
Coreline Criteria for Inertial Particle Motion

Irene Baeza Rojo and Tobias Günther

Abstract Dynamical systems, such as the second-order ODEs that govern the motion
of finite-sized objects in fluids, describe the evolution of a state by a trajectory living
in a high-dimensional phase space. The high dimensionality leads to visualization
challenges and, for the case of inertial particles, multiple models exist that pose
different assumptions. In this paper, we thoroughly address the extraction of a specific
feature, namely the vortex corelines of inertial particles. Based on a general template
model that comprises two of the most commonly used inertial particle ODEs, we
first transform their high-dimensional tangent vector field into a Galilean reference
frame in which the observed inertial particle flow becomes as steady as possible. In
the optimal frame, we derive first-order and second-order vortex coreline criteria,
allowing us to extract straight and bent inertial vortex corelines using 3D and 6D
parallel vectors operators, respectively. With this, we generalize existing work in
multiple ways: not only do we handle two inertial particle models at once, we extend
the concept of second-order vortex corelines to the inertial case and make them
Galilean-invariant by deriving the criteria from a steady reference frame, rather than
from a geometric characterization.

1 Introduction

In this paper, we study the vortical motion of finite-sized objects in time-dependent
fluids, such as sand particles in air or bubbles in water. Such vortex dynamics occur
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for instance when helicopters approach the ground [1, 2, 3], in the detection of marine
debris [4], and in the formation of rain [5]. Previous methods [6, 7] used an aerosol
particle model that had only one degree of freedom. We extend the vortex coreline
extraction in unsteady flows to a more general inertial particle model that captures a
wider spectrum of density ratios between the particle and the surrounding medium.
Using a generalized description that contains both models as special cases, we develop
a first-order and a second-order feature extractor based on Sujudi-Haimes [8] and
Roth and Peikert [9], respectively. While the first-order extraction can be carried out
with standard 3D parallel vectors extractors [10], the second-order criterion requires
the search for 6D parallel vectors in a high-dimensional 6D space, for which we use a
Bézier-based subdivision with subsequent Newton iterations. Instead of deriving the
vortex criteria only from a geometric point of view in space-time [6], we extract the
vortex corelines in local Galilean reference frames in which the flow field becomes
as steady as possible [11, 12]. When it comes to vortex coreline extraction, there are
two orthogonal concepts: the shape of the coreline, and the motion of the coreline.
While previous work [7] concentrated on the motion, our focus is on the shape of
the coreline, as we search for straight and curved corelines. Assuming that vortices
perform Galilean transformations, we transform our flow into a reference frame in
which the time partial derivative vanishes by optimizing for a Galilean transformation.
In the optimal frame, the resulting vortex extraction methods therefore become
Galilean invariant. In summary, we contribute:

• a generalization of the inertial vortex coreline criterion of Günther and Theisel [6]
to a more general particle model,

• and a second-order criterion that extracts bent inertial vortex corelines, for which
we generalize Roth and Peikert [9].

Notation. In the following, we denote scalars s in italic letters, vectors v are bold
and matrices J are bold upper-case letters. Throughout the chapter, I denotes the
identity matrix. Quantities in the space-velocity domain are denoted with a tilde ṽ.

2 Related Work

2.1 Galilean Invariance

Galilean invariance is a desirable formal property that the measure of a feature might
have. If a measure (such as a vortex measure) is Galilean invariant, then it does
not change under Galilean transformations of the reference frame [23]. Formally, a
Galilean transformation maps a point (x, t) to the point (x∗, t∗):

x∗ = x + c + t d , t∗ = t + a , (1)

where c and d are constant vectors and a is a constant scalar. Accordingly, a vector
field u(x, t) is transformed to:
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u∗(x∗, t∗) = u(x, t) + d (2)
= u(x∗ − c − t d, t∗ − a) + d , (3)

which follows from differentiation of Eq. (1) to consider how the tangent of a pathline
dx∗(t∗)

dt = u∗(x∗, t∗) is transformed. A measure M is Galilean invariant if it gives
the same result at both locations in the accordingly transformed vector fields, i.e.,
M(x,u, t) = M(x∗,u∗, t∗). For example, applying the ∇ operator to both sides of
Eq. (2) shows that the Jacobian is Galilean invariant, since ∇u∗(x∗, t∗) = ∇u(x, t),
given that ∇d = 0 because d is constant.

Since the motion of the reference frame and the motion of the feature are relative
to each other, Galilean invariance not only guarantees that measures do not change
under motions of the observer; they also do not change when the feature itself is
moving. In other words, a Galilean invariant vortex measure will give the same result
if vortices move with constant speed in a constant direction, which ultimately allows
us to extract moving vortices.

2.2 Inertial Particle Motion

The motion of finite-sized particles in fluids can be described by a second-order
ODE, which can be rephrased into a coupled first-order ODE [6]. Depending on the
possible simplifying assumptions, different equations of motion are possible, which
resulted in a number of different particle models [13, 14, 15, 16]. Throughout this
work, we use two inertial particle models. The underlying fluid flow is described by
the n-d unsteady vector field u(x, t) : IRn × IR→ IRn.

Model 1. The first model was described by Crowe et al. [13] and considers small
particles in air. With g being the gravity vector, it reads:

ṽ(x,v, t) =
(

v
u(x,t)−v

r + g

)
. (4)

The particle response time r =
d2
pρp
18µ determines how quickly an inertial particle

aligns its own velocity v with the underlying air flow u(x, t), where dp is the particle
size, ρp is the particle density and µ is the viscosity of the underlying air flow. The
smaller r is, the lighter the particle, with tracer particles arising in the limit for r → 0.
This particle model has frequently been used to model the motion of sand particles in
air [17, 18, 1, 19, 3], and assumes that particles are spherical, very small, and have a
much higher density than the surrounding air.

