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Fig. 1: Several laminar and turbulent time slices of unsteady 2D vector fields from our public, numerically-simulated set of fluid
flows. The bottom left number is the unique identifier of the flow in our data set. Here, color encodes vorticity and the dark lines
correspond to the attracting hyperbolic Lagrangian coherent structures, estimated as ridges of the finite-time Lyapunov exponent.

Abstract—In recent years, deep learning has opened countless research opportunities across many different disciplines. At present,
visualization is mainly applied to explore and explain neural networks. Its counterpart–the application of deep learning to visualization
problems–requires us to share data more openly in order to enable more scientists to engage in data-driven research. In this paper,
we construct a large fluid flow data set and apply it to a deep learning problem in scientific visualization. Parameterized by the
Reynolds number, the data set contains a wide spectrum of laminar and turbulent fluid flow regimes. The full data set was simulated
on a high-performance compute cluster and contains 8000 time-dependent 2D vector fields, accumulating to more than 16 TB in
size. Using our public fluid data set, we trained deep convolutional neural networks in order to set a benchmark for an improved
post-hoc Lagrangian fluid flow analysis. In in-situ settings, flow maps are exported and interpolated in order to assess the transport
characteristics of time-dependent fluids. Using deep learning, we improve the accuracy of flow map interpolations, allowing a more
precise flow analysis at a reduced memory IO footprint.

Index Terms—Scientific visualization, deep learning, flow maps

1 INTRODUCTION

Recent advances in machine learning unlocked a vast amount of suc-
cessful research in the realms of computer vision, rendering, and natural
language processing, as well as in many other fields. These days, how-
ever, deep learning has rarely been applied to solve flow visualization
problems, despite its significant potential [35, 38, 45]. A glimpse over
to the vision community shows a potential reason: unlike image data,
fluid flows are not abundantly available at large scale. In particular,
we are not aware of any public data bases that systematically probe
a wide range of Reynolds numbers or flow features, at a scale that is
sufficient for the training of a generalizing neural network. In order to
spur more applied machine learning research in the flow visualization
community, we simulated a fluid flow data set, which will be publicly
released and permanently provided on the website of the authors’ insti-
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tution. This paper contains the description of its construction, which
resulted in 8,000 unsteady 2D vector fields, each with a resolution of
512×512 voxels and 1001 time steps, amounting to a total of 16 TB.
The data contains a wide range of fluid flow patterns, such as vortices,
bifurcations and Lagrangian coherent structures. Examples of which
are shown in Fig. 1. To simulate the flows, we used an established
CFD solver [52], which we deployed on a high-performance compute
cluster for massive parallelism. We varied the Reynolds number in the
range Re∈ [1,4096], covering a wide spectrum of laminar and turbulent
flows. The flows are initialized with a mean-free Wavelet noise [17]
that follows Kolmogorov’s energy cascade [46]. In order to support
longer tracing durations that are not restricted by domain boundaries,
we extended the Wavelet noise to periodic boundary conditions and in
order to obtain smooth initial conditions, we elevated the underlying
basis functions to a quartic polynomial degree.

To demonstrate the utility of our flow data set, we apply machine
learning to improve the accuracy of a Lagrangian transport analysis. As
numerical fluid simulations are quickly growing in size across all appli-
cation areas, whether it is in meteorology, fluid dynamics or cosmology,
the analysis of transport behavior becomes more and more challenging.
To avoid the storage of every single time step to disk, a recent trend
is to calculate trajectories on the compute cluster, and to only store



the locations that particles were advected to after a finite integration
duration [1,12,57]. This gives rise to flow maps, which are a fundamen-
tal component for the analysis of Lagrangian coherent structures [33].
Since flow maps are discretized, a Lagrangian transport analysis re-
quires their interpolation. To improve the interpolation accuracy over
a standard cubic interpolation method, a super-resolution CNN (SR-
CNN) [21] could be trained, which takes the sampled image as input
and improves its accuracy. However, this design depends on the upsam-
pling operation, which affects the computation time and the accuracy of
the output. Rather than taking an upsampled image as input [21,73], we
let the network learn the upsampling operation itself [22, 60, 66]. Thus,
we train an efficient sub-pixel convolutional neural network (ESPCN)
by Shi et al. [60] to interpolate flow map values in-between known grid
points. The receptive field of the neural network is able to pick up flow
properties from the neighborhood, implicitly making use of typical
vector field characteristics. Compared to cubic upsampling, we achieve
in most cases up to 40% lower interpolation error on unseen validation
data at a negligible computation cost. Further, we compare the ESPCN
network with the aforementioned SRCNN of Dong et al. [21], showing
that ESPCN performs better at high-frequency detail. We apply net-
works for 2× and 4× upsampling not only to unseen examples of the
simulated data set, but also demonstrate their utility on multiple unseen
numerical simulations, as well as on measured winds around an island.
We thereby show that the accuracy of the flow map interpolation can
be increased over different scales, ranging from flows in lab conditions
to noisy measurements from satellite images. Our neural flow map
interpolation is a standalone product that can be deployed after regular
flow map export from any given in-situ computation, making it easy to
integrate in existing pipelines. We make the following contributions:

• We simulate and release a large numerical 2D fluid flow data set
for machine learning, which contains a wide spectrum of laminar
and turbulent fluid flows with periodic boundary conditions.

• We evaluate the efficient sub-pixel convolutional neural network
(ESPCN) by Shi et al. [60] and the super-resolution CNN (SR-
CNN) by Dong et al. [21] for 2× and 4× upsampling, which we
adapted to the flow map interpolation problem. Unlike image
data, flow map values are in physical domain coordinates and are
sampled rather than integrated over a sensor.

