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Figure 1: The results of our face-swapping method. All images are generated in megapixel resolution as frames in temporally coherent video
footage (best viewed in video; see supplementary material).

Abstract

In this paper, we propose an algorithm for fully automatic neural face swapping in images and videos. To the best of our
knowledge, this is the first method capable of rendering photo-realistic and temporally coherent results at megapixel resolution.
To this end, we introduce a progressively trained multi-way comb network and a light- and contrast-preserving blending method.
We also show that while progressive training enables generation of high-resolution images, extending the architecture and
training data beyond two people allows us to achieve higher fidelity in generated expressions. When compositing the generated
expression onto the target face, we show how to adapt the blending strategy to preserve contrast and low-frequency lighting.
Finally, we incorporate a refinement strategy into the face landmark stabilization algorithm to achieve temporal stability, which
is crucial for working with high-resolution videos. We conduct an extensive ablation study to show the influence of our design
choices on the quality of the swap and compare our work with popular state-of-the-art methods.

CCS Concepts
• Computing methodologies → Image manipulation; Unsupervised learning; Neural networks;

1. Introduction

The swapping of the appearance of a target actor and a source actor
while maintaining the target actor’s performance is a longstand-
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ing and challenging problem in visual effects. The problem typi-
cally arises in cases in which a character needs to be portrayed at
a younger age or when an actor is not available or is perhaps even
long deceased. Other applications include stunt scenes that would
be dangerous for an actor to perform but still require high-quality
face images.

In the film and TV industry, a variety of approaches for face
swapping have been explored over the years, and the ones in use
today are typically elaborate and labor-intensive computer-graphics
methods. They require great care on set as well as extensive frame-
by-frame animation and post-processing by digital-effects profes-
sionals. The methods have only very recently matured to the point
that filmmakers have become more willing to brave the “uncanny
valley” and show detailed views of virtual actors. Examples include
Paul Walker in Furious 7 and Peter Cushing and Carrie Fisher in
Rogue One.

While those results are impressive, they are expensive to pro-
duce and typically take many months of work to achieve mere sec-
onds of footage. In contrast to these computer-graphics approaches,
deep-learning methods for face swapping have attracted consider-
able attention in recent years. Those methods allow for an auto-
matic, data-driven processing pipeline. Many approaches exist, typ-
ically employing either autoencoders [LBK17; KSDT17], GANs
[DNWG17; NYM18b], or morphable models [DSJ*11; NMT*18].
However, several issues arise when these methods are used in high-
resolution video face swapping. 3D model-based methods are ca-
pable of producing high-resolution images, but they currently lack
temporal stability in the generated faces, resulting in unrealistic,
rapidly changing appearances. GANs and autoencoders often have
difficulty generating high-resolution images due to memory limita-
tions, instability of the training procedure, and the choice of data
samples.

In this work we present a method to generate high-resolution,
photo-realistic, and temporally stable face swaps. We achieve this
through the following core contributions:

1. We introduce a progressively trained, multi-way comb network
that embeds input faces in a shared latent space and decodes
them as any of the selected identities while maintaining the in-
put face expression. This allows for richer, more realistic results
than in the typical single-source, single-target setting.

2. We propose a full face-swapping pipeline including a contrast-
and light-preserving compositing step and a landmark stabi-
lization procedure that allows for generating temporally stable
video sequences.

3. Finally, we report a comprehensive ablation study demonstrat-
ing the influence of particular design choices and procedures on
swapping quality.

We demonstrate our method on challenging high-resolution
video data gathered in a variety of settings and lighting conditions.
We also compare our work with a number of state-of-the-art face-
swapping methods, showing that our method is a major step toward
photo-realistic face swapping that can successfully bridge the un-
canny valley. As our system is also capable of multi-way swaps—
allowing any pair of performances and appearances in our data to
be swapped—the possible benefits to visual effects are extensive,

all at a fraction of the time and expense required using more tradi-
tional methods.

2. Related work

A vast literature exists on the synthesis, editing, manipulation, and
transfer of facial imagery in pictures and video. To survey existing
work, we will use the following categories: encoder-decoder (au-
toencoder) methods, GAN-based image-to-image translation, and
geometry-based morphable models. We will briefly review existing
methods and also relate our work to recent reenactment and pup-
peteering methods.

2.1. Encoder-Decoder Methods

Liu et al. [LBK17] introduced a model with a strong influence on
the present work. Although their model structure is quite differ-
ent, featuring dual encoders and decoders based on the VAE-GAN
framework, a key idea from their work is the concept of a shared
latent space for encoded images, which is enforced via tied weights
in several of the layers of the encoders and decoders closest to the
encoded bottleneck.

Korshunova et al. [KSDT17] approach the problem of face swap-
ping from the perspective of style transfer, in which the identity of
a face is the style and the dynamic behavior is the content. They
use a multiscale texture network with both content and style losses
measured in a VGG-19 feature space.

Yan et al. [YHL*18] explore a Y-shaped, single-encoder, dual-
decoder architecture that can be seen as a limiting case of our
model structure. During training, they introduce warp distortions
to the input images while tasking the decoders with reconstructing
the undistorted images, akin to denoising autoencoders. Zhao et
al. [ZTD*18] show impressive face-swapping performance using
an encoder-decoder architecture with a multitask objective includ-
ing face alignment and segmentation goals. However, their model
requires extensive labeled training data and is, at its core, a su-
pervised method, while our work is self-supervised. Natsume et
al. [NYM18a] employ several encoder-decoder networks, each spe-
cializing in different features extracted from an input image (binary
mask, isolated face, and facial landmarks) and use a separate gen-
erator to combine the target face with a source image.

