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Figure 1. Our system extracts touch input characteristics of users while typing on smartphones (1) and aggregates these metrics into two-dimensional
heat maps (2). A semi-supervised classification pipeline dynamically predicts affective states (valence, arousal, and dominance) of the user (3).

ABSTRACT
Gaining awareness of the user’s affective states enables smart-
phones to support enriched interactions that are sensitive to
the user’s context. To accomplish this on smartphones, we
propose a system that analyzes the user’s text typing behavior
using a semi-supervised deep learning pipeline for predicting
affective states measured by valence, arousal, and dominance.
Using a data collection study with 70 participants on text con-
versations designed to trigger different affective responses, we
developed a variational auto-encoder to learn efficient feature
embeddings of two-dimensional heat maps generated from
touch data while participants engaged in these conversations.
Using the learned embedding in a cross-validated analysis, our
system predicted three levels (low, medium, high) of valence
(AUC up to 0.84), arousal (AUC up to 0.82), and dominance
(AUC up to 0.82). These results demonstrate the feasibility of
our approach to accurately predict affective states based only
on touch data.
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CCS Concepts
•Human-centered computing → Human computer inter-
action (HCI); User studies; Touch screens; •Computing
methodologies→Machine learning;

INTRODUCTION
Interactive systems that include knowledge about the user are
capable of providing an optimised user experience. Such sys-
tems should be able to dynamically adapt the content, trigger
help functions, provide feedback when needed, or show moti-
vational elements that increase user satisfaction and learning
gain. Recently, interaction models have been extended to in-
clude methods capable of predicting the affective state of the
user. Affective states are psycho-physiological constructs used
for characterizing emotions (short-term) and moods (long-
term) that are experienced by users when engaged with a
stimulus [15, 49, 61]. Affective states are often represented
along the valence, arousal and dominance dimensions [54] or
grouped into basic emotions (i.e., anger, happiness, sadness,
surprise, disgust, and fear) [16].

Responding to changes in affective states has been found to
be beneficial in educational settings and is associated with
increases in learning gain and motivation [29]. Recent work
has also suggested that being aware of one’s current affective
state can be particularly useful in the context of mobile devices
as individuals become more dependent on smartphones for
social purposes [48]. Here, chat applications are especially
relevant as they currently rank as the most used applications
on smartphones [2].



The majority of methods to detect affective states rely on
biosensor data (e.g., heart rate and skin conductance) [35, 63],
body behavior [39], or camera data to infer emotions from
facial expressions [59]. However, most of these setups are in-
vasive and potentially costly, which can limit their widespread
application. As such, researchers have explored different meth-
ods to infer affective states directly from smartphone data,
including sensor inputs (e.g., acceleration and gyroscope) [44],
application usage patterns [4, 48], and typing speed [21].

In this paper, we propose a non-invasive solution that can
accurately predict affective states based on sensor data from
a mobile device. We achieve this by considering only touch
input from the smartphone’s on-screen keyboard to generate
two-dimensional heat maps of typing characteristics. We train
our semi-supervised deep learning architecture on these heat
maps to learn a low-dimensional feature embedding. The
subsequent classification can predict valence, arousal, and
dominance on three levels each (low, medium, high). We
demonstrate the effectiveness of predicting the affective states
based on the touch characteristics of smartphone users in a
data collection study with 70 participants engaged with a chat
application and highlight other potential application scenar-
ios.

RELATED WORK
This section provides an overview of previous research in
the field of affective state prediction and the related fields of
biometrics and stress prediction. We focus our overview on
methods that base the prediction on typing characteristics on
computer keyboards and the various sensors from smartphones
(e.g., touch and gyroscope). The processing of touch data col-
lected from smartphones is at the core of our model. However,
typing characteristics on computer keyboards are related to
smartphone touch data in so far that typing patterns can re-
semble the typing patterns on smartphone keyboards. Kanjo
et al. [32] provides an overview of other approaches that can
be used for measuring affective states (e.g., biosensors).