Model 2. The second model was used by Haller [14] and distinguishes between
aerosols and bubbles, based on the density ratio R = 2ρ f /(ρ f + 2ρp), where ρ f is the
fluid density and ρp is the particle density. For R < 2/3 we have aerosols (ρp > ρ f ,
e.g., sand particles in air), for R = 2/3 we obtain neutrally buoyant particles (ρp = ρ f )
and for R > 2/3 the motion of bubbles (ρp < ρ f ) is modeled:
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ṽ(x,v, t) =

(
v

R
St (u(x, t) − v) + 3R

2
Du(x,t)

Dt +
(
1 − 3R

2

)
g

)
, (5)

where Du(x,t)
Dt = Ju + ut is the material derivative of the flow, i.e., the acceleration,

and ut =
∂u(x,t)
∂t is the time partial derivative of the flow. The Stokes number

St determines the amount of inertia, with St → 0 approaching the behavior of
tracer particles. This model and its variations, such as gravity-free environments
or neutrally buoyant particles, have been used extensively in the fluid dynamics
literature [20, 21, 22, 14, 15].

2.3 Vortex Corelines of Massless Flows

Vortex coreline definitions have evolved over the last two decades, adding more and
more generality. We mainly focus on the methods that led up to this paper. For a more
comprehensive overview, we refer to the recent survey of Günther and Theisel [23].

Corelines in Steady Flows. The earliest influential algorithms were built for steady
flows. Globus et al. [24] traced streamlines from attracting and repelling foci and
Sujudi and Haimes [8] introduced the reduced velocity criterion. In the presence of
complex eigenvalues in the Jacobian J = ∇u, let e be the single eigenvector with
a real eigenvalue. Sujudi and Haimes requested that the projection of the velocity
along vector e is zero: u − (uTe) e = 0. In other words, the flow exactly on the vortex
coreline is not in the swirling plane, but only moves forward. Peikert and Roth [10]
introduced the parallel vectors (PV) operator, which returns for two vector fields the
set of locations at which the two vector fields are parallel. With u ‖ e, the method
of Sujudi-Haimes [8] can be rephrased in PV notation, which is often computed as
u ‖ J u. Other vortex coreline conditions, such as helicity extrema, vorticity extrema
and λ2 extrema, can likewise be expressed by the PV operator [10, 25].

Corelines in Unsteady Flows. Fuchs et al. [26] extended this reduced velocity
criterion to unsteady flows by extracting u ‖ J u+ ut . Another approach was taken by
Weinkauf et al. [27], who applied the reduced velocity criterion in space-time. Since
there are, in space-time, two eigenvectors with real eigenvalue (one of them is zero),
the flow vector u must be in the plane that is spanned by these two eigenvectors to not
take part in the swirling plane. This co-planar vectors condition simplifies to the PV
condition u − f ‖ J(u − f), with f being the feature flow field [28]. Günther et al. [29]
introduced a rotation invariant coreline condition. By linear optimization, rotating and
translating reference frames have recently been extracted, in which the flow becomes
steady [30, 31]. The idea is that, in the optimal frame, vortex features are no longer
obscured by ambient motion. The solutionmust vary spatially, since no global observer
exists for the entire domain [11, 12, 32]. While Günther and Theisel optimized the
reference frame locally at each point in space-time, Hadwiger et al. [31] formulated
the search for optimal reference frames as a global optimization problem, in which the
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motion is described by an approximate Killing field. Note that a global optimization is
infeasible for inertial particle motion, since this would require to discretize the entire
seven-dimensional phase space. More recently, reference frame optimization has been
extended to spatially-varying transformations, which opened a path to topology-based
methods beyond vortices [33]. Günther and Theisel [34] have shown that the method
of Weinkauf et al. [27] is optimal for vortices performing Galilean transformations.
Other reference frame adjustments used flow decompositions [35, 36, 37], adjusted
to Galilean-invariant extremal features [38] or used machine learning [39].

Second-order Corelines. The local coreline conditions above can all be classified
as first-order methods, since they only involve first-order derivatives. For steady flows
u(x, y, z), the method of Roth and Peikert [9] computes bent vortex corelines with

u ‖ b with b =
D
Dt
(Ju) = (∇Ju + JJ)u , (6)

where ∇Ju = Jxu + Jyv + Jzw. Note that this method is not Galilean invariant,
even when calculating b = D

Dt (Ju + ut ), since the material derivative entails a
multiplication with u, which is not invariant. In this paper, we extend this approach to
the high-dimensional vector field of inertial particles. When considered in a reference
frame in which the flow is steady, the approach becomes reference frame invariant.

2.4 Vortex Corelines of Inertial Particles

For inertial particles, Günther and Theisel [6] proposed an inertial first-order vortex
coreline criterion that is Galilean invariant. However, their condition is tailored to
Model 1 and can only guarantee to correctly extract straight vortex corelines. To
arrive at this condition, they followed a geometric construction [27].

The method was extended by Günther and Theisel [7] to handle more kinds
of vortex motions, namely all smooth rotations and translations. For this, a linear
optimization is needed that finds a reference frame in which the high-dimensional
flow becomes as steady as possible. Then, the above method [6] is applied to find
straight inertial vortex corelines. As before, the extractor was tailored to Model 1.

In this paper, we further extend the method of Günther and Theisel [6] in three
ways. First, we derive vortex criteria not only for Model 1, but for a more general
template that includes Model 1 and Model 2 as special cases. Second, we extend the
method of Roth and Peikert [9] to derive a second-order vortex coreline criterion that
extracts bent inertial vortex corelines. Third, instead of deriving the vortex criteria
geometrically, we follow a reference frame centered approach, which is for both the
first-order and second-order case Galilean invariant, and arrives for the special case
of Model 1 at the same condition as [6]. This gives new insights on the mathematical
properties of their solution.
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3 Vortex Coreline Criteria for Inertial Particles

Our inertial vortex coreline criteria are fundamentally based on the observation of the
time-dependent high-dimensional vector field in a reference frame in which the flow
becomes steady. Since we concentrate on the shape of the corelines instead of the
motion, we assume a Galilean transformation. Therefore, we first introduce Galilean
reference frame transformations of inertial particles and derive the analytic solution
to the optimal reference frame for both inertial particle models. Afterwards, we derive
the inertial vortex coreline conditions that are applied in the optimal frame. We begin
with first-order criteria in 2D, in 2D space-time, and in 3D. Afterwards, we introduce
the second-order vortex coreline criterion that allows us to find bent corelines.