2.2. GAN-Based Methods

Generative adversarial networks (GANs) [GPM*14] have become
immensely popular for image synthesis and have recently en-
tered the megapixel-and-beyond domain, most notably due to a
progressive-training approach described by Karras et al. [KALL18;
KLA18]. The general approach that has proved most successful
for face swapping is image-to-image translation using conditional
GANs [DNWG17; IZZE17; WLZ*18]. This approach, however,
introduces a requirement for paired data, which can be difficult to
produce. Subsequent methods have been developed to relax or al-
together circumvent this paired-data requirement [ZPIE17].

In an application specific to faces, Natsume et al. [NYM18b]
compose the output of two separator networks—one for the face
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and one for hair, similar in form to the work described in Nat-
sume et al. [NYM18a]—and use a GAN to “verify” and tune the
result. Shu et al. [SYH*17] take the interesting approach of treat-
ing face representation as a rendering problem and use a GAN to
create surface normal, albedo, lighting, and alpha matte informa-
tion from input images to allow for more compelling image ed-
its. Pumarola et al. [PAM*18] perform facial-expression synthe-
sis and animation from single images by conditioning on action
units from the Facial Action Coding System [ER97]. GAN-based
facial animation has seen impressive subsequent development in re-
cent work by [ZSBL19]. Recently Nirkin et al. [NKH19] presented
a face-swapping and reenactment pipeline that can generalize to
novel faces based on very few examples. However, due to the pro-
posed face view interpolation, the results are slightly smoothed and
inadequate for high resolution.

2.3. Geometry-Based Methods (Morphable Models)

Three-dimensional morphable models [BV*99] are explicit para-
metric representations of the geometry of the human face. In their
classic form, 3D morphable models live in a vector space spanned
by a basis of exemplars learned from images paired with 3D scans.
Recent work has expanded the capabilities for creating such mod-
els, allowing them to be learned from sets of 2D images using deep
encoder-decoder networks [TL18]. In the context reviewed here,
morphable models are distinct from the detailed geometric mod-
els that can be made to capture individual faces in high fidelity
[ARL*09; ZTG*18].

Blanz et al. [BSVS04] applied morphable models to face swap-
ping, although with results falling short of photo-realistic. Dale et
al. [DSJ*11] got impressive results by using 3D models to better
align source and target images, which were then combined using
an edit-based technique and additional post-processing. Yang et
al. [YWS*11] use a geometric approach to perform transfers of
individual facial components, while Shu et al. [SSSH17] achieve
excellent results by specializing in manipulating the eyes in images
to eliminate closed eyes and look-aways. Lin et al. [LWLT12] cre-
ate a 3D model from a single frontal 2D image of a person’s face,
employing color transfer and a multi-resolution spline technique
to achieve seamless blending. Nirkin et al. [NMT*18] present an
approach for face swapping using semi-supervised data, with 3D
models employed to register points for transferring image intensi-
ties from source to target.

2.4. Reenactment and Puppeteering

It is important to distinguish face swapping from the face reen-
actment problem [TZS*16; KCT*18; GSZ*18; SSK17; GVS*15;
KEZ*19]. While at first sight the problems appear very similar,
in the latter case, the behavioral performance is copied from the
source to the target face appearance, while the identity remains
intact. In face swapping, we have essentially the opposite situa-
tion: The behavioral performance is left intact, while the identity
is copied from the source to the target appearance. Recent studies
have shown that, while face reenactment manipulations are often
difficult to detect by human observers, face swaps are typically easy
to spot [RCV*19], which illustrates the challenges inherent in our
present work.

Figure 2: A schematic of the full pipeline for swapping a source
face of identity s onto a person t 6= s. In steps (1) and (2) we pre-
process the input by cropping and normalizing the face. In step
(3) the pre-processed image is fed into the common encoder and
decoded with corresponding decoder Ds. In (4) we use our multi-
band blending to swap the target with the source face.

p

Figure 3: Single-encoder, multi-decoder network architecture.

3. High-Resolution Face-Swapping Pipeline

We now present our complete method for performing photo-
realistic face swaps at megapixel resolution (see Fig. 2). The fol-
lowing outline summarizes the steps we take for exchanging iden-
tity s (the appearance source) and identity t (the behavior and back-
ground target):

1. For image xt , detect the face and localize the facial landmarks.
2. Normalize the face to 1024× 1024 resolution, saving normal-

ization parameters.
3. Feed the normalized face into the network and save the output

x̃s of the s-th decoder.
4. Reverse image normalization using saved parameters from step

2. on image x̃s and blend the resulting image with image xt using
the introduced compositing method.

The most crucial component of the pipeline is the model itself,
which we discuss next (Section 3.1). We then discuss our landmark
alignment and stabilization method (Section 3.2), which allows for
temporal consistency in the swapped images. This is followed by a
description of our light- and contrast-preserving compositing pro-
cedure (Section 3.3).