A benchmark data set of fluid flows is not only relevant for machine
learning [45]. It could also serve as test bed for ensemble visualization
techniques or conventional flow feature extraction algorithms. Research
on fluid dynamics and dynamical systems, as well as particle swarm
optimization of aerial micro robots [5] recently became more data-
driven. In those examples, data consisted of analytical flows only.
Further, the graphics community is actively researching neural fluid
control and stylization [44], which could also profit from public data.

2 RELATED WORK

2.1 Open Flow Data
Data-driven methods require an abundance of data in order to gen-
eralize. Unfortunately, most public scientific data bases are highly
specialized to an application area, such as oceanology and climatol-
ogy [18] or turbulence [43]. None of those data bases was created
with the goal in mind to provide a foundation for machine learning. At
present, machine learning researchers would either have to simulate
data themselves, using established CFD solvers, or synthetically gen-
erate data, for instance using parametric models [5, 45], which might
not generalize well to real flows. Eckert et al. [24] recently released
ScalarFlow, a volumetric 3D data set of real-world captured fluid flows.
Their data set contains 100 flow reconstructions, consisting of smoke
plumes only. In comparison, our data set is 80 times larger, contains a
range of Reynolds numbers and has periodic boundaries.

2.2 Deep Learning
In recent years, neural networks have been used with great success in
many research areas. In its essence, a traditional feed-forward neural

network is a function approximation that finds non-linear mappings
between an input and an output through supervised or unsupervised
training. Auto-encoders [39] have been used to compress data to a low-
dimensional descriptive feature space and the regular layout of image
data has been exploited by convolutional neural networks [49] that learn
convolution filter weights that are reused across the entire input image.
On the other hand, generative models synthesize further instances of
a given training distribution, either by learning probabilities explicitly
(variational auto-encoders [47]) or by utilizing an adversary that dis-
tinguishes between synthesized and real data (generative adversarial
networks [31]). We refer to Goodfellow et al. [30] for a comprehensive
introduction to deep learning. In this paper, we utilize a fully convo-
lutional architecture to design our network, since unlike generative
models, it does not hallucinate data, which we discuss later.

Machine Learning for Visualization. While there is plenty of
research on explainability in machine learning [2], the application of
machine learning algorithms to solve visualization problems has only
recently gained more recognition. Frey [28] introduced a neural net-
work that picks the best sampling strategy for progressive similarity
measures of spatio-temporal data sets. Zhou et al. [73] applied a super-
resolution convolutional neural network (SRCNN) [21] to upsample
scalar fields. They assumed that the input was already upsampled with
cubic interpolation. Raji et al. [54] proposed to learn a similarity mea-
sure by using a siamese network which is further passed to a genetic
optimizer to refine a transfer function. Fan and Hauser [25, 26] assisted
users in the brushing of scatter plots. Similarly, Chen et al. [13] aided
in the selection from 3D point clouds. Berger et al. [6] learnt a differ-
entiable volume renderer, which enables the investigation of inverse
problems and an analysis of the role of transfer functions in the image
synthesis. Cheng et al. [14] created a CNN-based volume visualization
assistance for depicting complex structures. Shi et al. [59] described
how to estimate a viewpoint based on a CNN for volume visualization.
Weiss et al. [67] utilized a generative network to upsample isosurface
renderings. He et al. [38] used deep learning to map from visualization
parameters to the output image, which was applied to parameter space
exploration in in-situ settings of ensemble simulations.

Data-Driven Flow Analysis. In the realm of fluid flow analysis,
deep learning has been used for ocean eddy detection. Lguensat et
al. [51] and Duo et al. [23] located ocean eddies based on sea surface
height and sea level anomaly, respectively. Bai et al. [3] extracted eddies
from streamline images and Franz et al. [27] extracted and tracked ed-
dies over time. More general flow patterns have been classified by Bin
and Li [7] (rotation, saddle, other), and further flow regimes have been
identified by Ströfer et al. [62] (recirculation, boundary layer, horseshoe
vortex). Deng et al. [20, 64] learned a binary segmentation based on a
thresholding of the objective instantaneous vorticity deviation. Hong et
al. [40] developed a Long Short-Term Memory (LSTM)-based model to
predict access patterns for parallel particle tracing in order to reduce I/O
costs. Han et al. [35] used a latent space representation for the selection
of streamlines and stream surfaces. By combining a recurrent and a
generative adversarial network, Han and Wang [37] generated temporal
high-resolution sequences from low-resolution volumetric data. More
recently, Han et al. [36] reconstructed a vector field from previously
traced streamlines by using a two-staged deep learning process. Kim
and Günther [45] used CNNs to extract reference frames in which the
flow becomes steady in the presence of noise and resampling artifacts.

