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Figure 1: We propose semantic deep face models—novel neural architectures for modelling and synthesising 3D human faces
with the ability to disentangle identity and expression akin to traditional multi-linear models. We demonstrate several appli-
cations of our method including (a) semantic expression synthesis, (b) novel identity synthesis (c) generation of expression
specific high resolution albedo maps, (d) 3D facial performance retargeting, and (e) 2D landmark based face tracking.

Abstract

Face models built from 3D face databases are often used
in computer vision and graphics tasks such as face recon-
struction, replacement, tracking and manipulation. For
such tasks, commonly used multi-linear morphable models,
which provide semantic control over facial identity and ex-
pression, often lack quality and expressivity due to their lin-
ear nature. Deep neural networks offer the possibility of
non-linear face modeling, where so far most research has
focused on generating realistic facial images with less fo-
cus on 3D geometry, and methods that do produce geom-
etry have little or no notion of semantic control, thereby
limiting their artistic applicability. We present a method
for nonlinear 3D face modeling using neural architectures
that provides intuitive semantic control over both identity
and expression by disentangling these dimensions from each
other, essentially combining the benefits of both multi-linear
face models and nonlinear deep face networks. The result
is a powerful, semantically controllable, nonlinear, para-
metric face model. We demonstrate the value of our seman-
tic deep face model with applications of 3D face synthesis,
facial performance transfer, performance editing, and 2D
landmark-based performance retargeting.

1. Introduction
Data-driven face models are very popular in computer

vision and computer graphics, as they can aid in several im-
portant challenges like model-based 3D face tracking [12],
facial performance retargeting [29], video based reenact-
ment [32], and image editing [6]. These models are built
from large databases of facial scans. Most commonly, lin-
ear face models are built, where the approximated face is
expressed as a linear combination of the dataset shapes
[7]. Extensions to multi-linear models [13, 33] also ex-
ist, which generate a tensor of different semantic dimen-
sions (e.g. identity and expression). This ability to have
semantic separation of attributes has several benefits, in-
cluding for example constrained face fitting (e.g. fitting to
an identity while constraining to the neutral expression, or
fitting to an expression once the identity is known), perfor-
mance animation (e.g. modifying only the expression space
of the model), performance transfer or retargeting (modify-
ing only the identity space of the model), etc. In general a
model that provides semantic separation lends itself better
to artistic control. The main problem with traditional mod-
els, however, is their linearity. The human face is highly
nonlinear in its deformation, and it is well known that a sim-
ple blending of static expressions often results in unrealistic
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motion. In severe cases, many combinations of the input ex-
pressions can lead to physically impossible face shapes (see
Fig. 5). To summarize, linear models constrain the space of
shapes to a manifold which on the one hand usually cannot
represent all possible face shapes, and on the other hand can
easily represent many non-face shapes.

As we shall see in more detail in Section 2, recent meth-
ods have begun to investigate nonlinear face models using
neural networks [28, 1, 14, 20, 16, 24, 3], which can, to
some degree, overcome the limitations of linear models.
Unfortunately, some of these approaches have thus far sacri-
ficed the human interpretable nature of multi-linear models,
as one typically loses semantics when moving to a latent
space learned by a deep network.

In this work, we aim to combine the benefits of multi-
linear and neural face models by proposing a new architec-
ture for semantic deep face models. Our goal is to retain the
same semantic separation of identity and expression as with
multi-linear models, but with deep variational networks that
allow nonlinear expressiveness. To this end, we propose a
network architecture that takes the neutral 3D geometry of
a subject, together with a target expression, and learns to
deform the subject’s face into the desired expression. This
is done in a way that fully disentangles the latent space of
facial identities from the latent space of expressions. As
opposed to existing deep methods [1, 14, 20, 16], the dis-
entanglement is explicitly factored into our architecture and
not learned. As a consequence, our method achieves per-
fect disentanglement between facial identity and expression
in its latent space, while still encoding the correlation be-
tween identity and expression in shape space, i.e. the shape
change induced by an expression differs as a function of the
identity shape. Once trained (end to end), one can traverse
the identity latent space to synthesize new 3D faces, and
traverse the expression latent space to generate new 3D ex-
pressions, all with nonlinear behavior. Furthermore, since
we condition the expression based on the popular represen-
tation of linear blendshape weights, the resulting network
allows for semantic exploration of the expression space,
which is also lacking in existing methods.