3.1. Network Architecture and Training

Identity transformation is achieved through a domain-transfer ap-
proach. Images from all identities are embedded in a shared la-
tent space using a common encoder, and these embeddings are
then mapped back into pixel space using the decoder corresponding
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to the desired source appearance. While domain-transfer and face-
swapping approaches are typically used to switch between exactly
two spaces, in this paper we generalize this idea to P arbitrary do-
mains (see Fig. 3). As a result, the encoding part of the network is
shared, while the decoding path is forked into P domains. We re-
fer to this architecture as a comb model, with the various decoders
representing the “teeth” of the comb. In addition to the benefit of
being able to have multiple source-target pairs handled by a single
model, our ablation study (Section 5) shows that training the model
with multiple identities improves the fidelity of the expressions in
comparison to a two-way model. Furthermore, since the multi-way
decoder allows for generating different outputs, these can corre-
spond to various identities or the same identity in different lighting
conditions. As we are able to use a single network, this leads to a
reduction of training time compared to generating all possible pairs
of appearances with two-way networks.

The training of our network is executed using a progressive
regime, which we have adapted to work in a non-adversarial set-
ting. This process starts from coarse, low-resolution images formed
by down-sampling high-resolution input data and then gradually
expands the network’s capacity as higher-resolution images are
used for training. We provide a more detailed explanation of the
progressive-training process in the appendix. Note that the ulti-
mate output of the network is limited by the resolution of the train-
ing input. When high-resolution training data are lacking, super-
resolution methods [WPM*18] are worth exploring as either a pre-
processing step to create richer training data or as a post-processing
step to adjust the model’s output. It is worth noting, however, that
super-resolution methods specific to face data, many of which em-
ploy task-specific priors [CTL*18], are likely to produce superior
results.

We partition the data X into P subsets, where each subset corre-
sponds to an individual identity. We normalize all available exam-
ples to 1024×1024 resolution. Note that in the progressive regime,
these images will be downsized in the initial stages of training,
while 1024× 1024 is the final resolution (see the appendix for de-
tails). This process is performed by applying an affine transforma-
tion to the face image, which aligns the position of a set of defined
localized landmarks to the average landmark locations at the de-
sired resolution. In our implementation, we use outer eye corners,
outer nose points, and outer mouth corners from the standard 68
landmark point set as our reference.

For each normalized face image we create a binary mask mxp

that is used during the training process. This mask is delimited by
the convex hull of the set of standard 68 facial landmarks fit to
xp. The mask is additionally upscaled by 10 percent to ensure that
important features such as eyebrows are not missed due to slight
misalignment of the landmarks. The values inside the convex hull
are set to 1, while the values outside the hull are set to 0.

All P identities are encoded via a shared encoder, E. We create
P decoders, Dp, p ∈ {1, . . . ,P}, to produce the pixel-space basis
representations of the input identities. Let xp ∈Xp⊂X be an image
belonging to identity p. We then have x̃p = Dp(E(xp))≈ xp, as in
a standard autoencoder.

Training is performed by feeding the network images from all P

subsets in random order. The data is augmented by random trans-
lation, rotation and scaling. We only minimize the reconstruction
loss on the output assigned to the currently evaluated face identity.
We also do not enforce any swap or cycle consistency. Because we
are interested only in the interior of the face, we multiply the input
and the image output by the mask mxp . Thus our level-dependent
loss function we minimize becomes

Ll =
P

∑
p=1

1
|Xp| ∑

xp∈Xp

fl
(
xp�mxp , x̃p�mxp

)
, (1)

where xp is the ground-truth image, mxp is the mask of the face,
x̃p = Dp (E (xp)) is the reconstruction, and � represents element-
wise multiplication. For levels 0 ≤ l ≤ 2, we set fl to be SSIM, a
structural similarity index introduced by Wang et al. [WBSS*04].
For implementation reasons (we use the TensorFlow implementa-
tion of SSIM), we upscale the input images to 16×16 during train-
ing the first two levels of the model. For the remaining levels, we set
fl to be MS-SSIM, the multi-scale version of this index [WSB03].

3.2. Face Alignment and Landmark Stability

Most face-alignment methods (e.g. [KNT17]) are designed to
improve the accuracy of public benchmarks, which are typically
made up of single images. Although some video benchmarks are
available [SZC*15], the resulting alignment algorithms are usually
not tested for temporal consistency. While this is not a problem
in many use cases, in our task any temporal inconsistencies lead
to significant degradation of the realism of the resulting swaps.
Since face normalization is based on facial landmarks, small dif-
ferences in network inputs result in slightly different network out-
puts. With most facial-alignment algorithms’ being developed on
relatively low-resolution data, minor inconsistencies from frame to
frame are amplified when one moves to high resolution, leading to
temporally unstable results that become particularly evident at res-
olutions of 512× 512 pixels and higher. This can be observed as a
slight trembling and deformation of various facial features.

One possible solution to this problem could be to train a facial-
feature localization algorithm in higher resolutions. However, most
existing data sets are insufficient for this task and this would not
necessarily eliminate the problem of trembling.

We instead propose a method to stabilize existing landmark-
localization algorithms to attenuate problems when they are applied
to high-resolution sequential data. More specifically, we perform
an initial detection and alignment and note the width w of the face
bounding box. We then re-initialize the original bounding box n
times by perturbing it by βw pixels in various directions of the im-
age plane, where β is a small value to control the range of the per-
turbations. We repeat the face-alignment procedure for each trans-
lation and average the resulting sets of localized landmark points.
This strategy effectively amounts to a variance-reduction technique
to offset landmark-location uncertainty amplified by operating in
high resolution. In this case, this amounts to creating an ensemble
of n landmark estimates and averaging their results. We found that
using β = 0.05 and n = 9 when working at 1024×1024 resolution
removed all visible temporal artifacts (see supplemental video).
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3.3. Contrast-Preserving, Multi-Band Compositing

Properly compositing a source face onto a target image is challeng-
ing even if the faces are already in perfect geometric alignment,
with the pose and facial expressions exactly matching. This is due
to photometric misalignment, which can result in clearly visible
seams when simply pasting a source onto a target.