Super-Resolution Neural Networks The recovery of a high-
resolution (HR) image from a single low-resolution (LR) image is
known in the computer vision community as single image super-
resolution [71]. Since multiple high-resolution images can result after
down-sampling in the same low-resolution image, this problem is inher-
ently ill-posed. A neural network, however, can learn data distributions
and can thus recover a likely solution. Dong et al. [21] introduced
the so-called super-resolution convolutional neural network (SRCNN).
The idea is as follows: i) A LR image is up-sampled with bicubic
interpolation in a pre-processing step. ii) Overlapping image patches
are then extracted and run through convolutional layers wrapped with
non-linearities to extract features. iii) Finally, the feature patches are



merged together to the HR patch by a final layer with linear activation.
The necessity of upsampling the input image was lifted by Shi et al. [60]
and Dong et al. [22] by learning a sub-pixel convolution filter or decon-
volution filter, respectively, which were shown to be equivalent [61].
Wang et al. [66] further included a multi-scale reconstruction and Wang
et al. [65] utilized generative adversarial network to hallucinate plau-
sible detail. We refer to Yang et al. [72] for a recent single-image
super-resolution benchmark. Images are different from flow maps:
while color spaces are bound by certain values, e.g., in RGB space
bounds are [0,255], particle positions can take arbitrary real values.
More importantly, image pixel values integrate the incident radiance
across a sensor, whereas flow map values are point-wise measurements.
Thus, LR images are modeled such that their unknown HR counterpart
is convolved with a kernel [19]. For flow maps, however, we can only
sub-sample the unknown HR, resulting in inherent aliasing artifacts.
Thus, it is interesting to evaluate the performance of convolutional
architectures in the context of flow map analysis.

Data-Driven Super-Resolution for Fluid Flows. In graphics,
super-resolution is used to improve fidelity in simulations. Chu and
Thuerey [15] learned a similarity measure between low-resolution and
high-resolution data. Xie et al. [70] proposed a temporally coherent
volumetric GAN for super-resolution fluid flows. They introduced
a temporal discriminator in addition to the common spatial one and
further combined multiple physics fields, like density, velocity and
vorticity. The idea of deploying a GAN for volumetric super-resolution
has been further explored by Werhahn et al. [68]. Their Multi-Pass
GAN combines two separate generative adversarial networks, where
one up-scales XY-slices and the other refines the volume along the Z-
axis. Using a GAN is reasonable for graphics applications, however for
visualization tasks it has not yet been studied how much hallucinations
could falsify the data to better fit to the approximated distribution, and
how this impacts the scientific data analysis. For this reason, we use a
fully convolutional architecture instead to upsample flow maps, which
leads to solutions that are more blurred. Users can therefore visually
distinguish better where the network made errors.

2.3 Flow Map Interpolation
The following section introduces into the terminology of flow maps,
and their discretization and interpolation, which sets the stage for the
demonstration of our flow data set for deep learning.

2.3.1 Flow Maps and their Discretization
Given a vector field v(x, t), the flow map φ τ

t0(x0) maps a particle seeded
at position x0 and time t0 to the location it reaches after integration in
v(x, t) for duration τ:

φ
τ
t0(x0) = x0 +

∫ t0+τ

t0
v(x(t), t) dt, with x(t0) = x0 (1)

The flow map is a compact representation of the Lagrangian transport
from time t0 to t0 + τ . Conceptually, the velocity field v(x, t) is no
longer needed, once the flow map was calculated, as long as we are
only interested in the transport from t0 to t0 + τ . This property made
the flow map very appealing for in-situ processing, since storage of the
velocity field v(x, t) can be avoided if the flow map is stored instead.
In practice, the flow map is discretized to a finite set of seed points.
Without loss of generality, we assume that the seed points xi, j are
placed on a regular grid with resolution X×Y , i.e., i ∈ {1, . . . ,X} and
j ∈ {1, . . . ,Y}. For notational convenience, we express the discrete flow
map as a set Φτ

t0 =
{(

xi, j, φ τ
t0(xi, j)

)}
. In order to perform a detailed

Lagrangian transport analysis it is beneficial to be able to query the flow
at any given location. To obtain a continuous flow map approximation,
we need an interpolation operator S:

φ̂
τ
t0,S(x0) = S

(
Φ

τ
t0 ,x0

)
(2)

Compared to the original continuous flow map φ τ
t0(x0) in Eq. (1), the

application of interpolation operator S to the discrete flow map Φτ
t0(x)

t

τ
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Fig. 2: Space-time visualization of a flow map interpolation from flow
maps released from a 4×4 grid at time t0 in a 2D flow. For seed point
x5, the flow map is interpolated from grid vertices x1, x2, x3 and x4,
resulting in estimate φ̂ τ

t0,S(x5) (blue), which entails an interpolation
error Eτ

t0,S(x5) (orange), compared to the ground truth φ τ
t0(x5) (red).

in Eq. (2) introduces an interpolation error Eτ
t0,S(x0):

Eτ
t0,S(x0) = φ

τ
t0(x0)− φ̂

τ
t0,S(x0) (3)

which is zero exactly at the known set of seed points: Eτ
t0,S(xi, j) = 0. A

schematic illustration of the flow map interpolation is shown in Fig. 2.

2.3.2 Flow Map Approximation
The flow map interpolation error is determined by three factors: the
discretization (e.g., the spatial grid resolution X ×Y ), the integration
durations (τ1, τ2, . . . ), and the interpolation operator S. To accelerate
the computation of finite-time Lyapunov exponents (FTLE), Brunton
and Rowley [10] concatenated flow maps to reduce redundant particle
integration of neighboring particles. Chandler et al. [11,12] interpolated
a vector field from trajectories using SPH kernels. Agranovsky et al. [1]
interpolated particle trajectories for interactive flow exploration in a
multi-resolution manner, where the coarse resolution serves for fast
trajectory exploration and the finer resolution for more complex feature
extraction. Sadlo and Peikert [56] used adaptive mesh refinement to
discretize the flow map in order to accelerate FTLE computations.
Garth et al. [29] and Barakat and Tricoche [4] explored adaptive flow
map sampling strategies. Sane et al. [57] used a variable placement
and a variable integration duration of the basis trajectories to lower the
memory consumption. Rapp et al. [55] discussed sampling strategies
for the placement of pathlines in unsteady flows, which can reduce the
number of lines to be stored in total.