3.1 Generalized Inertial Particle Motion

Similar to Günther and Gross [40], we utilize a generalized template-based description
of the particle motion, which allows us to express local properties of inertial particles
for multiple models at once. Their template-based description introduces abstract
variables that are assigned dependent on the particle model. While Günther and Gross
generalized the high-dimensional Jacobian matrix J̃, we generalize the underlying
high-dimensional vector field ṽ instead. Let κ be a constant scalar and k(x, t) be an
n-d vector field. The change in particle position x and particle velocity v of an inertial
particle are described by the high-dimensional vector field ṽ(x,v, t):

ṽ(x,v, t) =
d
dt

(
x
v

)
=

(
v

k(x, t) − v
κ

)
. (7)

Intuitively speaking, position x and velocity v are the two properties that are stored per
particle. Then, the high-dimensional vector field ṽ is the vector field in which inertial
particle trajectories are traced as tangent curves. The high-dimensional Jacobian
matrix J̃ = ∇ṽ contains the x and v partials as column vectors and becomes:

J̃(x,v, t) =
(
∂ṽ(x,v,t)

∂x , ∂ṽ(x,v,t)
∂v

)
=

(
0 I

∇k(x, t) − 1
κ I

)
, (8)

which can be used to locally analyze the behavior of inertial particles. By a suitable
choice of κ and k(x, t), Eqs. (7) and (8) can describe inertial particle motion:

Model 1 : κ = r, k(x, t) =
u(x, t)

r
+ g , (9)

Model 2 : κ =
St
R
, k(x, t) =

R
St

u(x, t) +
3R
2

Du(x, t)
Dt

+

(
1 −

3R
2

)
g . (10)
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Galilean Transformation. Since inertial particle motion is described by a higher-
dimensional vector field, we now consider how an inertial particle in the high-
dimensional space changes under Galilean transformations. From Eqs. (1) and (2),

we see how position x(t) and velocity v(t) of an inertial particle p̃(t) =
(
x(t)
v(t)

)
are

transformed to p̃∗(t):

p̃∗(t) =
(
x∗(t)
v∗(t)

)
=

(
x(t) + c + t d

v(t) + d

)
. (11)

The above particle p̃∗ moves tangentially in the high-dimensional vector field ṽ∗ that
governs its motion. By differentiating Eq. (11), we consider the tangent of our particle
at (x∗,v∗) to see how the governing high-dimensional vector field is transformed

ṽ∗ =
dp̃∗

dt |x∗ ,v∗
=

(
dx(t)

dt + d
dv(t)

dt

)
=

dp̃
dt |x,v

+

(
d
0

)
= ṽ +

(
d
0

)
. (12)

By inserting our generalized particle model from Eq. (7) into the Galilean transformed
high-dimensional flow in Eq. (12), we obtain the transformed high-dimensional vector
field that governs the inertial particle motion for both our considered models:

ṽ∗ =
(

v + d
k(x, t) − v

κ

)
, J̃∗ = J̃, ṽ∗t =

(
0

kt − ∇k · d

)
. (13)

The Jacobian J̃∗ = ∇ṽ∗ and the time partial derivative of the high-dimensional flow
ṽ∗t = ∂ṽ∗

∂t follow directly by differentiation. Note that the calculation of the derivatives
requires application of the chain rule, since with Eq. (1) position x is x = x∗ − c − t d.

3.2 Inertial Motion in Steady Frame

To find the most-steady reference frame for inertial particle motion, Günther and
Theisel [7] considered all smooth rotations and translations of the reference frame.
The final vortex extraction eventually resulted in a parallel vectors operation in
6D. Since we concentrate in this paper on coreline shapes, we assume a Galilean
transformation for simplicity. For the first-order criteria, this will result in a 3D
parallel vectors problem that can be solved efficiently.

To find a steady reference frame, we rearrange the velocity subspace of Eq. (13) to
select the translation parameter d for which the time partial of the high-dimensional
flow ṽ∗ vanishes, i.e., ṽ∗t = 0:

d = (∇k)−1kt . (14)

When inserting Eq. (14) in Eq. (13), the flow becomes steady.
For the specific models from Eqs. (9) and (10) we get:
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Model 1 : d = J−1 ut . (15)

Model 2 : d =
(
J +

3St
2
∇Du
Dt

)−1 (
ut +

3St
2

D2u
Dt2

)
. (16)

In case of Model 1, we have d = −f, where f = −J−1ut is the feature flow field [28]
of massless particles, cf. Eq. (26) in [23]. Next, we extract inertial vortex corelines in
the Galilean reference frame that is as steady as possible.

3.3 First-Order Corelines

3.3.1 2D Conditions

In the 2D steady vector fields of tracer particles, vortex centers are critical points with
complex eigenvalues in the Jacobian [41]. Thus, for inertial flows we set ṽ∗ = 0 in
the high-dimensional inertial flow in Eq. (7). The position subspace gives a condition
for v, namely v = −d, which we insert in the velocity subspace, resulting in:

k +
d
κ
= 0 ⇔ κk + d = 0 ⇔ κ(∇k)k + kt = 0. (17)

Inserting Model 1 from Eq. (9) or Model 2 from Eq. (10) into the boxed condition in
Eq. (17) gives 2D conditions for locating the vortex center.