As a remedy, many existing approaches use Poisson blending
[PGB03], which tries to achieve seamless cloning by operating in
the gradient domain. This method often achieves passable results,
but if the lighting of the source and the target faces is different, this
may introduce visible artifacts in the face interior.

Multi-band blending [BA83], as recently used by Thies et
al. [TZN*15] in the context of face-image compositing is a com-
peting approach to Poisson blending. In this method a given mask
defines the area to be cloned from the source to target image. A
smooth transition between the two images is ensured by decom-
posing them into a Laplacian pyramid and then, at each level of
the pyramid, smoothing the transition near the boundaries of the
given mask. Such an approach does not ensure, however, that the
cloned area will match the target lighting, which is desirable in
our application. With this in mind, we copy the two coarsest (i.e.
low-frequency) levels of the target’s Laplacian pyramid and blend
only the remaining, more detailed levels. The final image is then
obtained by reconstructing from the blended Laplacian pyramid.

We also enforce that the boundary smoothing effect is propa-
gated only into the interior of the face. This way we ensure that the
outer face outline is not smoothed away by the blending procedure.

While our modified multi-band blending procedure is well suited
to preserve low-frequency lighting, we observed that it can still lead
to uncanny compositing results in cases in which source and target
are captured in considerably different conditions. The contrast in
source and target varies greatly in those cases, and this is not ac-
counted for by multi-band blending alone.

Therefore, we additionally align the amount of contrast in the
generated source face to match the contrast of the target. We es-
timate the contrast of an image using the Global Contrast Fac-
tor (GFC) [MNN*05]. GFC provides a scalar measure of contrast
based on a weighted sum of local contrast values at multiple image
scales. We calculate a contrast coefficient as the ratio of the GFC
of the target image and the GFC of the network output. Finally, we
multiply each pixel of our generated image by this coefficient.

This allows us to obtain high-quality compositing results with
robustness to different capture conditions. A detailed comparison
is presented in our ablation study (Section 5).

To ensure that the edges of the face generated by the network are
not transferred to the cloned face, for instance due to different head
sizes, the blending mask should be chosen carefully. We shrink the
boundary of the mask defined by the convex hull of the outer face
landmarks so that the resulting mask does not cover the outer edges
of the face.

4. Experiments

4.1. Data Acquisition and Training Details

For testing purposes we sought a high-resolution video data set
gathered under a variety of lighting and pose conditions, featur-
ing different genders and facial hair styles. Publicly available high-
resolution data sets usually consist of only still images of celebri-
ties. For this reason we decided to create our own data set. We
recorded nine volunteers—seven males and two females—in differ-
ent lighting conditions, including controlled frontal and side light,
non-controlled natural light, and outdoor footage. We recorded 4K
(3840× 2160 at 25 fps) videos using a Sony ILCE-7SM2 camera.
During indoor, controlled-light recordings we asked the volunteers
to read a short public-domain text from a page held by the cam-
era operator. For the remaining sessions we asked participants only
to describe the weather and their surroundings. Each sequence was
approximately two to four minutes long.

From the data set we chose six people, with two of these people
captured in two different lighting conditions, forming eight total
sets that were used to create our eight-output model. Each level of
the network was trained until 105 images of each person were pre-
sented. All experiments were performed at 1024×1024 final image
resolution. We use the Adam optimizer [KB15] with a learning rate
of 10−4. Training the full 1024× 1024 network for two identities
takes about three days using one GeForce 1080Ti GPU.

4.2. Comparison with the State of the Art

We compare our progressive comb model with three open-
source approaches that currently constitute the state of the art
in facial appearance transfer. Specifically, we tested the work
of Nirkin et al. [NMT*18], an open-source implementation of
the original “DeepFakes” method (https://github.com/
deepfakes/faceswap), and a model from the open-source
repository DeepFaceLab (https://github.com/iperov/
DeepFaceLab). The first method employs 3D morphable models,
while the latter two implement Y-shaped autoencoder architectures.
The “DeepFakes” method is known for producing convincing face
swaps and has achieved broad media attention. For DeepFaceLab,
we chose the “Stylized Autoencoder” (SAE), as we consider this to
be that repository’s best performing model. In this architecture, the
style transfer relies on matching the mean and standard deviation
of the target image with the original face, both for color balancing
and to mitigate the effect of seams. In this approach the face and the
background are modeled together. Both DeepFakes and DeepFace-
Lab use Poisson blending as implemented in OpenCV [PGB03] for
blending the source image into the target.

We swapped faces for five pairs of people. For each person we
used the same images we used to train our eight-way model. The
algorithm of Nirkin et al. [NMT*18] relies on morphable models
and does not require prior training. Also, it should be noted that this
algorithm is intended specifically for image-to-image swapping. To
achieve the best possible result with this method, we chose the neu-
tral expression face as a source for the swapping procedure (second
column in Fig. 4). DeepFaceLab, DeepFakes, and our algorithm
were each trained to convergence in an unsupervised fashion on the
same set of images.
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Figure 4: Comparison of the face swapping methods. From the left: target image, source identity, our model in 1024×1024 resolution, our
model in 256×256 resolution, DeepFakes, DeepFaceLab, Nirkin et el.