3 FLOW DATA SET

Our first goal is to create a versatile fluid flow data set that covers a wide
range of fluid flow conditions. Fortunately, fluid dynamics behaves
similar across a wide spectrum of scales, since energy is transferred
between the scales in a cascading manner [48]. Fluid dynamics is often
studied in small lab conditions and is then extrapolated to larger scales.
In atmospheric research, for instance, Boyer and Davies [9] discussed
the scaling of atmospheric flows to explore relationships between cloud
vortex patterns behind islands and in the wake of a cylinder. Since lab
conditions are a common ground, we model our fluid flow data set in
dimensionless form, using the characteristic length L, velocity scale U ,
and Reynolds number Re.

3.1 Simulation Specifications
Next, we describe our simulation setup. We used the open source CFD
solver Gerris [52] to generate a total of 8,000 unsteady 2D fluid flows.

Domain Specification. For all simulations, we defined a spatial
domain of [0,1]2 and a temporal domain of [0,10]. In order to obtain
valid particle trajectories throughout the full time range, we utilize
periodic boundary conditions, such that particles never leave the spatial
domain. For simplicity, we discretized the domain uniformly. To accel-
erate the simulation in the HPC environment, we subdivided the domain



into 4× 4 blocks. Gerris uses a cell-centered velocity discretization,
which we shifted to a regular co-located grid. In all our experiments,
we set a spatial discretization of 512×512, and simulated 1001 time
steps, resulting in 2GB of memory per fluid flow. The domain size and
the size of a single voxel determine the largest and smallest structures
that can be resolved. The largest structure is denoted as the characteris-
tic length scale, here L = 1, and the smallest structure is given by the
Kolmogorov length scale η ≈ 1

512 = 2−9 [16].

Ensemble Parameters. Aside from the randomized initial condi-
tions that are described subsequently, there are a number of simulation
constants, which can be varied to obtain a wider range of flow condi-
tions. First, the Reynolds number Re is a dimensionless number that
characterizes the turbulence of the flow:

Re =
UL
ν

(4)

with U being the velocity scale, L being the characteristic length and
ν being the kinematic viscosity. The Re value ranges from a steady
regime (Re < 50), to periodic vortex shedding (Re < 200) to turbulent
flows (Re > 2000) [41]. Since the transition is continuous, there is no
exact threshold. The Kolomogorov length scale relates to the Reynolds
number approximately by η ≈ L ·Re−3/4 [63]. Therefore, we can
resolve at most a Reynolds number of approximately Re≈ 29· 43 = 4096.
We varied Re in the range Re ∈ [1,4096], and placed ν in the range
ν ∈ [10−5,10−4]. Since L = 1, the velocity U is implied by Eq. (4),
ranging from U ∈ [0.0001,0.4096].

Initial Conditions. To avoid warm-up periods and to capture transi-
tional regimes, we initialize our fluid flows with random divergence-free
vector fields v(x) that adhere to the Kolmogorov energy cascade [48].
The synthesis of band-limited random scalar fields was described by
Cook and DeRose [17], and is called Wavelet Noise. Their co-gradients
produce band-limited vector fields w(x) that contain vortices of only
a particular size. Kim et al. [46] added fields of different scale with
the proper energy weighting to obtain a divergence-free flow u(x) that
follows the Kolmogorov scale, using:

u(x) =
bmax

∑
b=bmin

w(2bx)2−
5
6 (b−bmin) (5)

where [bmin,bmax] defines the range of spectral bands. Fig. 3 gives
an example. We always set bmin = 0 and the highest possible upper
band is given by the grid resolution as log2 512 = 9. To generate a
range of laminar and turbulent flows, we linearly sample the upper
band bmax ∈ [1, 9], which in turn determines the Reynolds number Re
for this simulation as Re≈ 2b· 43 [63].

Pseudo-codes for the generation of w(x) and u(x) are given in the
appendices of [17] and [46], respectively, which we needed to extend
to higher polynomial degree for continuity and periodic boundary con-
ditions, as described below. Note that u(x) is mean-free, which means
that the average velocity in the domain is zero. This property is very
useful, as it allows us to specify the velocity scale U exactly by adding
a random constant direction vector c with ||c||=U :

v(x)︸︷︷︸
initial flow

= u(x)︸︷︷︸
random

+ c︸︷︷︸
constant

(6)

With this, we can control the overall movement direction and magnitude
of our initial vector field v(x).

Continuity. Kim et al. [46] interpolated Wavelet noise with a
quadratic B-spline from a discrete set of Gaussian distributed noise
samples. While they only added a small noise residual to an existing
low-resolution flow simulation in order to fill up the missing turbulence
scales, we synthesize the turbulent flow completely. Since wavelet
noise [17] is a streamfunction, differential properties of the vector field,
such as the vorticity, require second-order derivatives, making those
C0 continuous with quadratic B-splines. While cubic interpolation

all bands

=

band 0

+

band 1

+

band 2

+

band 3

Fig. 3: Wavelet noise-based construction of a random vector field u(x),
following Kolmogorov’s energy spectrum. Note that each band w(x) is
periodic and uses a different random seed.

quadratic cubic quartic

Fig. 4: Quadratic, cubic and quartic B-spline interpolation of the lowest
band. Vorticity is color-coded showing discontinuities for lower-order
interpolations that negatively affect the flow simulation.

improved the result slightly, we eventually chose a quartic interpolation,
for which derived properties showed no artifacts, cf. Fig. 4. The quartic
basis functions are listed in the additional material.