Model 1 : u + r g + d = 0 , (18)

Model 2 : u +
3St
2

Du
Dt
+

(
St
R
−

3St
2

)
g + d = 0 . (19)

To illustrate the above conditions, Fig. 1 shows space-time visualizations of the
analytic Moving Center flow (cf. Eq. (44) in Section 5) for Model 1. In this flow,
the vortex moves with constant speed over time, as illustrated by inertial pathlines
(left). The motion results in a feature flow that is also constant and moves in the same
direction as the coreline (right). Using line integral convolution (LIC), we visualize
a slice of the vector field κk + d, where 2D vortex centers can be found to obtain a
seed point for the space-time tracking.

Space-Time Extraction. The above condition in Eq. (17) determines vortex centers
for a given moment in time. By lifting the condition into space-time, the paths of
vortex centers can be extracted at once using a parallel vectors operator [10]. In
space-time, the following PV condition arises, where the last component is time:(

κk
1

)
‖

(
−d
1

)
. (20)
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x
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t

x
y

t

Fig. 1: Inertial vortex coreline in the Moving Center flow for Model 1 using
g = (−2,1)T and r = 0.1. The flow κk+d is shown with a LIC slice at the bottom, and
the coreline (•) shows the center of the vortex over time. Left, inertial pathlines (•)
depict the behavior of inertial particles in the flow. Right, the ambient flow field d (•)
is constant and evolves parallel to the vortex coreline.

The space-time condition has interesting properties and can be reformulated as shown
next. First, let k̄ be the vector field on the left side and let K̄ = ∇k̄ be its space-time
Jacobian:

k̄ =
(
κk
1

)
, K̄ =

(
∂k̄
∂x ,

∂k̄
∂t

)
= κ

(
∇k kt

0 0

)
. (21)

Since K̄
(
−d
1

)
= 0, we can see that

(
−d
1

)
is an eigenvector of K̄with the corresponding

eigenvalue 0. With Eq. (20) it follows that on a vortex coreline, k̄ is also an eigenvector
of K̄ and thus the reduced velocity criterion of Sujudi-Haimes [8] applies. When
using the parallel vectors version [10] of the criterion on k̄, we get:

κ

(
∇k kt

0 0

) (
κk
1

)
‖

(
κk
1

)
⇔

(
κ(∇k)k + kt

0

)
‖

(
κk
1

)
. (22)

Note that the condition on the right can be computed without having to linearly solve
for d in Eq. (14). The criterion on the right of Eq. (22) can only be fulfilled if its left
side becomes zero, due to the time components (only the zero vector can be parallel
to k̄). Thus, the following conditions are equivalent:

k +
d
κ
= 0 ⇔ κ(∇k)k + kt = 0. (23)

The latter asks for the acceleration of vector field k to be zero.
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3.3.2 3D Conditions

To find 3D corelines, we apply the method of Sujudi and Haimes [8] to the high-
dimensional flow in the optimal steady frame, i.e., to ṽ∗ in Eq. (13). We search for
locations at which the high-dimensional velocity ṽ∗ aligns with its acceleration:

ṽ∗ ‖ J̃∗ṽ∗ ⇒

(
v + d
k − v

κ

)
‖

(
k − v

κ

∇k(v + d) − k− v
κ

κ

)
. (24)

The above parallel vectors condition in Eq. (46) is six-dimensional and requires
the search for both position and velocity. By requiring parallelism in the space
subspace and the velocity subspace individually, the condition is simplified, since the
dependence on the velocity v disappears, which was demonstrated for Model 1 [6].
In the Appendix 1, we show this for the general case, arriving at:

κk + d ‖ ∇k (κk + d) , (25)

which is now independent of the particle velocity v. Thus, the parallel vectors condition
in Eq. (25) can be searched in the position subspace using standard extractors, as
introduced by Peikert and Roth [10]. Inserting Model 1 from Eq. (9) or Model 2 from
Eq. (10) into Eq. (25) gives:

Model 1 : u + r g + d ‖ J (u + r g + d) , (26)

Model 2 : w ‖
[
J +

3St
2
∇

(
Du
Dt

)]
w , (27)

with w = u +
3St
2

Du
Dt
+

(
St
R
−

3St
2

)
g + d . (28)

Note that Eq. (26) is the 3D condition that was derived by Günther and Theisel [6]
(Eq. (32) in their paper for d = −f as shown above), which appears here as special
case.

Curvature of the Coreline. In the optimal steady reference frame, the condition
ṽ∗ ‖ J̃∗ṽ∗ in Eq. (46) determines locations at which the high-dimensional flow is
parallel to the acceleration. If both are parallel, the curvature of the resulting coreline
vanishes. The curvature of a parameteric curve x(t) is given in any dimension by:

κ =

√
‖ Ûx‖2 ‖Üx‖2−(ÛxT Üx)2

‖ Ûx‖3
. The numerator vanishes if the enclosed angle θ between Ûx and

Üx is zero, due to the dot product ÛxT Üx = ‖ Ûx‖ ‖Üx‖ cos(θ). In Eq. (46), we have velocity
Ûx = ṽ∗ and steady acceleration Üx = J̃∗ṽ∗. Thus, the first-order vortex coreline criterion
models vortices as straight line structures.
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3.4 Second-Order Corelines

Roth and Peikert [9] introduced an extension of Sujudi and Haimes [8] that models
bent vortex corelines. Applied to our high-dimensional vector field in the optimal
steady reference frame, vortex corelines are identified as locations that fulfill:

ṽ∗ ‖ b̃∗ with b̃∗ =
D
Dt
(J̃∗ṽ∗) . (29)

The acceleration ã∗ in the transformed reference frame is

ã∗ =
Dṽ∗

Dt
= J̃∗ṽ∗ =

(
k − v

κ

∇k(v + d) + v
κ2 −

k
κ

)
, (30)

which follows from insertion of Eqs. (13) into the left hand side of Eq. (30). Computing
the material derivative of Eq. (30) as b̃∗ = Dã∗

Dt = (∇ã∗)ṽ∗ gives that the change in
acceleration b̃∗ is:

b̃∗ =
(

∇k(v + d) + v
κ2 −

k
κ

∇(∇k)(v + d)(v + d) − ∇k
κ (v + d) + ∇k(k − v

κ ) −
v
κ3 +

k
κ2

)
, (31)

with∇(∇k)(v+d) = ∂(∇k)
∂x ·(u+d1)+

∂(∇k)
∂y ·(v+d2)+

∂(∇k)
∂z ·(w+d3) ford = (d1, d2, d3)

T.
With Eq. (29), this leads to the following parallel vectors problem:(

v + d
k − v

κ

)
‖

(
∇k(v + d) + v

κ2 −
k
κ

∇(∇k)(v + d)(v + d) − ∇k
κ (v + d) + ∇k(k − v

κ ) −
v
κ3 +

k
κ2

)
(32)

This is a 6D parallel vectors problem, since both position x (for the evaluation
of k) and velocity v need to be searched. The extraction algorithm is described in
Section 4.