As face models that generate geometry alone have lim-
ited applicability, we further incorporate the appearance of
the face into our architecture, in the form of a diffuse albedo
texture map. An initial per-vertex color prediction that cor-
responds to the face geometry is transferred to the UV do-
main resulting in an low resolution texture map. We employ
an image to image translation network [34] as a residual
super-resolution network to transform the initial low reso-
lution albedo to a resolution of 1024 x 1024.

We demonstrate the value of our semantic deep face
model with several applications. The first is 3D face synthe-
sis (see Section 4.2), where our method can generate a novel
human face (geometry and texture) and the corresponding

(nonlinear) expressions - a valuable tool for example in cre-
ating 3D characters in virtual environments. We also show
that nonlinear 3D facial retargeting can be easily accom-
plished with our network, by swapping the identity latent
code while keeping the per-frame expression codes fixed
(see Section 4.3). Another application of our model is 3D
face capture and retargeting from video sequences, by re-
gressing to our expression latent space from 2D facial land-
marks (see Section 4.3.2). Finally, in our supplementary
video we demonstrate how our method allows an artist to
edit a performance, e.g. add a smile/frown to certain key-
frames of a captured facial performance. To summarize, we
present a method for nonlinear 3D face modeling including
both geometry and appearance, which allows semantic con-
trol by separating identity and expression in its latent space,
while keeping them coupled in the decoded geometry space.

2. Related Work
Facial blendshapes [23] have been conventionally used

as a standard tool by artists to navigate the space of the ge-
ometry of human faces. In addition to being human inter-
pretable, blendshapes are extremely fast to evaluate, and en-
able artists to interactively sculpt a desired face. Blanz and
Vetter [7] proposed a 3D morphable model of human faces,
by using principal component analysis (PCA) to describe
the variation in facial geometry and texture. Similarly, Vla-
sic et al. [33] proposed a multi-linear model based on ten-
sor decomposition as a means of compressing a collection
of facial identities in various expressions. However, in both
morphable models and multi-linear tensors, the orthogonal-
ity comes at the cost of losing interpretability. In addition
to linear global models, multi-scale approaches have been
developed [27] [15], [9], with a focus on capturing and re-
constructing local details and deformations. Building on top
of the techniques mentioned above, several statistical mod-
els of the human face have also been built [13], [25], [8].
We refer to a comprehensive survey [10] of methods used
in the statistical modelling of human faces.

Moving on to nonlinear geometry modelling, Tan et al.
[31] proposed the use of a variational autoencoder (VAE)
[22] to effectively compress and represent several categories
of 3D shapes. They do so by describing the deformation of
meshes in a local co-ordinate frame [26] and later recon-
structing the positions of the mesh through a separate linear
solve. In the context of human faces, Ranjan et al. [28]
proposed the use of convolutional mesh autoencoders and
graph convolutions as a means of expanding the expressive-
ness of face models. While they were able to achieve better
reconstruction than linear models, disentangling facial iden-
tity and expression was not one of their objectives. Recent
works [20, 2, 16, 14, 1] have begun to explore the disen-
tanglement of facial identity and expression inside a neural
network. The state of the art performance of these methods
on standard datasets [13, 25] indicate the benefit of learning



disentangled representations with neural networks. How-
ever, these methods learn to disentangle latent identity and
expression, while the disentanglement is factored by design
into our architecture and is therefore more explicit. Addi-
tionally work such as [20, 2, 14, 1] do not jointly model
facial geometry and appearance, while we do.

The more recent work of Li et. al [24] is closest in
spirit to our work. Though our methods seem similar at
the onset, there are a few important differences. The first
is that though we decouple identity and expression in the
network’s latent space, our joint decoder can model identity
specific expression deformations which [24] can not. Sec-
ond, as we describe in Section 3.2, the manner in which
we use dynamic facial performances for training readily
makes our method applicable to retarget and reconstruct
performance from videos, and addresses another limitation
of [24]. Another interesting contribution in neural seman-
tic face modelling is the work of Bailey et. al [3], where
semantic control over expression is achieved through rig
parameters instead of blendweights. However, since their
method is rig specific, and doesn’t model appearance, it un-
fortunately cannot be used for several of the applications
demonstrated in this work.