Boundary Conditions. The last remaining parameter of the fluid
simulation is the boundary condition. Since we aim to perform a
Lagrangian flow analysis, we need to be able to trace long particle tra-
jectories. For this reason, we chose to set periodic boundary conditions,
meaning that the flow that exits on the right enters on the left, the flow
that exits at the top enters at the bottom, and vice versa for both cases.
Care must be taken to make sure that the initial turbulent vector field
v(x) of the previous section is periodic for both the values on the bound-
aries themselves as well as for all derivatives. Otherwise, boundary
artifacts will be advected into the domain. To obtain periodic boundary
conditions, we modified the wavelet noise sampling by introducing a
scale-dependent modulo operation. Pseudocode of our modification is
provided in the additional material.

Several flow examples of our simulation data set can be seen in
Fig. 1. For reference, the mean velocity magnitude is 0.3176 and the
mean vorticity magnitude is 2.6×10−5. In total, the simulation of the
fluid data set took about 1,160 node hours on a compute cluster, using
two 10-core Xeon E5-2630v4 processors per node.

4 NEURAL FLOW MAP INTERPOLATION

Given the flow data set, we can now improve over existing flow map
interpolation methods by predicting flow maps with a convolutional
neural network. Given a flow map discretization Φτ

t0 , an existing in-
terpolation operator S(Φτ

t0 ,x0), such as cubic interpolation, gives a
flow map estimate φ̂ τ

t0,S(x0) with error Eτ
t0,S(x0), cf. Eq. (3). The error

thereby depends on the upsampling operator S. The super-resolution
CNN (SRCNN) [21] takes such an upsampled image as input and cor-
rects interpolation errors, resulting in an improved flow map φ

τ

t0,S(x0).
The residual error still depends on the operator S, which was chosen by
a human. In order to remove this source of error, we use the CNN of Shi
et al. [60], called ESPCN, which takes in our case the low-resolution
flow map as input and learns to upsample the data in the last layer itself.
Thus, the neural network will directly estimate the upsampled flow map
φ

τ

t0(x0), resulting in a residual error Eτ

t0(x0) that does not depend on S.
We use the following notation:

cubic interp.: Eτ
t0,S(x0)︸ ︷︷ ︸

conventional residual

= φ
τ
t0(x0)︸ ︷︷ ︸

ground truth

− φ̂
τ
t0,S(x0)︸ ︷︷ ︸

existing interpolator

(7)

SRCNN [21]: Eτ

t0,S(x0)︸ ︷︷ ︸
SRCNN residual

= φ
τ
t0(x0)︸ ︷︷ ︸

ground truth

− φ
τ

t0,S(x0)︸ ︷︷ ︸
SRCNN interpolator

(8)

ESPCN [60]: Eτ

t0(x0)︸ ︷︷ ︸
ESPCN residual

= φ
τ
t0(x0)︸ ︷︷ ︸

ground truth

− φ
τ

t0(x0)︸ ︷︷ ︸
ESPCN interpolator

(9)
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Fig. 5: The ESPCN architecture consists of two convolutional and one
deconvolutional layer. A low-resolution flow map goes in and a high
resolution flow map is predicted. The convolutional layers have filter
size f1 and f2, and compute n1 and n2 feature maps, respectively.

The neural flow map interpolation can be seen as a general post-
processing step that can be applied to any existing flow map com-
putation to improve its accuracy.

4.1 Network Architecture

The input to ESPCN is the low-resolution flow map, and the output is
a flow map at k× higher resolution. We train networks for a specific
factor k, e.g., k = 2 or k = 4. Since the input flow maps are stored on a
regular grid, a convolutional neural network [49] (CNN) architecture
is beneficial, because convolution filter weights are shared across the
input, which lowers the memory footprint significantly compared to
a dense layer. Besides their rich feature provision, CNNs have the
possibility to process varying input sizes at inference time. To han-
dle the periodic boundaries at training time, we synthetically extend
the patch size periodically and apply a valid boundary mode in the
convolution kernels. The architecture of our network is illustrated in
Fig. 5. We utilize two convolutional layers with ReLU activations and
use a convolution filter size of f1× f1 and f2× f2 to compute n1 and
n2 feature maps, respectively. Finally, a 3×3 deconvolution layer with
stride 2 combines the feature maps and upscales the image to its target
resolution. The hyperparameters f1, f2, n1 and n2 were optimized for
our data and are reported later in Section 4.3.

4.2 Training and Testing

Since we use a supervised learning setup, we need to provide a
ground truth high-resolution flow map at training time for a given low-
resolution input flow map. To generate the ground truths, we traced 10
flow maps for T of our 8,000 simulated flows at a high resolution of
512×512 grid points. We found that for our task, a randomly chosen
subset of T = 3,600 flows was sufficient. For the tracing of particles,
we used a fourth-order Runge-Kutta integrator with a step size of 0.01.
Since we would like to train a general neural network that is able to
upsample for varying integration durations, we varied the integration
duration τ ∈ [1,10], keeping t0 = 0. This results in a total of N = 10×T
ground truth flow maps, containing both laminar and turbulent flows.
Our goal is to predict these ground truth flow maps from low-resolution
flow maps. Thus, we downsampled the ground truth flow maps, using
every k-th voxel for learning a k× upsampling task. To test how well
the model generalizes we split the flow maps into 35,000 training and
1,000 test samples. Throughout the super-resolution literature, several
loss functions have been proposed to assess the quality of the prediction.
Since we do not process natural images, we do not apply a perceptual
loss [42, 50]. Instead, we follow Dong et al. [21] and Shi et al. [60]
and use the conventional mean squared error (MSE) loss between the
predicted flow map and the ground truth. We trained the network for
200 epochs using the Adam optimizer with a learning rate of 10−4.
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Fig. 6: Varying the number of features n1 and n2 in the two convolu-
tional layers of ESPCN for a fixed filter size of f1 = f2 = 3. Growing
the feature size further does not pay off in terms of the remaining error
residual compared to the increasing training time (in brackets).
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Fig. 7: Study of the filter sizes f1 and f2 of the two convolutional layers
of ESPCN for a fixed number of features n1 = n2 = 64 per layer. The
filter size has a marginal effect on the residual, but affects the training
time (in brackets) by a few hours.