4 Implementation

In the following, we explain the numerical extraction algorithms used to locate inertial
critical points and inertial vortex corelines.

First-order Method. To find inertial critical points in 2D according to Eq. (17),
we use the numerical subdivision approach of Globus et al. [24]. The line-based
extraction of inertial critical paths in 2D space-time in Eq. (20) and the first-order
extraction of inertial 3D corelines in Eq. (25) are formulated as 3D parallel vectors
problems [10]. We used a Bézier-based subdivision to find the roots of the cross
product [42, 43], which we refined using Newton iterations [44]. Several other existing
algorithms would also be applicable [10, 45].
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Second-order Method. The second-order method requires a 6D parallel vectors
extraction in a 6D space. Recently, Hofmann and Sadlo [46] introduced the dependent
vectors operator which extends the parallel vector operator to arbitrary dimensions,
where our 6D PV problem is a special case. While their method provides a general
framework for high dimensional features, their proposed algorithm does not scale
well for our problem. The direct computation of the two 6D vector fields in Eq. (32)
is too expensive, both in terms of computation time and memory consumption. To
solve this problem, we follow the approach of Günther and Theisel [7], which we
adapt to our vector configuration.

By writing the position subspace and the velocity subspace of Eq. (32) as functions
in v, we can simplify the search. By introducing the spatially-varying 3D vector fields
a, b, c, d, matrix fields B, C, D, and tensor field D, we can calculate the 6D vectors
in Eq. (32) for a certain v on demand using only data stored in 3D:

ṽ∗ ‖ b̃∗ ⇔

(
v + a

B v + b

)
‖

(
C v + c

Dv · (v + a) + D v + d

)
, (33)

with the vector fields, matrix fields and tensor field:

a = d , b = k , (34)

c = ∇k · d −
k
κ
, C = ∇k +

1
κ2 I , (35)

d = ∇(∇k)d · d −
∇kd
κ
+ ∇kk +

k
κ2 , B = −

1
κ

I , (36)

D = ∇(∇k)d −
2∇k
κ
−

1
κ3 I , D = ∇(∇k) . (37)

In practice, we discretize the above fields onto a piecewise linear tetrahedral 3D grid.
At three spatial grid points xi with i ∈ {1,2,3} of a triangle, we therefore have the
quantities ai , bi , ci , di , Bi , Ci , Di and D

i
, which can be linearly interpolated with

the barycentric weights a, b, c, subject to a + b + c = 1:

a = a a1 + b b2 + c c3 , (38)
b = a b1 + b b2 + c b3 , (39)
... (40)

D = a D
1
+ b D

2
+ c D

3
. (41)

At the same time, the velocity subspace is discretized onto a tetrahedral grid, for
which we likewise assume barycentric interpolation with barycentric weights d, e, f ,
g inside the tetrahedra, subject to d + e + f + g = 1:

v = d v1 + e v2 + f v3 + g v4. (42)
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Thus, the 6D PV condition ṽ∗ ‖ b̃∗ in Eq. (33) can now be expressed with Eqs. (36)–
(42) in barycentric coordinates (a, . . . ,g). To search the entire 6D space, each pair of
position triangle and velocity tetrahedra must be tested. The PV solutions are points
on the position triangles, which are connected to 3D lines in a post-process.

Two 6D vector fields ṽ and w̃ are parallel iff in generalization of the cross product
the anti-symmetric matrix X̃ is zero, with

ṽ ‖ w̃ ⇔ X̃ = 06×6 with X̃i, j = ũi w̃j − w̃i ũj, (43)

and the element indices i, j ∈ {1, . . . ,6}. Thus, the search for parallel vectors becomes
a root finding problem in all entries of matrix X̃, which is quadratic in barycentric
coordinates X̃(a, b, c; d, e, f ,g).

After converting matrix X̃ into Bernstein-Bezier form [42, 43], we use the convex
hull property to quickly decide whether a root may exist inside a pair of position
triangle and velocity tetrahedron. The conversion into Bernstein-Bezier form was
described by Günther and Theisel [7], and we refer to their implementation section
for the details. If a solution could exist in a tested pair, they performed a recursive
subdivision, similar to Oster et al. [51], until the solution was found numerically.
Their computation time is in the order of multiple hours. To speed up convergence, we
instead use multi-variate Newton iterations [44] to locate the barycenteric coordinate
at which the matrix X̃ vanishes. After uniformly scaling the linear 6D vector fields
ṽ and w̃ such that the longest vector has unit length, we iteratively minimize the
Frobenius norm of X̃. Since we do not recursively subdivide, significantly less pairs
of triangles and tetrahedra need to be tested. For example, the computation time in
the Vortex Ring at an initial spatial resolution of 323 voxels reduces from 70 min to
1.5 min. In pratice, we use higher grid resolutions, as shown later in Table 1, as our
algorithm assumes linear interpolation on the tetrahedral elements covering the voxels
of the grid. Note however that Newton iterations will only find one solution and can
miss others if there a multiple solutions on the face of a cell. It should therefore only
be applied when the bilinear face of a voxel is small enough, either because the initial
grid resolution is fine enough, or after a certain number of recursive subdivisions
have been performed. Our implementation of the multi-variate Newton iterations
does not include further optimizations, such as line search or relaxation. Thus, there
is room for further performance improvements.