The comparison of face swapping for the chosen images is
shown in Fig. 4. (See also the supplemental material for a video
comparison among the methods.) Because of the GPU memory
requirements and software limitations of the DeepFaceLab imple-
mentation, the highest possible resolution we were able to achieve
on an 11GB GPU was 256× 256 pixels. For DeepFakes we were
able to produce 128× 128 images. For the morphable models ap-
proach, we achieved a resolution of 500×500 pixels. Note that the
source images were directly used for swapping only for Nirkin et
al. [NMT*18], while the remaining methods performed swapping
based on the network-generated images.

The experiments show that the morphable models are also able
to produce faces at relatively high resolution (500×500), but they
introduce artifacts that tend to make the face look unrealistic. Fur-
thermore, we noticed that this approach does not preserve temporal
consistency, and the model output can change rapidly even if very
small transformations of the target image occur. The images pro-

duced by our implementation of this method were approximately
half the resolution of the original image. We therefore upsampled
them to match the resolution of the original using a Lanczos filter.

Both the DeepFaceLab and DeepFakes models behave similarly.
In some situations, the seams of the cloned image are visible as
an effect of using Poisson blending for non-matching boundaries.
These effects and other artifacts other methods produce can be seen
in Fig. 4. It is also worth noting that each of these models had to be
trained separately for each pair of swaps, while our algorithm was
trained for all people simultaneously.

5. Ablation Study

We performed several experiments to visualize the effect of dif-
ferent aspects of our network architecture and algorithms on the
quality of the facial swaps:
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1. the effect of progressive training versus training the full network
all at once

2. the effect of using a multi-way comb-model instead of separate
two-way models

3. a comparison of our contrast-preserving, multi-band composit-
ing method with Poisson blending

4. the effect of our landmark stabilization method

A separate study of the number of shared decoder layers is pre-
sented in the appendix.

Progressive training. Although a model trained fully end-to-end
at the highest resolution is capable of producing reasonable face im-
ages, it often does so without adequate regard to the target behavior
to be captured. In Fig. 5 we show representative examples of this
effect. The center image, produced via progressive training, closely
matches the pose and expression of the input face on the left, while
the rightmost image, produced via end-to-end training, effectively
loses pose information and even introduces artifacts. (Interestingly,
these artifacts worsened with additional exposure to the data, ulti-
mately leading to a complete performance collapse after 80K itera-
tions.)

Figure 5: Effect of training with and without progressive train-
ing. From the left (in columns): input image, output of the network
trained with progressive training, output of the network without
progressive training. Notice that the pose and expression do not
match when the network is trained without progressive training.

Comb model. In this experiment we trained an eight-output
model, using data from six individuals, with two additional “iden-
tities” coming from data gathered from two of these six in rad-
ically different lighting conditions. As a comparison, we trained
three separate two-output models for randomly chosen pairs from
our eight-way data set.

In Fig. 7 we show the benefit of using a multi-way comb model
compared with the two-way model. Although we controlled train-
ing across all models so that each model had the same number of
iterations on the data, we noted that the multi-way model was bet-
ter able to capture certain expressions in cases in which data for the

source appearance was lacking. For example, the multi-way model
was better able to reproduce closed eyes and protruding tongues
when this was part of the target data but not part of the source data.
To illustrate the lack of data for these expressions, in this figure we
also show two nearest-neighbor results for our eight-way model’s
output, one based on facial landmark distance and the other based
on distance in RGB space. Additional examples of the swapping
between identities with the eight-way model are presented in Fig.
6.

Poisson blending versus our compositing method. In Section
3.3 we introduced our contrast- and light-preserving compositing
algorithm. In Fig. 8 we compare the performance of our method
with Poisson blending. Our method better preserves the global
lighting characteristics of the target face, while the Poisson algo-
rithm can cause a certain “bleaching” or washing-out effect.

In Fig. 9 we show a comparison of classical multi-band blending
with our approach. Copying the two smallest Laplacian pyramid
levels ensures that the global lighting characteristics of the target
image are preserved. Copying the four smallest levels of the pyra-
mid, on the other hand, introduces artifacts that manifest as a mix-
ture of the target image and the network output. The figure also
shows that contrast correction is an important factor in the realism
of the generated images.

Facial landmark stability. For facial feature alignment we used
a TensorFlow implementation of Deep Alignment Network (DAN)
[KNT17]. To measure the stability of the aligned landmarks to ran-
dom factors, we perturbed input images by simple, invertible im-
age transformations to determine if the detected landmarks were
assigned to the same semantic locations of the face. We chose a
random set of 100 1024× 1024 face images from our gallery and
localized facial landmarks for each image. We then perturbed each
picture using a random affine transformation performing rotation,
scaling, and translation. The facial landmarks from the unperturbed
images were treated as ground truth, and we compared these values
with the landmarks fitted to the perturbed images after performing
matching transformations on the ground-truth landmarks. We used
L2 distance as our error measure, and we cumulatively averaged the
results over 10 random perturbations for each image. The results of
our experiments are shown in Fig. 10.

We noted that the error plateaus at around 10 random perturba-
tion initializations, as described in the methods section.

6. Limitations and Discussion

While we are able to produce compelling, photo-realistic transfers
of facial appearance in high resolution, there are still a few limi-
tations to our approach. Expressions and poses that are typically
not well captured in the data, such as extreme profile views, can
lead to imperfect results including blur and other artifacts. In those
cases, a straightforward remedy is to capture more extensive data
and ensure that certain expressions and side views are included. A
more principled approach would be to incorporate more complete
information about facial appearance and behavior into the model to
facilitate the process of filling in missing information in the training
data for a specific person.
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Figure 6: Swapping results for the eight-way comb network model. Notice that two people have double outputs, corresponding to data
collected in different lighting conditions.