Biometrics
We use the term biometrics to refer to the measurements and
analysis of physical and behavioral characteristics that can
be used to identify individuals. We focus specifically on
keystroke patterns inferred from data collected through touch-
screen and keyboard interactions. Such systems have been
previously used for setting more secure passwords [55]. Com-
monly used features include keystroke dynamics such as down-
down, up-down, and down-up timings of keys [3, 14, 51, 55].
Other researchers have also used the ID of the keys [3], the
touch positions relative to the center of a touch element [42],
and typing difficulty of successive characters [14].

Other researchers have used typing pressure from keyboards [3,
42, 55] and smartphone touch screens [13, 51] for user identifi-
cation. Here, research has shown that using pressure-sensitive
keyboards in addition to traditional keystroke dynamics can
significantly reduce the error rate for user identification from
2.04% to 1.41% [51]. Features from pressure data such as the
gradient, maximum, and pressure timings have all shown to
perform well [42].

In our work, we leverage down-down, up-down, and pressure
metrics to predict affective states. In contrast to past work,
we consider the spatial distribution of measurements by using
two-dimensional heat maps over the keyboard input area.

Stress Prediction
The ubiquity of mobile devices has led to a surge in research
focusing on the prediction of stress based on smartphone
usage [65]. Researchers have used different modalities for
predicting stress based on smartphone data. These include
behavioral metrics such as call and text logs and location data
stemming from GPS [5, 7], application usage patterns [19],
voice recordings [50], and video recordings [11].

Apart from being invasive (e.g., sharing of text logs), relying
on these modalities for the prediction of affective states also
has the disadvantage of draining the smartphone battery (e.g.,
the high power consumption of GPS sensors). As such, other
work has focused on using sensor-based smartphone data, in-
cluding touch input and accelerometer data [11, 22]. Carneiro
et al. [11] used patterns, accuracy, intensity, and duration of
touch events as well as hand gestures to predict stress in real-
time while users played a mentally challenging mobile game.
In addition, Hernandez et al. [24] showed that typing pressure
and the size of the contact area with the mouse tends to in-
crease during stressful situations (i.e., expressive writing, text
transcription, and mouse clicking). To measure pressure and
contact area, this work relied on pressure-sensitive computer
keyboards and capacitive mouses, respectively. Recently, Ex-
posito et al. [18] conducted a similar study on the smartphone
and showed that typing pressure increases during stressful
situations (i.e., expressive writing). In addition, Sarsenbayeva
et al. [60] showed that stress increases tapping frequency but
decreases tapping accuracy. These researchers also found
that text difficulty had a larger effect on typing performance
(measured as the ratio between number of errors and number
of entered characters) than the stress level. Finally, other re-
searchers proposed a multi-modal approach jointly measuring
accelerometer, microphone data, and social activity data from
call and SMS [53].

Most existing approaches for stress prediction used two [7,
50, 5] or three classes [53], and the stress measurement tool
of choice were self-reports [24, 53, 19]. Achieved perfor-
mance ranged from 83% to 100% for two classes (stressed vs.
non stressed) [24] and 71% for three classes (low, medium,
high) [53].

Affective State Prediction
Researches have used different data sources to predict affec-
tive states. Most available smartphone systems are complex
in terms of the amount and nature of the modalities involved.
Systems have been built from smartphone sensor data (e.g.,
accelerometer, Bluetooth, microphone, and GPS) to grasp
user movements and conversational cues [57]. Other sys-
tems included the context of the user data (e.g., location and
weather) [8, 45], communication data (e.g., call and SMS
logs) [8, 48, 56], and interaction data (e.g., web browsing and
application usage) [48, 56]. Such systems have provided de-
cent performance with accuracies up to 71% for predicting var-
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Figure 2. Overview of the main steps of our model. A) A variational auto-encoder is trained on heat maps created from smartphone touch data to learn
an efficient low-dimensional feature embedding. B) For classification, the low-dimensional embedding is used as input to fully-connected layers.

ious emotions (i.e., happy, sad, fear, anger, and neutral) [57]
and 80% for predicting 3 levels of happiness (i.e., happy, neu-
tral, and unhappy) [8]. Nevertheless, such complex systems
are often privacy-invasive and computationally demanding.