4.3 Hyperparameter Tuning

Since ESPCN was tested by Shi et al. [60] for image data and not for
flow maps, we optimize the hyperparameters of the network.

4.3.1 Number of Features

First, we vary the number of features per convolutional layer. Fig. 6
shows the residuals and the training time for combinations, ranging
from (n1,n2) ∈ {(64,32),(32,64),(64,64), . . . ,(256,256)}. The num-
ber of features amounts to the capacity of the network, which is loosely
speaking a bound for the amount of information that can be learned. In-
creasing the number of features will naturally increase the training time,
though it might not pay off in terms of the error residual. Further, this
will also increase the memory consumption during training, requiring
small batch sizes. In the remainder of the paper, we use n1 = n2 = 128
features, which is a trade-off between capacity and training time.

4.3.2 Filter Size

The filter size of a convolutional layer influences the receptive field of
the network. The larger the filter, the more neighboring information
can influence the output for a single pixel, i.e., the less local is the
decision. For flow map upsampling, the immediate surrounding of a
pixel is important, since the patterns are formed from fluid dynamical
processes that are governed by physical laws, such as incompressibility.
The larger the filter, however, the more parameters, i.e., convolution
filter weights, have to be learnt, which increases the training time. In
Fig. 7, we compare the network performance for varying filter sizes f1,
f2. We can see that the network performance marginally increases with
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Fig. 8: Hyperparameter adjustment for SRCNN at an upsampling factor
of k = 2. We examine the performance of the stochastic gradient
descent and the Adam optimizer, and we explore the choice of the loss
function (MSE vs MAE). MSE with Adam optimizer performed best.
The required training time is stated in brackets.
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Fig. 9: Quantitative comparison of SRCNN and ESPCN for varying
integration durations at 2× upsampling. ESPCN performed better by a
small margin. The required training time is in brackets.

larger filter sizes. In the remainder of the paper, we can therefore use
f1 = f2 = 3 unless mentioned otherwise.

4.4 Generalization To Real-World Data
Our simulations have been carried out on a unit domain. Since neural
networks perform best on data that is similar to what was seen during
training, we normalize all flow maps during training and at inference
time to the domain [−1,1]2 by taking the following steps:

1. Compute flow maps in the original unscaled domain.
2. Shift the mean of the resulting flow map to (0,0).
3. Uniformly scale the flow map into the unit domain [−1,1]2.
4. Apply the ESPCN or SRCNN, respectively.
5. Scale back to the original size.
6. Shift back to the original position.

Later, we use this approach to upsample flow maps on numerically
simulated flows, and on a measured flow that is given on a domain four
orders of magnitude larger than our simulation domain.

5 RESULTS

Next, we evaluate the ESPCN network in the context of neural flow
map interpolation on the test data and other numerical data sets. For
this, we compare the error residuals with the results of standard cubic
upsampling and with SRCNN. We use the mean squared error (MSE),
and the peak signal-to-noise ratio (PSNR) for the quantitative evalu-
ations. An Adam optimizer with learning rate 0.0001 was used in all
experiments unless stated otherwise.

5.1 Quantitative Analysis for Varying Duration
With increasing integration duration, the flow maps become more de-
tailed, and the ridges in the FTLE field become sharper. Since both
SRCNN and ESPCN have not been applied to flow maps before, we
optimized the hyperparameters for both in order to provide a fair com-
parison. ESPCN has been optimized in Section 4.3. Fig. 8 evaluates
the choice of the optimizer and the loss function in SRCNN for varying
integration durations. While Dong et al. [21] used a stochastic gradient
descent (SGD), we found that the Adam optimizer performed best in
our case with an MSE loss, which serves as baseline for us. The Adam
optimizer consistently outperformed cubic upsampling. It was expected
that the residual error increases with longer integration duration, since
the upsampling problem becomes more difficult to solve.

The SRCNN receives a cubic up-sampled input, which is a pre-
determined filter. We compare this with ESPCN in Fig. 9, which takes
a low resolution input directly and applies a sub-pixel convolution in
the last layer in order to up-sample to the target resolution. ESPCN
obtained a marginally smaller error than SRCNN. However, the training
time of ESPCN is far shorter. While SRCNN trained for 42.6 hours,
ESPCN needed only 14.6 hours, since the feature maps are calculated
at lower resolution. ESPCN therefore becomes the preferred choice in
terms of numbers. In the following, we study the differences visually.