Example failure cases are presented in Fig. 11. Note also that
despite the fourth and fifth swaps’ (fifth and sixth column) corre-
sponding to the same subject, the results are different, in particular
with the level of eye opening present in the image. This is due to
the the fact that for the fourth swap the person was captured in
controlled, indoor-lighting conditions, while for the fifth swap the

same person was captured in an outdoor settings, where the sun-
light caused him to squint his eyes.

One possible issue with using multi-band blending is that be-
cause we copy only the low-resolution elements of the face ap-
pearance, the method is necessarily capable of transferring only the
low-frequency characteristics of the lighting, which could prove in-
adequate in some cases. (This same limitation applies to Poisson
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Figure 7: Comparison of the eight-way versus the two-way
model. Columns correspond to (respectively) target images, images
swapped with the eight-way model, images swapped with the two-
way model, nearest neighbour to the eight-way model result (land-
mark space), nearest neighbour to the eight-way model result (RGB
space).

blending, however.) While our contrast-preservation step adjusts
for this, an additional solution would be to allow for the transfer
of high-frequency lighting elements by decoupling albedo from the
other lighting characteristics through the learning of additional im-
age channels, a question we will address in future work.

Another limitation, not only of our method but also of the other
state-of-the-art approaches we examined, is that current facial-
appearance transfer methods focus on replacing the face while it
retains the original head shape. Transferring the head shape could
be an interesting opportunity for future work, which would put a
strong emphasis on performing correct background in-painting in
cases in which the face is smaller.

It is also worth noting that the present method is incapable of
performing convincing swaps of people wearing glasses. This is
not a matter of being unable to render glasses using our method
but rather one of how the face is blended with the surrounding im-
age afterward. Although it is possible that the careful selection of
source and target data featuring matching eyewear could produce

Figure 8: Comparison of face swapping with our compositing and
Poisson methods. From left to right: target image, network output,
Poisson blending and our compositing.

passable results, it would not succeed in the general case and has
not been a goal of the present work.

Finally, we mention that a multi-way model will require in-
creased training time relative to a two-way model, roughly linear
in the amount of data required for the represented identities. In ap-
plications in which multi-way swaps are the goal, this training time
is simply part of the bargain and, as we mentioned earlier, is ac-
tually less than what would be required to train multiple two-way
models to perform the same task. However, this additional training
cost may be worth paying even in two-way swapping applications
in cases where source data may be lacking but realism is at a pre-
mium. As we demonstrated in Section 5, multi-way training allows
for some degree of improved synthesis of expressions and behavior
even when those expressions are not part of the source-data obser-
vations.

7. Conclusions

In this work, we presented a novel approach for the unsupervised
learning of multi-subject face swapping. Our method is, to our
knowledge, the first to achieve convincing face-swapping results
on high-resolution video in the megapixel-and-beyond domain.

We demonstrated the importance of progressive training in high-
resolution face swapping. We showed that using our landmark sta-
bilization procedure ameliorates unrealistic trembling effects and
other temporal instability that can occur when operating in the
high-resolution domain.

We further showed the benefits of a multi-way network beyond
the convenience of allowing for multiple pair swaps with a single
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Figure 9: Comparison of a standard multi-band blending method, with and without contrast correction and with various numbers of trans-
ferred Laplacian pyramid levels. Image a) corresponds to standard multi-band blending, while in image b) contrast correction is applied
before multi-band blending. Images c) and e) illustrate, respectively, the effect of copying the two and four smallest levels of the Laplacian
pyramid from the target image. Images d) and f) present the effect of applying contrast correction to images c) and e). In our work, we use
the option represented by choice d).
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Figure 10: Effect of averaging landmarks localized with differ-
ent random perturbation initializations. The horizontal axis corre-
sponds to the number of initializations, while the vertical axis cor-
responds to the mean squared error in pixels of the detected land-
marks relative to the “stable” landmark positions in 1024× 1024
resolution.

model. By increasing the number of identities presented to the net-
work, we can achieve higher fidelity of the swapped expressions
relative to using only a pair of identities. We attribute this benefit
to the learning of richer representations of faces that allow for gen-
eralization to occur in cases in which expression data for specific
individuals is lacking.

Finally, we showed that our proposed compositing method, con-
sisting of contrast normalization and a multi-band, light-preserving
blending procedure, can be used to overcome many problems with
different lighting conditions in the data. This leads to results that,
in our judgment, represent a considerable advance in the pursuit of
face-swapping visual effects using neural methods.
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Appendix A: Appendix

In this appendix we share additional details and insights about the
design and functionality of our face-swapping pipeline. In the first
section we report an experiment showing the effect of different
choices in the number of shared decoder layers on the network out-
put. Next we provide details about the progressive-training regime
that played a key role in producing our high-resolution results along
with information about used hardware. We also present the algo-
rithm for our multi-band blending. Finally we provide more in-
sights about the network capabilities in the context of interpolating
between images in the latent space. The structure of our network
architecture is presented in Table 1.