5 Results

In the following, we test our extractors in several 2D and 3D flows, both analytic and
numerical. For each experiment, we specify the inertial parameters as well as the
applied extraction methods, that is, first-order or second-order coreline extraction.
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Fig. 2: Inertial (•) and massless (•) vortex coreline in the Moving Center flow for
Model 2 using g = (0,2)T. On the left, R = 0.5 and St = 0.1, which models the
behavior of aerosols such as sand particles in air. On the right, R = 0.7 and St = 0.7,
which models the motion of bubbles. The corelines show the center of the vortex,
while inertial pathlines (•) depict the overall movement of particles, showing that
inertial particles close to the coreline revolve around the inertial vortex.

5.1 Comparison of Inertial Particle Parameters

The first 2D flow contains a vortex center translating with constant speed along a
straight line over time [27]:

u(x, y, t) =
(
−y + t

2 − 1
x + t

2 − 1

)
. (44)

We consider the vector field in the space-time domain D × T = [−2,2]2 × [0,4].
Fig. 2 shows the effect of the parameters St and R on the vortex position for Model 2,
showing the behavior of both aerosols and bubbles. Pathlines (•) close to the vortex
center (•) revolve around it over time, which indicates that the coreline extraction is
accurate. In contrast to massless flows, inertial pathlines seeded from the coreline
do not necessarily stay exactly on the coreline due to the inertia that carries them
outward. Nevertless, the general motion around the coreline can be observed.

5.2 Comparison of Inertial Particle Models

Cylinder Flow in 2D. The numerical 2D Cylinder flow contains a von-Kármán
vortex street in the wake of an obstacle. The viscous fluid was injected from the left
into a channel bounded by solid walls with a slip boundary condition. Fig. 3 shows
two examples of Model 1 and 2 applied to this flow. In both cases, the symmetric
flow creates translating vortices that remain coherent over time, which is visible in
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xy

t

Model 1 xy

t

Model 2

Fig. 3: Inertial vortex corelines in the Cylinder flow for Model 1 (left) and 2 (right)
using g = (0,1)T, r = 0.05, R = 2/3 and St = 0.01. Inertial pathlines (•) show that
particles rotate around inertial corelines (•), giving evidence of correctness.

the space-time overview of the corelines (top). Depending on the particle model
parameters, inertial particles can get trapped in the vortices while they are rotating
around the corelines over time, which is visualized with inertial pathlines in the
zoomed images. It becomes apparent that aerosol trajectories of Model 1 spiral away
from the corelines, whereas the smaller neutrally buoyant particles of Model 2 remain
close to their coreline. For this data set, the behavior of different inertial model
parameters has previously been studied by Baeza Rojo et al. [47]. In our work, we
automatically extract the vortex corelines, which compactly summarizes the loci of
rotating motion.

Delta Wing in 3D. This numerical 3D flow was provided by Markus Rütten and
contains a simulation of a triangular surface in upstream flow that generates two
large wake vortices. We used a gravity-free environment, i.e., g = 0, to extract a set
of vortex corelines for both particle models. Fig. 4 shows the difference between
Model 1 and Model 2. Although the location of vortex corelines is similar here,
Model 1 trajectories exhibit significantly more inertia when using a response time of
r = 0.01, compared to trajectories in Model 2 when using R = 0.1 and St = 0.001
as parameters. The Model 2 particles are smaller and thus follow the flow more
tangentially than the Model 1 particles. Similar to the massless case, inertial particles
of Model 2 revolve very closely around the vortex corelines.

Square Cylinder in 3D. This 3D unsteady fluid flow sequence shows the develop-
ment of a von-Kármán vortex street. The obstacle, which is a squared cylinder, is
positioned between two parallel walls, producing a periodic shedding of vortices over
time. Fig. 5 shows selected frames of an accompanying animation, where we can
see how inertial particles rotate around the extracted corelines. The heavy particles
in Model 1 are affected by gravity, which drags particles down. The inertial vortex
corelines (•) are shifted horizontally compared to the massless case (•) towards the
updraft direction of the vortex, since this is where gravity cancels to zero. The shift
therefore depends on the rotation direction of the vortex. Particles from Model 2, on
the other hand, resemble bubbles (i.e., they have lower density than the liquid) and
thus slowly rise up. It is also apparent that the behavior of particles in and around the
vortices differs, since the inertia of particles of Model 1 carries particles further out.
The low particle density inside vortices is characteristic for aerosol particles.



16 Irene Baeza Rojo and Tobias Günther

Model 1 Model 2
Fig. 4: Inertial vortex corelines for model 1 (left) and 2 (right) in the Delta Wing
using g = (0,0,0), r = 0.01, R = 0.1 and St = 0.001.

Model 1 Model 2
Fig. 5: Comparison of inertial (•) and massless (•) vortex corelines in the flow behind
a Square Cylinder for Model 1 (top, r = 0.25) and Model 2 (bottom, R = 0.8 and
St = 0.4). The heavy aerosol particles of Model 1 are dragged down by gravity
g = (0,−1,0) while the parameters of Model 2 represent bubbles, which rise upward.