In this work, we extend the state of the art in non-linear
semantic face models, by proposing a novel neural architec-
ture that explicitly disentangles facial identity and expres-
sion in its latent space, while retaining identity-expression
correlation in geometry and appearance space. Through the
use of blendweights, our method provides intuitive control
over the generated expressions, retaining the benefits of tra-
ditional multi-linear models, with increased expressiveness,
and lends itself to applications in 3D face synthesis, 2D and
3D retargeting, and performance manipulation.

3. Methodology
We now present our method, starting with an overview

(Section 3.1), our data acquisition and processing steps
(Section 3.2), a description of the main architecture for se-
mantically generating face geometry and low resolution ap-
pearance (Section 3.3), our appearance super-resolution ap-
proach (Section 3.4), and details on training (Section 3.5).

3.1. Concept Overview

In this work, we assume that we are given access to a
3D face database consisting of several subjects in a fixed
set of expressions, where the meshes are assumed to be in
full vertex correspondence, similar to the datasets that tra-
ditional face models are built from. Our method can op-
tionally also take appearance data in the form of per-vertex
color information, corresponding to each expression. In ad-
dition to the static expressions, access to registered dynamic
performances of subjects can also be used whenever avail-
able (although dynamic data is not mandatory). We address

how such a database can be built in Section 3.2. We propose
a novel neural approach to human face modelling consisting
of a pair of two variational auto-encoders (VAE), which use
such a database to build a latent space where facial identity
and expression are guaranteed to be disentangled by design,
while at the same time allowing a user to navigate this la-
tent space with interpretable blendweights corresponding to
semantic expressions.

Given the neutral geometry and albedo of a subject, and
a target blendweight vector, our collection of networks learn
to deform the subject’s neutral into the desired captured
expression, and also generate the corresponding per-vertex
albedo. In the process of doing so, an identity VAE projects
the subject’s face onto a latent space of facial identities
while an expression VAE projects the target blendweight
vector into a latent expression space. By combining the
information from the identity and expression embeddings,
a joint decoder learns the nonlinearity of facial deforma-
tion to produce per-vertex displacements that deform the
given neutral into the desired expression, along with non-
linear albedo displacements that represent a corresponding
expression-specific albedo. Our VAE learns the high-level
correlation between the facial geometry and albedo. The
per-vertex albedos are sampled as texture images in the UV
domain at relatively low resolution, and are then upsampled
with a variant of the Pix2PixHD architecture [34] in order
to generate a high-resolution detailed facial textures.

3.2. Data Acquisition and Processing

Before we describe our algorithm in detail, a funda-
mental requirement of our method is a registered 3D face
database of different subjects performing a variety of fa-
cial expressions. Since most existing 3D databases of hu-
man faces [25, 13, 8] are limited in their geometric resolu-
tion, and lack either variations in the identities of subjects
[25, 13] or do not contain sufficient examples of the same
subject performing different expressions, we capture and
build our own 3D facial database. In a passively lit, multi-
camera setup, we capture 224 subjects of different ethnici-
ties, genders, age groups, and BMI. Subjects were carefully
chosen such that each of the sampled distributions are as
uniformly represented as practically possible. Each of the
224 subjects was captured performing a pre-defined set of
24 facial expressions, including the neutral expression. In
addition to capturing the static expressions of 224 subjects,
we also captured a dynamic speech sequence and a facial
workout sequence for a subset of 17 subjects. The cap-
tured images of subjects in various expressions were recon-
structed using the method of Beeler et. al [4]. A template
mesh consisting of 49,000 vertices was semi-automatically
registered to the reconstructions of each subject individu-
ally, and a 1024x1024 albedo texture map was generated
by dividing out the diffuse shading given a measured light



Figure 2: Our network architecture for semantic deep faces. We disentangle identity and expression through separate
VAEs, which are trained end-to-end with a joint decoder given a subject’s neutral and target expression with known target
blendweights. The joint decoder outputs the deformed geometry and corresponding per-vertex albedo. The low resolution
albedo, after being transferred to the UV domain, is passed through a super resolution network to result in the final albedo.
The synthesized geometry and albedo can be used to render realistic digital human faces.