5.2 Qualitative Analysis for Varying Duration
To assess the utility in a Lagrangian transport analysis, we visualize the
finite-time Lyapunov exponent [58]:

FTLE(x, t,τ) =
1
|τ|

ln

√
λmax

(
∇φ

τ

t0(x)
T

∇φ
τ

t0(x)
)

(10)

which measures the separation of nearby released particles. The ridge
lines of this field are considered an approximation to hyperbolic La-
grangian coherent structures [33]. Our goal is to reduce the upsampling
errors of the flow map, compared to standard cubic upsampling. To
evaluate the networks, we compare their output with the cubic upsam-
pling in Fig. 10 (top row) for 2× and 4× upsampling. The full view of
the domain is shown for 2× upsampling and lists the MSE and PSNR,
whereas close-ups are shown for both 2× and 4×. See the additional
material for the full view of 4× upsampling and the corresponding
quantitative measures (MSE and PSNR). We can see that ESPCN out-
performed SRCNN and cubic upsampling at ridge resampling in almost
all cases, especially for 4× upsampling. The ESPCN network, however,
can produce artifacts in laminar regions of the domain, especially for
4× upsampling. Tracing trajectories for a longer period of time is
known to result in finer FTLE ridges, which are more prone to flow
map interpolation errors. For this reason, we show the error maps for
different integration durations in the additional material. Fig. 11a plots
the MSE as a function of the integration duration for the competing up-
sampling techniques for 2× and 4× upsampling. ESPCN outperformed
the other methods for all integration durations.

5.3 Application to Other Flows
To test how well the network generalizes, we apply our method to
numerically simulated and measured flows. Figs. 10 and 12 show
the results for 2× and 4× upsampling in five other numerical vector
fields, and list the MSE and PSNR averaged across the domains. The
BOUSSINESQ flow contains a fluid simulation of a heated cylinder [32],
in which FTLE ridges get close to each other. In the CYLINDER
flow [32], a Kármán vortex street forms. We take a closer look at ridges
that are poorly sampled. With cubic upsampling, the ridge line decays
into pieces, which are better connected with ESPCN. The GUADALUPE
flow was acquired by Horváth et al. [41] from satellite images. Despite
the noise, the networks perform well. Note that the particles in this
flow are traced on a scale that was four orders of magnitude larger than
our simulation domain. The same situation occurred for the OCEAN
flow, which was shared by Haller et al. [34]. Finally, the DOUBLE
CYLINDER shows the interaction of two vortex streets, which both
form FTLE ridges. Figs. 11 and 13 plot the MSE as a function of
time for cubic upsampling, SRCNN and ESPCN. For 2× upsampling,
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Fig. 10: Error maps and FTLE comparisons for different fluid flows. In all cases, the flow map was traced from t0 = 0 up to τ . The top row of
each data set contains the overview of the 2× upsampling and the quantitative error measures. The close-ups compare the 2× and 4× upsampling.
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(a) FLOW #2000
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(b) BOUSSINESQ flow
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(c) CYLINDER flow

Fig. 11: Error plots of real-world data for varying integration durations with up-scaling factor 2× and 4×. Compared to the cubic baseline at 2×
upsampling, SRCNN reduced the error residuals by 37.8% (FLOW #2000), 32.7% (BOUSSINESQ) and 39.4% (CYLINDER), whereas ESCPN
reduced the error residuals by 47.9% (FLOW #2000), 39.4% (BOUSSINESQ) and 44.9% (CYLINDER) at τ = 10. For 4× upsampling, SRCNN
reduced the error residuals by 28.6% (FLOW #2000), 12.2% (BOUSSINESQ) and 30.9% (CYLINDER), whereas ESCPN reduced the error residuals
by 42.9% (FLOW #2000), 35.6% (BOUSSINESQ) and 39.4% (CYLINDER) at τ = 10.
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Fig. 12: Error maps and FTLE comparisons for different fluid flows. In all cases, the flow map was traced from t0 = 0 up to τ . The top row of
each data set contains the overview of the 2× upsampling and the quantitative error measures. The close-ups compare the 2× and 4× upsampling.
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(a) GUADALUPE flow
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(b) OCEAN flow
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(c) DOUBLE CYLINDER flow

Fig. 13: Error plots of real-world data for varying integration durations with up-scaling factor 2× and 4×. Compared to the cubic baseline,
SRCNN reduced the error residuals by 44.8% (GUADALUPE), 30.6% (OCEAN) and 42.4% (DOUBLE CYLINDER), whereas ESCPN reduced the
error residuals by 43.5% (GUADALUPE), 31.7% (OCEAN) and 47.2% (DOUBLE CYLINDER) at τ = 10. For 4× upsampling, SRCNN reduced the
error residuals by 36.3% (FLOW #2000), 29.6% (BOUSSINESQ) and 30.9% (CYLINDER), whereas ESCPN reduced the error residuals by 44.0%
(FLOW #2000), 44.4% (BOUSSINESQ) and 47.6% (CYLINDER) at τ = 10.



SRCNN

MSE: 9.5 ·10−4

PSNR: 35.68

ESPCN

MSE: 6.4 ·10−4

PSNR: 37.39

Sibson’s C1

MSE: 6.2 ·10−4

PSNR: 37.52

Fig. 14: Comparison of ×4 up-sampling with adaptive flow map sam-
pling using Sibson’s C1 continuous interpolation [4] with 128× 128
samples. In this example we show the FTLE of close-ups of the flow
#2000 for τ = 3. Networks with regular grid inputs are less efficient
especially in regions without FTLE ridges.

ESPCN (on average 42% error reduction) and SRCNN (on average
38% error reduction) performed similarly. At 4× upsampling, however,
ESPCN (on average 42% error reduction) gave more favorable results
than SRCNN (on average 28% error reduction) for high integration
durations. Overall, ESPCN generalized the best in terms of ridge
extraction. For 4× upsampling, however, ESPCN can exhibit grid
artifacts in laminar regions. All flows except for the OCEAN and
GUADALUPE flow have been simulated with Gerris [52].

