, sinks are blue, and points that fall in
no category are black. For the reduction of weak occurrences to gain a less cluttered,
more expressive visualization, we applied isocontours on the scalar strength field (24)
and colored the result using the scalar field of the categories (22). Storing the two
fields makes the visualization of the method easy in any common visualization
tool. To get the separatrices for each time slice, we first chose representatives for
the saddle-type regions by selecting the locations with the global maximum of the
strength. Then, we seeded pathlines as described in Section 4.7. Our method detects
the true locations of the saddle up to the accuracy of one cell. It cannot find the
exact location within a cell, because the maximum always lies on a gridpoint in a
piecewise linear field.

For these datasets, the intersection of forward and backward FTLE as suggested
by Sadlo [46] produces the same results. The Lagrangian forward and backward
FTLE produces no result for the detection of the saddles. Even though, the ridges
are detected correctly at the first and last time step, the surfaces are deflected so
strongly that they do not intersect at all for the translation and almost everywhere for
the rotation, Figure 1.

o
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Fig. 5: Quad gyre: separatrices (pink: fw, Fig. 6: Petri-dish: the rotating sink (blue)
blue: bw) of strongest saddle (white) in and pathlines for comparison in space-
spacetime. time.

Figure 5 shows the extraction of the strongest saddle and the separatrices of
the quad gyre, which extends the double gyre [50] to the domain [0, 1]>. We used
the resolution 201% and one full period in time. Here, the global maximum of our
measure (24) coincides with the intersection of forward and backward FTLE of the
adjacent intervals [46]. The double gyre is an incompressible flow, which is why it
does not have sources and sinks.
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(a) Full time [0, 120]. (b) POI [65, 75]. (c) BwPOI [65,75].  (d) Fw POIL[65, 75].

Fig. 7: Categoization in viscous fingers dataset for timestep ¢ = 70.

Figures 6 and 7 show results of the categorization for two flow simulations using
red for sources, blue for sinks, white for saddles, and black for neither. The rotating
sink in the last 40 timesteps of the petri-dish dataset [7, 60, 5] is nicely extracted
but the complicated topology in the viscous fingers dataset [35] from the SciVis
contest http://sciviscontest.ieeevis.org is harder to interpret. A limit of our method is
reached if the data shows strong contraction and spans a long period of time. Once all
particles in the flowmap are accumulated in one point, nothing is left for it to capture
in coming time steps, which leads to detail getting lost and most points not belonging
in either category 7a. We show the strength of each region by overlaying (24), ranging
from black for low strength to transparent for high strength. This issue is a known
problem of Lagrangian methods and can be overcome by guaranteeing Lagrangian
invariance for a time period of interest (POI) only [15]. Figures 7a and ?? show the
difference of the global [#y, #;] = [0, 120] and the POI [65, 75] approach for time step
70. Figures 7c and 7d show the partial POI categories considering only backward and
only forward information, which together form Figure 7b. The comparison shows
that the chosen time interval influences how a point is categorized.

6 Discussion

The extension of vector field topology to time-dependent flows has been extensively
studied not only in the scientific visualization community. Our results are based on
many approaches that have been published previously.

The closest related work w.r.t. saddle is [4]. The definition of finite-time saddle
is identical to ours, but sources and sinks were not treated. There, the connection
of the saddle part to Lagrangian coherent structures based on FTLE is treated.
Sadlo and Weiskopf [46] suggested to intersect forward and backward FTLE ridges,
which corresponds to half of the constraints in Definition 3. Approaches of this
kind, where different time intervals are combined, were criticized by Haller [23],
because they are not Lagrangian w.r.t. the total time interval. But as we have seen, the
Lagrangian equivalent in Definition 1 is infeasible in practice. Definition 3 bridges
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the gap between the Lagrangian approach and the FTLE intersection of adjacent
intervals [46] providing a categorization that is both Lagrangian and robust.

The closest work w.r.t. sinks is probably by Wiebel et al. [60]. They used the
density maximum of particles that were seeded equidistantly in space and repeatedly
over time. Up to the exact evaluation of the density maxima, our sink definition is
in accordance with theirs because dense particle positions correspond to contracting
flowmap behavior. The main difference is that we consider a concrete finite-time
interval [fg, ¢1], while they seed repeatedly in time. Their method can be interpreted
as averaging the results of ours over the intervals [#;, #;] with ,i € [to, 1]. They do
not consider saddles in their work.

Probably the closest related work overall is by Theisel et al. [54]. In their pathline-
based approach, they also categorize pathlines into attractors, repellors, and saddle-
like trajectories based on whether their surrounding pathlines converge toward it in
forward integration, in backward integration, or both. There are three main differ-
ences to our work. First, their approach is local in time. They use the instantaneous
orientation of the pathlines in spacetime, which means it cannot encompass the
finite-term behavior of the flow. Second for the actual computation, they categorize
a point using the Jacobian of the vector field that results from projection of these di-
rections on the plane through spacetime that is orthogonal to the pathline through it.
This approach is not objective. Finally, there is no notion of strength or the extraction
of representatives, or separatrices.

Our notion of separatrices uses generalized streaklines [62] seeded on the saddles,
which is identical to related work on hyperbolic trajectories, saddle core lines, and
bifurcation lines [46, 55, 38].

7 Conclusion

We have presented an intuitive Lagrangian extension of the classic 2D vector field
critical points saddle, source, and sink to finite-time in Definition 1. It is objective
and reflects particle movement in a physically meaningful way. Since it is not robust
in practice, we also provide a sufficient criterion in Definition 3 and a first-order
approximation for the computation of the category and the strength. We show its
independence on changes of the reference frame and point out its relations to existing
approaches in the literature.

Looking at the discussion, we do not necessarily consider Definitions 1 and 3 a
huge leap over existing methods. We consider the main contribution of this paper to be
how this theoretical framework encompasses saddles, sources, sinks, and separatrices
and therefore ties together multiple valuable approaches from the literature.

Limitations are that our method is not able to detect all classic critical points, e.g.,
in linear steady fields because there, the Cauchy Green strain tensor is constant. In
addition, just like FTLE, it may detect shear as saddles and may require a high reso-
lution and long computation times for the generation of the flowmap. Furthermore,
it loses its ability to capture details in long simulation runs with strong contraction
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when all particles gather in one point. The categorization is always tied to a given
time interval. The same point in space and time could be classified differently for dif-
ferent intervals. In the future, we will analyze strategies to choose meaningful time
intervals. Finally, the categorization is undefined at the boundary where particles
leave the domain and at the boundary times 7y and ¢#;. Analysis of how the method
extends to 3D flow will be future work.
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