Number of common layers

In principle, the split to the person-specific decoders can be placed
directly after the encoded latent vector (the bottleneck, which in
our case is in R512) or later in the network following a series of
weight-sharing layers. We observed that if we perform the split at
level 0 (which corresponds to a 512× 4× 4 feature map), directly
after the bottleneck, and before level 3 (which corresponds to a
512× 32× 32 feature map), the generated images in most cases
look quite realistic. However, we also observed that the more levels
that are shared, the more the generated face departs from the source
appearance and the more it resembles the input image. If the split
comes too early, such as right after the latent space, or too late, such
as after the third level, then the network occasionally introduces
undesirable artifacts. Results of training with different split points
are presented in Fig.12. In our implementation we chose level 1 as
our split point, as it seemed to provide the best trade-off between
source and target fidelity.

Progressive training

Our model is trained in a progressive regime, starting from coarse,
low-resolution 4×4 pixel images and then gradually expanding the
network’s capacity as higher-resolution images are used for train-
ing, up to 1024×1024 pixels. The base architecture, which focuses
on the lowest-resolution data, corresponds to “level 0” in Figures 3
and 13 and Table 1. Each new “level” of the network doubles in-
put and output resolution by adding a composition of two convolu-
tional layers and a down- or up-scaling layer in the encoder and de-
coder, respectively. During training, additional convolutional “to-
RGB” layers are added to the end of the decoder portion of the net-
work to transform multi-channel output to three-channel RGB out-
put. Analogously, the beginning of the encoder part of the network
includes “from-RGB” layers to accept image data at the current
level’s resolution. These intermediate-resolution to- and from-RGB
layers are discarded after their respective level’s training, leaving
only those for the final resolution trained. The “shock” of expand-
ing the network by adding new, untrained network components is
attenuated by a gain parameter, α ∈ [0,1], which acts as a fader
switch that gradually blends the activations of the new network
components with those of the trained, smaller network. This gain
parameter is increased linearly within its range over the course of a
new level’s training. This process is presented schematically in Fig.
13.

Hardware specification

All the models were trained on a single NVIDIA 1080Ti GPU
workstation (Intel R© CoreTM i7-6700K CPU @ 4.00GHz).

Data manifold

The results we presented in Section 5 showed that the comb model
can successfully reproduce certain source expressions for which
there is no exactly matching target data. We further illustrate this
capability in Fig. 14.

We chose a set of short video sequences and generated source-
target swaps using our model. We then searched our source data for
nearest neighbors of the generated images, namely using L2 dis-
tance in pixel space, limited to the face area, with all faces aligned
and normalized to 1024× 1024 resolution. We observed that for
many expressions there were indeed no corresponding images in
the training set, meaning that the network was able to “hallucinate”
and fill in some missing details.

We further experimented by swapping the target face with the
nearest-neighbor images instead of our network-generated faces.
Since we use the same blending technique, it is not surprising that
individual frames look quite good. However, when we performed
this procedure frame by frame, the resulting video contained con-
siderable “jumps” due to multiple frames’ corresponding to the
same images in the training set or to images that departed signifi-
cantly from the target expression.

We are further interested in the overall coherence of the data
manifold induced by the encoder. More precisely, while we know
that training examples are properly encoded, we are also interested
in the area between these points.

To investigate this, we conducted the following experiment: We
selected two training examples from a randomly chosen subject,
p. These images, x(1)p and x(2)p , we will refer to as anchor points.

We then computed the latent representations z(i) = E
(

x(i)p

)
(for

i ∈ {1,2}) of each anchor point and interpolated the space between
them by defining the parametric path

z(λ) = (1−λ)z(1)+λz(2) (2)

for λ ∈ [0,1]. We then took nine equally spaced values of λ, evalu-
ated z(λ), and decoded the resulting images using decoders corre-
sponding to five separate identities to examine their realizations in
pixel space.

The results of this experiment are shown in Fig. 15. The left- and
right-most images are the anchor points. In the first row we show
the reconstruction using the decoder Dp, corresponding to the per-
son present in the anchor images. In the subsequent rows we decode
the latent vectors with decoders Dq, q 6= p. We can see that for all
of the identitities the transition of the facial expression between the
anchor points is smooth and encodes intermediate facial behavior
consistent across identities.

Out-of-sample generalization

In a second experiment, we selected two anchor points x(i)p′ , i ∈
{1,2} of identity p′, a subject that the model did not see during
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Lvl Encoder Activation Output shape Params
8 Input Image - 3×1024×1024 -

Conv 1×1 LeakyReLU 16×1024×1024 64
Conv 3×3 LeakyReLU 16×1024×1024 2.3k
Conv 3×3 LeakyReLU 32×1024×1024 4.6k