probe. As a result of this, we end up with a total of 5,376
meshes and textures (224 subjects x 24 expressions) that are
in full correspondence with one another. We further stabi-
lize the expression to remove any rigid head motion [5] and
align all of them to the same canonical space. For training
the albedo model, we sample the per-vertex albedo color
and store the RGB information with each vertex, form-
ing a 6-dimensional vector (XYZRGB). For the subjects
for whom dynamic performances were captured, we start
from their registered static meshes and build a subject spe-
cific anatomical local face model [35]. This subject spe-
cific model is then used to track the dynamic performance
of the subject. For the 17 subjects we recorded, we recon-
structed and tracked a total of 7,300 frames. Next, we as-
sociate blendweight vectors to each registered mesh. For
the static shapes, since each mesh corresponds to a unique,
pre-defined expression, the blendweight vectors are one-
hot encoded vectors corresponding to the captured expres-
sion. This results in the assignment of a 24 dimensional
blendweight vector b ∈ R24 to each shape. However, the
assignment of blendweight vectors for a dynamic shape is
not straightforward as the subject may have performed an
expression that could only be explained by a combination
of the individual shapes. Therefore, we fit a weighted com-
bination of the 24 registered shapes of the subject in a least
squares sense to the tracked performance. This gives us op-
timal blendweights for each frame in the performance. As
we will show later (Fig. 5 (c)), the linear blendshape fit is
only a crude approximation of the real shape. We there-
fore discard the linear shape estimate (keeping only the opti-
mized blend weights) and use the captured shape as ground
truth to train our decoder. This way, we can leverage both

static and dynamic data for training. A conceptual overview
of our architecture is shown in Fig. 2.

3.3. A Variational Multi-Nonlinear Face Model

From the database described in Section 3.2, we com-
pute the mean of all subjects in the neutral expression and
call this shape the reference mesh R. We then subtract R
from the original shapes, providing us with per-vertex dis-
placements for each identity in the neutral expression. We
identically pre-process the per-vertex albedo by subtracting
the mean from each of the training samples. We will de-
scribe the model now in the context of one subject, where
subscripts id and exp represent the identity and expression
components of the subject, respectively, and superscripts N
and T correspond specifically to neutral and target expres-
sion shapes.

The mean-subtracted neutral displacements dN
id are fed

as the input to an identity VAE. We use displacements rather
than other representations like the linear rotation invariant
(LRI) coordinates [26] as used by Tan et. al [31] since
our input shapes are carefully rigidly stabilized. Our iden-
tity encoder Eid is a fully connected network consisting of
residual blocks that compress the input displacements into
a mean µid and standard deviation σid.

µid, σid ← Eid(d
N
id). (1)

At training time, the predicted mean and standard devi-
ation vectors are used to sample from a normal distribution
using the re-parametrization method of Kingma et. al. [22]
to produce a nid-dimensional identity code zid.

zid ∼ N (µid, σid). (2)



The output of each fully connected layer except the ones
predicting the mean and the standard deviation are activated
with a leaky ReLU function. The identity encoder only ever
sees the displacements of different subjects in the neutral
expression, crucial for the decoder to explicitly decouple
identity and expression.

In parallel, a second expression VAE, Eexp, takes a
blendweight vector bT corresponding to target expression
T as its input and compresses or expands it into a variational
latent space zexp of nexp dimensions. Similar to the identity
encoder, the expression VAE is also a fully connected net-
work with residual blocks and leaky ReLU activations. The
expression VAE also outputs a mean and standard deviation
vector that are fused into the expression code zexp.

µexp, σexp ← Eexp(b
T ) (3)

zexp ∼ N (µexp, σexp). (4)

Our choice to use blendweights to condition the decoder
is motivated by two reasons. The first is that blendweights
provide a semantic point of entry into the network and can
therefore be manipulated at test time by an artist. Second,
one of our objectives is to force the network to disentangle
the notion of facial identity and expression. Blendweights
are a meaningful representation to learn this disentangle-
ment as they contain no notion of identity and are purely de-
scriptive of expression. The identity and expression codes
are concatenated into a vector of dimension nid + nexp
and fed to a decoder D that learns to correlate the identity
and expression spaces and eventually reconstructs the given
identity in the desired expression with corresponding per-
vertex albedo estimate. The decoder is a fully connected
network that outputs vertex displacements dT with respect
to the reference mesh R, and albedo displacements tT as

[dT , tT ]← D(zid, zexp). (5)

Disentanglement by Design The joint decoder takes the
two variational codes produced independently by the two
VAEs to reconstruct the input subject in the desired ex-
pression. Since the two latent codes are fully disentangled,
the decoder must learn to correlate identity and expression
codes to reconstruct the training shapes. This combina-
tion of a disentangled latent space and correlated geometry
space enables to capture identity specific deformations (in
both shape and albedo) for the same semantic expression,
as shown in Fig. 3.