5.3 Second-order Corelines in 3D

Vortex Ring. Our next vector field contains a translating Vortex Ring, which serves
as synthetic test case for the second-order extractor. The velocity magnitude along
the coreline is denoted by s and the vortex translates with speed a along the z-axis.

u(x, y, z, t) = ©«
−x · (z + a · t) − s · y
−y · (z + a · t) + s · x

x2 + y2 − 1 − a

ª®¬ . (45)

In our examples, we set a = s = 1. We consider the flow in the spatial domain [−2,2]3.
In this flow, the vortex coreline is bent and thus the first-order methods fail to detect
the correct coreline (•), as shown in Fig. 6. For the given model parameterization,
the inertial particles of Model 1 exhibit more inertia than the particles in Model 2,
leading them onto wider paths. The second-order vortex corelines (•) of both models
are similar to each other. Note that the first-order criterion gives a wrong solution,
since the coreline is not straight, which shows the necessity of our second-order
vortex coreline criterion. Particles seeded on a vortex coreline are expected to remain
close to the coreline over time, which is the case for our second-order condition.
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Fig. 6: Bent second-order inertial vortex corelines in the Vortex Ring data set for
Model 1 (left, r = 0.1) and Model 2 (right, R = 0.8 and St = 0.1) using g = (0,0,−1).
The second-order corelines (•) are shown for three different time steps, and the
first-order corelines (•) for t = 0. Note that inertial pathlines (•) remain near the
vortex over time, while inertial pathlines (•) from t = 0 show the rotating motion.

Model 1 Model 1

Fig. 7: First-order (•) (left) and second-order (•) (right) inertial vortex corelines in
the Helicopter data set for Model 1 using g = 0 and r = 0.001. Near the ground,
a large vortex ring forms around the hovering helicopter. The trajectories show the
paths of sand particles. Differences between the methods can be seen below the rotor.

Helicopter. Our last numerical example stems from brown-out engineering [1, 2],
which studies the uplift of dust and sand when helicopters or airplanes approach the
ground. The simulation shown in Fig. 7 contains a model rotor spinning at 75 Hz. The
strong vertical airflow pushes down onto the sediment bed, as it carries tip vortices
from the rotor into the domain. Due to numerical dissipation, these vortices are not
well preserved in the simulation data. Very well distinguishable, however, is the
large vortex ring that forms around the helicopter. The first-order and second-order
corelines agree for this ring, since the velocity component along the vortex coreline is
zero. There, particles are not moving along the vortex coreline, but stay stationary on
it. Studying this intrinsically curved vortex is important, since it is a strong driver of
sediment uplift, which causes mechanical wear of the blades and, more importantly,
a limited view that frequently causes accidents. Differences between the two methods
can be seen in the flow regime below the rotor blades, where the vortex coreline
spirals outwards. These vortices eventually reach the sediment bed, causing uplift.
Further, we can see that the second-order lines are more spurious than the first-order
lines, which is a consequence of the numerical challenges of higher-order methods.
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5.4 Memory Consumption and Performance

For all performance measurements, we used an Intel i7-6700K CPU with 32 GB
RAM. All presented feature definitions are local and their extraction can thus easily
be parallelized. In unsteady 2D flows, we only have to compute a 2D vector field in
which the critical points are searched. This sums up to 2N double variables, where N
is the number of grid points. Note that the time slices can be processed sequentially,
which is why we only need to store a single time slice at a time. In 3D, we store
for the first-order method two 3D vector fields, i.e., 6N double variables. For the
3D second-order methods, we store for each grid point 4 vector fields (a,b,c,d), 3
matrix fields (B,C,D) and 1 tensor field. This accumulates to 66N double variables.
In general, the extraction performance is linear in the number of voxels that are tested
for parallel vectors. The number of tested voxels depends on the amount and extent
of swirling motion in the domain. The computation time of the quantities resulting in
the vortex criterion and of the actual numerical extraction of the corelines are listed
in Table 1. While the 2D and first-order 3D extraction can be carried out in the order
of seconds (similar to the traditional massless case), the second-order 6D extraction
is computationally still expensive, taking multiple hours on numerical data. Further
speed-up could be achieved by pruning the search space, e.g., by considering only
visible voxels in the domain or by specifying a region-of-interest, which have both
not been implemented yet.

5.5 Discussion

Parameters. A benefit of our Galilean-invariant method, compared to the objective
approach of Günther and Theisel [7], is that our reference frame optimization is
parameter-free. While the objective method required the specification of a neighbor-
hood region to regularize a linear system, the Galilean invariant approach has a local
analytic solution.

Temporal Coherence. Our coreline definitions are local and do not involve any
spatial or temporal smoothing kernels. Consequentially, temporal coherence is not
directly enforced, which can result in temporal flickering. This is a general limitation
of local methods [27, 6]. Obtaining smoother results is typically achieved through a
pre-processing or post-processing step, which are orthogonal problems to the feature
definition.

Computation Time. By using an iterative Newton refinement, the computation time
of the 6D parallel vectors extraction reduced by about factor 40 compared to the
Bézier-based subdivision in previous work [7], but it can still see improvements. An
implicit or view-dependent computation of the line structures or a smarter selection
of numerical parameters might be paths to faster updates.
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Grid Memory Order M VF PV

Moving Center 2D 128 × 128 × 128 256 KB 1st 1 0.11 0.30
2 9.12 13.27

Cylinder 2D 640 × 80 × 1501 800 KB 1st 1 13.74 2.61
2 80.67 2.73

Squared Cylinder 3D 192 × 64 × 48 27 MB 1st 1 0.55 6.74
2 3.82 14.11

Delta Wing 3D 250 × 125 × 100 35.2 MB 1st 1 2.47 0.07
2 16.36 0.77

Vortex Ring 3D 128 × 128 × 128
96 MB 1st 1 0.59 0.30

2 0.74 0.26

1.03 GB 2nd 1 0.48 0.85 h
2 0.82 1.1 h

Helicopter 3D 128 × 256 × 256 384 MB 1st 1 8.25 1.37
4.12 GB 2nd 1 11.18 14 h

Table 1: Computation time in seconds for the vector fields (VF) from Eq. (20) for first
order space-time 2D, Eq. (25) for 3D and Eq. (32) for second order and corelines
extraction with parallel vectors (PV) for the two models (M).

Reference Frame Invariance. The shape of a coreline and its motion are two
independent phenomena. In fact, in the Vortex Ring data set in Fig. 6, the objective
approach [7] and the first-order Galilean-invariant method [6] will both give an
identical (and wrong) result, since the vortex ring is not straight and performs an
equal-speed translation. In this paper, we introduced a criterion to extract more
general inertial coreline shapes. For this, we concentrated on vortex corelines that
perform Galilean transformations. To handle more arbitrary motions in the future, we
would like to apply the second-order criterion in reference frames that are objective.