5.4 Comparison with Adaptive Sampling
Garth et al. [29] and Barakat and Tricoche [4] introduced adaptive
flow map computation methods. In Fig. 14, we compare our networks
with Sibson’s C1 continuous interpolation, as used by Barakat and Tric-
oche [4] as baseline, which we implemented using CGAL. Sibson’s C1

continuous interpolation includes not only sparse values but also their
gradients, which we numerically integrated as described by Barakat
and Tricoche [4]. The figure shows that the adaptive method reaches
lower errors than the networks, especially when the ridges are sparse.
In the future, it could be fruitful to implement a CNN on sparse inputs,
e.g., based on PointNet [53], to further improve adaptive methods.

5.5 Performance
An advantage of neural networks over traditional dense particle tracing
is their efficient evaluation once they are trained. In Table 1, we report
the regular tracing time of a flow map, and in comparison the inference
timings for a single batch using SRCNN and ESPCN. The tracing cost
of a 512× 512 grid in a typical upsampling scenario scales linearly
with the integration duration, ranging from 6 seconds (τ = 1) to almost
1 minute (τ = 9), and depends on parameters such as the integration
step size, as well as on the memory IO bandwidth. With our neural
network, the inference time is constant, since we trained our networks
for various integration durations. For both SRCNN and ESPCN, the
inference time of a single batch is at about 0.8 milliseconds. Up to 16
batches can be inferred in parallel. A main disadvantage of SRCNN,
however, is its dependence on the prior cubic upsampling of the input
flow map. This initial cubic upsampling takes about 0.038 seconds on
the CPU. Thus, in practice ESPCN is about 48× faster than SRCNN.
Training timings have been reported in Figs. 6–9, which were in the
order of 42 hours (SRCNN) and 16 hours (ESPCN). All experiments
were done on a single GPU (Nvidia GeForce GTX 1080Ti) with 10 GB
memory, and with an Intel Core i7-7700K CPU with 8× 4.2GHz.

5.6 Discussion
Any neural network is only as capable as its training data. At the
moment, we trained on divergence-free flows only. Further, the flows
do not contain obstacles or boundaries. We plan to extend the flow data
set in the future to also include those configurations. Further, we would
like to build a similar data set for 3D unsteady flow, which, however,
will inevitably be about 100-1000 times larger due to the additional
spatial dimension. At present, we observed grid pattern artifacts in
laminar regions with the ESPCN method for 4× upsampling. Further,
the longer the integration, the sharper the ridges become. The networks

Operation timings in [s]
tracing τ = 1 6.33
tracing τ = 3 19.2
tracing τ = 5 31.64
tracing τ = 7 45.31
tracing τ = 9 56.82

pre-processing (SRCNN only) 0.038
inference (SRCNN & ESPCN) 0.0008

Table 1: Tracing cost and inference time for a single batch in seconds
for a flow map with resolution 512×512×2.

only see the flow map at discrete samples and therefore receive for
longer integration durations a potentially aliased input. These aliasing
patterns can lead to noticeable problems in the predictions, resulting
in wiggling ridge lines. In order to improve in those regions, we
experimented with a gradient loss formulation in order to penalize not
only differences in the flow map values, but also in their gradients.
Unfortunately, the gradient loss did not show significant improvements.
Rather than penalizing gradient differences only, it is imaginable to
view the predicted image in the frequency domain and to penalize
deviations in particular frequency bands. In addition, it is imaginable
to explore other network architectures such as generative adversarial
networks (GAN). GANs and CNNs lead to their own type of error.
While a GAN models a data distribution and samples from it, which
will fare better with perceptual error metrics, a CNN will obtain more
blurred results. From a data analysis point-of-view, we can choose
which type of error we prefer: do we like to have high-quality pictures
where we cannot tell which structure is true and which is hallucinated,
or do we prefer a blurred solution where the user is aware of the errors
of the network? This is very likely application-dependent and it is
worth studying how hallucinations actually influence the data analysis
task, not just for our problem but for scientific visualization in general.

6 CONCLUSIONS

We introduced an unsteady 2D fluid flow data set for machine learn-
ing purposes. The fluid flows were simulated with periodic boundary
conditions and were initialized with Wavelet noise that follows the
Kolmogorov energy spectrum. In total, the data set contains 8,000 fluid
flows resulting in approximately 16 TB. Using this data set, we trained
and compared two convolutional single image super-resolution neu-
ral network architectures, namely SRCNN and ESPCN, to upsample
low-resolution flow maps in order to support a Lagrangian transport
analysis. We applied the methods to unseen numerical simulations and
wind measurements, demonstrating that ESPCN outperformed SRCNN
at 4× upsampling across a wide range of different domain scales. Both
performed similarly for 2× upsampling. With this work, we created a
test bed for other data-driven approaches that can similarly address the
flow map interpolation problem and compare with our results. Further,
we hope that the fluid flow data set proves useful for other scientists in
the community. Aside from applying the data set to other problems, it
would be interesting to apply our flow map interpolation to flow map
concatenation in time or in space [8], and to multi-resolution predic-
tions. We hope that the data set spurs future work on data-driven flow
analysis, including network design improvements (basis-predicting
networks [69]), design of custom layers, frequency-aware losses, con-
volutions on sparse samples [53], the learning of dynamical systems and
other flow features (vortex boundaries, reference frames, hyperbolic
trajectories), auto-encoding for compression and unsupervised feature
extraction, as well as investigating the role of generative networks in
scientific data analysis. Outside of deep learning, the data set could
be useful for benchmarks of feature extraction algorithms, e.g., for
unsteady vector field topology, vortex cascades and vortex boundaries.
Further, it can serve as a test bed for ensemble visualization, vector field
comparison metrics, flow pattern recognition, and symmetry detection.
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