We use four residual layers in both Eid and Eexp, where
the dimensions of the layers are fixed to nid and nexp,
respectively. Following our experiments outlined in Sec-
tion 4, we set nid = 32 and nexp = 256 for all results.
We resorted to the use of a VAE as opposed to a generative

model to avoid running into mode collapses and to compen-
sate for the lack of extensive training data. Our disentangle-
ment framework is otherwise generic and could readily ben-
efit from the use of graph convolutions [28] and other neu-
ral concepts that focus on reconstruction accuracy. In other
words, the novelty of our method primarily stems from our
ability to semantically control a powerful nonlinear network
while ensuring that it’s internal representations fully disen-
tangle facial identity and expression.

3.4. Appearance Super-Resolution

The predicted per-vertex albedo displacements tT are
added to the mean albedo and transferred to the UV do-
main. As seen in Fig. 2, the resulting texture map contains
coarse information, such as the global structure of the face
(the position of the eyes, mouth etc.), expression dependent
effects (blood flow), as well as identity cues (ethnicity, gen-
der etc.). What is missing are the fine details that contribute
to the photo-realistic appearance of the original high reso-
lution albedo. Our goal is to regenerate these missing de-
tails conditioned by the low resolution albedo, upscaled to
the target resolution. We reformulate this super-resolution
task as a residual image-to-image translation problem [19],
trained on the captured high resolution albedo texture maps.
The low resolution albedo is upscaled using bilinear inter-
polation to the target resolution (1024 x 1024). The up-
scaled albedo AUp is then fed to a generator GRes [34]
that outputs a residual imageARes, which is combined with
with AUp to produce the final texture A

′
. The discrimina-

tors that provide adversarial supervision to the generator are
multiple Markovian patch-based discriminatorsDp, each of
which operates at a different scale p of the input. We do not
use any normalization layers in both the generator and the
discriminators.

3.5. Training

Geometry VAEs: The identity and expression VAEs,
along with the joint decoder, are trained end-to-end in a
fully supervised manner using both static and dynamic per-
formances. We penalize the reconstructed geometry with
a L1 loss, and the identity and expression latent spaces are
constrained using the KL divergence. Training takes around
4 hours on single Nvidia 1080 Ti GPU. We initialize both
encoders and the decoder following Glorot et. al [17], and
use the ADAM optimizer [21] with a learning rate of 5e-4.
Albedo Super-Resolution: The residual generator GRes

is trained akin to the generator in [34], using both ground
truth and adversarial supervision. For ground truth supervi-
sion with the captured high resolution albedo AGT , we use
an L1 loss (L1) and the VGG-19 [30] perceptual lossLV GG.
We train each discriminator Dp using the WGAN-GP loss
as proposed by Gulrajani et. al [18]. We use a learning rate
of 1e-4 and optimize the generator and discriminators using



the ADAM optimizer [21]. We refer to our supplementary
material for additional details on the network architecture
and loss formulations.

4. Results and Discussion
Our goal is to produce a semantically controllable, non-

linear, parametric face model. In this section we inspect
the disentangled latent spaces for identity and expression,
and show how the nonlinear representation is more power-
ful than traditional (multi-)linear models, while providing
the same semantic control.

4.1. Quantitative Evaluation on Facewarehouse

The Facewarehouse dataset [13] contains meshes of 150
identities in 47 different expressions, where each mesh con-
tains 11,518 vertices. Since the meshes in Facewarehouse
do not have an associated texture map, we train only the
geometry decoder (Fig. 2) for this experiment. Similar to
Jiang et. al [20], we train our model on an augmented set of
the first 140 identities and their expressions, and test on the
10 remaining identities.

The table in Fig. 4 (left) compares our reconstruction ac-
curacy on the Facewarehouse dataset to existing state of the
art in 3D face modelling. To enable a fair comparison to
existing work, we also fix the total dimensionality of our
latent spaces to 75 dimensions like other works. See the
supplementary material for qualitative results on the Face-
warehouse dataset.