Limit Case for Tracer Particles. Anatural question that arises for feature definitions
of inertial particles is whether they are consistent with the massless case. In the
Appendix 2, we show that our inertial first-order and second-order criteria approach
the massless case in the limit for κ → 0, as desired.

6 Conclusion

In this paper, we developed vortex coreline extractors for inertial particles for two
particle models. Based on the selection of an optimal Galilean reference frame, in
which the flow field becomes steady, we introduced generalized coreline criteria that
include both particle models as special cases. After covering the 2D case, we discussed
the first-order and second-order inertial coreline extraction in 3D, which required
a 3D or 6D parallel vectors extraction. For the latter, we combined a Bézier-based
subdivision approach with a subsequent iterative Newton refinement. Our work
connects to reference frame optimization, shedding light on the formal mathematical
properties of previous work [6] that derived a criterion geometrically.
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Appendix 1 - Derivation of First-order 3D Criterion

Next, we show how the 6D parallel vectors condition of the first-order case:

ṽ∗ ‖ J̃∗ṽ∗ ⇒

(
v + d
k − v

κ

)
‖

(
k − v

κ

∇k(v + d) − k− v
κ

κ

)
. (46)

can be simplified to a 3D criterion. First, we look at the position subspace. Multiplying
with κ and adding v + d to the right hand side gives:

v + d ‖ k −
v
κ
⇔ v + d ‖ κk − v (47)

⇔ v + d ‖ κk + d, (48)

Equating Eq. (47) and Eq. (48) gives:

k −
v
κ
‖ κk + d. (49)

Considering the velocity subspace of Eq. (46):

k −
v
κ
‖ ∇k (v + d) −

k − v
κ

κ
, (50)

and multiplying the right hand side with κ gives:

k −
v
κ
‖ κ∇k (v + d) − k +

v
κ
. (51)

Adding the left hand side to the right hand side and dividing by κ:

k −
v
κ
‖ ∇k (v + d). (52)

Finally, substituting Eq. (49) on the left hand side of Eq. (52) and inserting Eq. (48)
on the right hand side of Eq. (52) gives Eq. (25):

κk + d ‖ ∇k (κk + d) , (53)

which is a 3D condition, independent of the particle velocity v.
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Appendix 2 - Tracer Particles as Limit Case

Next, we show that our inertial first-order and second-order criteria approach the
massless case in the limit. The proofs of Model 1 and 2 are analogue. For brevity, we
show the derivation for Model 1.

Inertial Motion. First, the motion of inertial particles is consistent with tracer
particles for r → 0, as shown by Günther and Theisel [6]: Rearranging the velocity
subspace of ṽ in Eq. (7) for v and substituting in the position subspace of ṽ gives with
Eq. (9):

lim
r→0

dx
dt
= v = u(x, t) −r

dv
dt
+ rg︸       ︷︷       ︸

0

. (54)

Vortex Centers in 2D. The motion of inertial particles is described with Eq. (9). We
consider the limit r → 0 for tracer particles:

κ = r κk = u(x, t) + rg (55)
lim
r→0

κk = u(x, t) . (56)

With d = J−1ut = −f from Eq. (15), we insert the limit in Eq. (56) into the general
2D vortex center condition in Eq. (17):

κk + d = 0
r→0
⇒ u(x, t) − f = 0, (57)

which is the Galilean invariant 2D vortex coreline criterion for massless particles by
Weinkauf et al. [27], cf. Eq. (55) in [23].

First-order Corelines in 3D. For the first-order vortex corelines in 3D, we insert
the limit in Eq. (56) into the general first-order vortex coreline condition in Eq. (25):

κk + d ‖ ∇k (κk + d)
r→0
⇒ u − f ‖

J
r
(u − f) (58)

u − f ‖ J (u − f) , (59)

which is the Galilean invariant first-order 3D vortex coreline criterion for massless
particles by Weinkauf et al. [27], cf. Eq. (53) in [23].

Second-order Corelines in 3D. We consider the transformed velocity ṽ∗ in Eq. (13)
and the rate of acceleration b̃∗:

b̃∗ =
(

∇k(v + d) + v
κ2 −

k
κ

∇(∇k)(v + d)(v + d) − ∇k
κ (v + d) + ∇k(k − v

κ ) −
v
κ3 +

k
κ2

)
(60)
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in the optimal reference frame, i.e., d is the translation rate:

ṽ∗ =
(
v + d

a∗
)
. b̃∗ =

(
b∗
c∗

)
. (61)

We rearrange the velocity subspace in Eq. (60), denoted as c∗ with

c∗ = ∇(∇k)(v + d)(v + d) −
∇k
κ
(v + d) + ∇k(k −

v
κ
) −

v
κ3 +

k
κ2

and with a∗ = k − v
κ = J(u − f) [23] and b∗ in Eq. (60) into

c∗ = ∇(∇k)(v + d)(v + d) + ∇k (J(u − f)) −
b∗

κ
. (62)

Inserting Model 1 with Eqs. (56) and (57) gives for r → 0:

c∗ =
1
r
∇J(u − f)(u − f) +

J
r
(J(u − f)) −

b∗

r
(63)

⇔ r · c∗ = ∇J(u − f)(u − f) + J (J(u − f)) − b∗ = 0. (64)

Rearranging for the rate of acceleration b∗ gives the material derivative of the steady
acceleration D

Dt (Ju∗) in the optimal frame:

lim
r→0

b∗ = (∇Ju∗ + JJ)u∗ with u∗ = u − f . (65)

Thus, the position subspace simplifies to u∗ ‖ b∗, which is equivalent to the criterion
of Roth and Peikert [9] in the optimal steady reference frame. Thus, all proposed
inertial vortex criteria are consistent with the massless case for r → 0.
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