Downsample - 32×512×512 -
7 Conv 3×3 LeakyReLU 32×512×512 9.2k

Conv 3×3 LeakyReLU 64×512×512 18k
Downsample - 64×256×256 -

6 Conv 3×3 LeakyReLU 32×256×256 37k
Conv 3×3 LeakyReLU 128×256×256 74k

Downsample - 128×128×128 -
5 Conv 3×3 LeakyReLU 128×128×128 148k

Conv 3×3 LeakyReLU 256×128×128 295k
Downsample - 256×64×64 -

4 Conv 3×3 LeakyReLU 256×64×64 590k
Conv 3×3 LeakyReLU 512×64×64 1.2M

Downsample - 512×32×32 -
3 Conv 3×3 LeakyReLU 512×32×32 2.4M

Conv 3×3 LeakyReLU 512×32×32 2.4M
Downsample - 512×16×16 -

2 Conv 3×3 LeakyReLU 512×16×16 2.4M
Conv 3×3 LeakyReLU 512×16×16 2.4M

Downsample - 512×8×8 -
1 Conv 3×3 LeakyReLU 512×8×8 2.4M

Conv 3×3 LeakyReLU 512×8×8 2.4M
Downsample - 512×4×4 -

0 Conv 3×3 LeakyReLU 512×4×4 2.4M
Conv 4×4 LeakyReLU 512×1×1 4.M

Latent vector - 512×1×1 513
23.1M

Lvl Decoder Activation Output shape Params
0 Latent vector - 512×1×1 -

Conv 4×4 LeakyReLU 512×4×4 4.2M
Conv 3×3 LeakyReLU 512×4×4 2.4M

1 Upsample - 512×8×8 -
Conv 3×3 LeakyReLU 512×8×8 2.4M
Conv 3×3 LeakyReLU 512×8×8 2.4M

2 Upsample - 512×16×16 -
Conv 3×3 LeakyReLU 512×16×16 2.4M
Conv 3×3 LeakyReLU 512×16×16 2.4M

3 Upsample - 512×32×32 -
Conv 3×3 LeakyReLU 512×32×32 2.4M
Conv 3×3 LeakyReLU 512×32×32 2.4M

4 Upsample - 512×64×64 -
Conv 3×3 LeakyReLU 256×64×64 1.2M
Conv 3×3 LeakyReLU 256×64×64 590k

5 Upsample - 256×128×128 -
Conv 3×3 LeakyReLU 128×128×128 295k
Conv 3×3 LeakyReLU 128×128×128 148k

6 Upsample - 128×256×256 -
Conv 3×3 LeakyReLU 64×256×256 74k
Conv 3×3 LeakyReLU 64×256×256 37k

7 Upsample - 64×512×512 -
Conv 3×3 LeakyReLU 32×512×512 18k
Conv 3×3 LeakyReLU 32×512×512 9.2k

8 Upsample - 32×1024×1024 -
Conv 3×3 LeakyReLU 16×1024×1024 4.6k
Conv 3×3 LeakyReLU 16×1024×1024 2.3k
Conv 1×1 sigmoid 3×1024×1024 51

23.1M

Table 1: Detailed description of our encoder (left) and decoder (right). For the Leaky rectified unit (LeakyReLU) we use α = 0.2.

training. We again computed the latent vectors of these anchor
points, took equidistant points on the parametric paths between
them and decoded the points with the same decoders Dq as in Fig.
15.

The result of this experiment is shown in Fig. 16. When com-
paring the anchor points x(i)p′ with the decoded images, it is clear
that the encoder is capable of representing the facial behavior of an
out-of-sample identity p′. Further, the transition between the an-
chor points is smooth and contains only valid intermediate facial
expressions. Our results suggest that our latent representations are
both well structured and essentially identity-free.

Blending algorithm

Pseudocode for our multi-band blending approach, adapted and
modified from Burt et al. [BA83], is presented in Algorithm 1.
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Figure 12: Output of the network with various number of shared decoder levels. The target image is presented on the left side. Images from
left to right correspond to the output of the network with the split placed after: latent vector, level 0, level 1, level 2 (which is our choice) and
level 3.

Figure 13: Encoder-decoder network architecture illustrating the
progressive approach. After adding a new level the gain parameter
α ∈ [0,1] acts as a fader switch that gradually blends the activa-
tions of the new network with those of the trained, smaller network.

Algorithm 1: Blending source image into target image
Input: source image S and target image T of equal sizes,

set of outer facial landmarks L in image T , standard
deviation σ, generated face image resolution r (in
our case 1024)

Output: blended output image O
n = log2 r;
Decompose source image S and target image T into

corresponding Laplacian pyramids P(S)i and P(T )i,
where i is a pyramid level, i ∈ 〈1,n〉;

Initialize output pyramid P(O) for output image O of the
same sizes as P(T ) and fill its values with zeroes;

for i = 1 to n do
Compute background mask M̂i defined as an image of

the same size as P(T )i, where all pixels in the interior
of the polygon formed by L are equal to 0 and 1
otherwise;

M̂i = G
(
M̂i,σ

)
, where G

(
M̂i,σ

)
denotes gaussian

smoothing of M̂i with standard deviation σ;
Calculate face mask: Mi = 1− M̂i;
Copy background from the target image to the output

image: P(O)i = P(O)i + M̂iP(T )i ;
if i 6 2 then

Copy face from the target image to the output
image: P(O)i = P(O)i +MiP(T )i;

else
Copy face from the source image to the output

image: P(O)i = P(O)i +MiP(S)i ;
end
Reconstruct and return output image O from P(O);

end
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Figure 14: Visualization of swaps using the “comb” network output (ours) compared with nearest neighbors (n.n.) from the data set. Note
that there are no exact correspondences between n.n. and network outputs, which suggests that the network is able to generate previously
unseen intermediate states. Nearest neighbors are computed by L2 similarity to the network output in in the pixel space of the face region.

Figure 15: Visualization of a segment of the data manifold learned by the common encoder. We show that the facial behavior of the anchor
points (x(1)p and x(2)p ) can be encoded and transferred to different identities. Here λ corresponds to the mixing ratio between the anchor
points’ latent representations.

Figure 16: Visualization of the manifold path traversed for an out-of-sample identity. We show that the facial behavior of the anchor points
(x(1)p′ and x(2)p′ ) can be encoded and transferred to different identities. Note that the input face was not presented to the network during the
training.
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