4.2. Disentangled Latent Spaces

Our disentangled representation allows for smooth con-
trol over both identity and expression independently.

4.2.1 Identity Latent Space

Varying the identity code while keeping the expression code
fixed will produce different identities with the same expres-
sion. Fig. 3 (a) (top 2 rows) shows the result of random
samples drawn from the identity latent space, also rendered
with the resulting upsampled albedo. The choice of a vari-
ational autoencoder to represent the identity space allows
to smoothly morph between different subjects by (linearly)
interpolating their identity codes. As Fig. 3 (b) shows, the
degree of nonlinearity reflected in the output shapes varies
as a function of the dimensionality of the latent space, where
a lower dimensionality will force higher nonlinearity. No-
tice how interpolating between two identities appears to
pass through other identities for lower dimensional identity
spaces. While a lower dimensional latent space reduces the
reconstruction accuracy (see Fig. 4) due to the higher com-
pression, our representational power is still significantly
higher than a linear model (PCA). Increasing dimensions
diminishes this advantage due to the relatively low number
of training samples.

4.2.2 Expression Latent Space

While it would be an option to directly sample the expres-
sion latent space analogous to the identity latent space, this
would not allow for semantically meaningful control. For
human animators it is critical to provide an intuitive con-
trol structure to animate the face, referred to as rig. The
most well-known rigging concept for facial animation are
blendshapes, which are extremely intuitive as they allow the
animator to dial in a certain amount of a given expression.
These can then be superimposed to provide the final shape.
In our system, the exposed expression controls are provided
in exactly the same way, via a vector of blendweights that
encode the intensity of the individual shapes to be dialed
in. Due to the disentangled nature of identity and expres-
sion spaces, it is possible to synthesize any desired expres-
sion as shown in the bottom part of Fig. 3 (a) for a given
identity. Here we provide one-hot blendweight vectors to
the network and generate the complete set of blendshapes.
As such, the proposed model can be readily adopted by
animators. Corresponding high resolution albedo textures
for the synthesized expressions are also produced by our
method, as illustrated in the expression interpolation exam-
ple in Fig. 3 (c). In addition to providing an interface akin
to blendshapes, our method has quite some advantages over
a linear blendshape basis. Fig. 5 (a) shows that our model
is much more robust when extrapolating along an expres-
sion dimension beyond [0,1], unlike the linear model, which
leads to exaggerated and unusable shapes, especially to-
wards the negative direction. Furthermore, linearly varying
the weight within [0,1] provides a nonlinear effect on the
generated shape, as demonstrated on the smile expression,
where the generated smile starts off as a closed mouth smile
up until ∼0.6, and then opens up, which feels more natu-
ral than the monotonous interpolation of the linear model.
This nonlinearity is especially important when superimpos-
ing expressions (Fig. 5 (b)). For a linear model, the latter
only makes sense for a few combinations of expressions,
and hence blendshape editing often yields undesired shapes
quickly, especially for novice users, whereas the proposed
method is more robust in such cases. As expected, our
nonlinear model has higher expressive power than its lin-
ear counterpart (Fig. 5 (c)) when fitting to a ground-truth
reconstructed performance, the linear model incurs a larger
reconstruction error for the same blend vector dimension-
ality. Using the fitted linear blendweights as input to our
network, our method achieves much lower errors, close to
the optimal expression the model can produce, found in this
case by optimizing in the expression latent space.

4.3. Facial Performance Retargeting
Our method also lends itself to facial performance trans-

fer using blendweights or 2D landmarks.



a) Synthesis b) Identity Interpolation

c) Expression Interpolation

Figure 3: a) Face synthesis results Here we show a set of identities synthesized by sampling the identity latent code (top 2
rows, with completed 3D head geometry rendered with our synthesized albedo, as well as a subset of expressions for three
different identities produced by sampling the expression latent space (bottom rows). b) Identity interpolation between two
subjects in latent identity spaces of different dimensions (top row 4D, bottom row 128D). The lower dimensional space passes
through other identities as we interpolate (notice the mole on the chin of the center subject which is not present in either the
start or end identity). c) Expression interpolation Top: Here we see the change in geometry as we interpolate between two
expressions for a synthesized subject while keeping the identity code fixed. Bottom: We see the corresponding albedo as
generated by our networks. Notice how our method can capture expression specific changes in facial appearance; especially
around the nose for this example.

a) Facewarehouse  evaluations b) Comparisons with PCA on novel identities

Figure 4: Left: In this table, we present quantitative compar-
isons of our method against state of the art on the faceware-
house dataset. Right: Reconstruction error on 9 validation
shapes from our in house dataset which are not part of the
model. The nonlinear model has lower error than the linear
one for low dimensional latent spaces. At 64 dimensions
the two models are comparable, and at 128 dimensions the
linear model is actually superior, as there are insufficient
samples to train such a high-dimensional space.

4.3.1 Blendweight Retargeting
Retargeting performances by transferring the semantic
blendweights from one character to another is a common
approach in facial animation. The same paradigm can be
used with our nonlinear face model, by first determining
the identity code of the target actor using the identity VAE
(given the target neutral expression), and then injecting the
per-frame blendweights to the expression VAE. Fig. 6 il-
lustrates this procedure, transferring the expression weights
obtained from a performance onto a novel identity.

4.3.2 2D Landmark-Based Capture and Retargetting

Another interesting scenario is facial performance capture
and retargeting based on 2D facial landmarks in videos.
Here we show an extension of our architecture that allows
an interface to the latent expression code via 2D landmarks.
Given a subset of our facial database where frontal face im-
agery is available, we detect a typical landmark set [11]
and perform a normalization procedure to factor out im-
age translation and scale (based on the inter-ocular dis-
tance). The normalized landmarks are then stacked into a
vector, and fed to a network that aims to map the landmarks
to the corresponding expression code zexp. We illustrate
this landmark architecture in Fig. 7 (left). The network is
trained with ground truth blendweights which allows su-
pervision on the expression code, given the pre-trained ex-
pression VAE, and we include the resulting geometry in the
loss function using the pre-trained decoder. The result is
a means to generate expressions based on 2D landmarks,
which allows further applications of our deep face model
including landmark-based performance capture (Fig. 7 right
- center row) and retargeting to a new identity (bottom row).

4.4. Limitations and Future Work

While the proposed expression encoding is more robust
to random blendweight combinations than linear models, it
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Figure 5: (a) Expression extrapolation Our nonlinear model (bottom row) allows to semantically control the intensity of an
expression akin to a linear blendshape model (top row). However, the nonlinear model extrapolates better, producing plausible
shapes within [-1,1] and degrading gracefully beyond, unlike the linear model. Furthermore, the expression changes on a
nonlinear trajectory, e.g. causing the smile to start as a closed smile (up to 0.6) and then open up in a natural way compared
to the steady increase in the linear model. (b) Superimposing expressions The linear model can superimpose only non-
conflicting expressions, such as mouth-left and kiss (top), but generates poor results for many shape combinations, such as
mouth-left with mouth-right (bottom). Our nonlinear model produces more plausible shapes in such cases. (c) Fitting to
dynamic performances Comparing the reconstruction residual of the linear blendshape fit with that of our model shows that
our model has higher representational power. Heatmap encodes errors from 0 mm (blue) to 15 mm (red).
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Figure 6: Retargeting a facial performance from one ac-
tor to another by fixing the blendweights and changing the
identity code results in a natural-looking transfer.

is however not guaranteed to produce meaningful shapes for
any given blendweight vector. It would be very valuable to
have a representation that maps the unit hypercube to the
physically meaningful expression manifold in order to al-
low random sampling that provides valid shapes spanning
the complete expression space. Even though we incorpo-
rate dynamic performances, we do not encode the tempo-
ral information, which would allow to synthesize temporal
behaviour, such as nonlinear transitioning between expres-
sions. Lastly, we feel the proposed approach is not limited
to faces but could provide value in other fields, for example
general character rigging.
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Figure 7: Left: Our landmark architecture allows to train a
mapping from 2D face landmarks to the expression latent
space. Right: Landmark-based generation of a 3D perfor-
mance (center row) from a 2D video of the person (top row)
and retargeting to any other identity (bottom row).

5. Conclusion
We propose semantic deep face models—novel neural

architectures for 3D faces that separate facial identity and
expression akin to traditional multi-linear models, but with
added nonlinear expressiveness, and the ability to model
identity specific deformations. We believe that our method
for disentangling identity from expression provides a valu-
able, semantically controllable, nonlinear, parametric face
model that can be used in several applications in computer
vision and computer graphics.
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