Other more light-weight approaches for predicting affective
states have exploited touch and typing behavior. Gao et al. [21]
predicted four states (i.e., excited, relaxed, bored, and frus-
trated), each with two levels, with an accuracy between 69%
and 77% as well as two levels of arousal and valence with
an accuracy of 89%. These researchers used touch pressure
and speed of touch features recorded while users were playing
a game. Previous work also employed touch data from chat
conversations. Lee et al. [45] predicted Ekman’s six basic emo-
tions and a neutral state with 67% accuracy using a Bayesian
network classifier based on behavior data (i.e., typing speed
and touch count) and context data (i.e., location and weather)
collected while users used the twitter application. Interestingly,
they found that the speed of typing was the most predictive
factor. On the other hand, Ghosh et al. [23] predicted four
states (i.e., happy, sad, stressed, and relaxed) with a perfor-
mance of 0.84 AUC using touch statistics (inter-tap durations,
number of special characters, and number of deletes). These
researchers jointly modeled the typing characteristics and the
persistence of emotions by adapting the reported emotions
based on a Markov chain.

Other researchers [28] have predicted depression and mania on
a regression scale using a personalized deep learning model for
bipolar subjects by leveraging temporal dynamics and fusing
accelerometer and keyboard metadata (duration of a keypress,
time since last keypress, and distance to last keypress). Inter-
estingly, Leow et al. [47] found a positive correlation between
higher accelerometer displacements and depression as well as
mania.

Key stroke dynamic features such as pressure, latency, and
duration have also been used on computer keyboards [52].
Using these features, Epp et al. [17] predicted 15 emotional
states on two levels with an accuracy between 77% and 88%.
Kołakowska [41] provides an overview of other work on pre-
dicting affective states based on computer keyboards.

In contrast to previous work, we are using a light-weight ap-
proach by only considering pressure and speed characteristics
of touch data and employing a semi-supervised pipeline on
heat maps extracted from this data. Moreover, we are using
a pressure-sensitive display instead of the contact area [21]
to approximate pressure, and we are also considering domi-

nance, which we believe might be necessary for finer-grained
distinctions between affective states.

METHOD
We present a semi-supervised classification pipeline for pre-
dicting affective states based on touch data collected dur-
ing typing on smartphones. While touch data is continu-
ously available, ground truth is typically only available in
certain intervals (e.g., from self-reports). To make use of the
large amount of unlabeled data, we employ variational auto-
encoders to infer meaningful low-dimensional embeddings
from two-dimensional heat maps (Figure 2A). In a second step,
we add a fully connected classification layer to the learned data
encoder and fine-tune the entire network for the classification
of affective states (Figure 2B). In the following, we provide
details on every part of our method.

Heat Maps
Modern smartphones allow for the collection of accurate infor-
mation about the user’s screen inputs. An input ei = (x,y, t) is
defined by the coordinates (x,y) on the screen and the times-
tamp t in milliseconds. A single touch event E = [e1, . . . ,en]
can consist of n touch inputs from the time the user initially
touched the screen (e1, touch down) until he or she releases
the screen (en, touch up). Based on the raw input data, we
can extract several touch event metrics: Down-down speed
provides information about the typing speed and is equal to
the time difference between two consecutive touch downs nor-
malized by the distance. Up-down speed is equal to the time
between a touch up and the subsequent touch down normal-
ized by the distance. Up-down speed provides information
about the speed between touch events. In contrast to previous
research [3, 13, 55], we do not account for touch duration
(down-up speed) since touch events often consist of a sin-
gle input E = [e1] for which no duration can be computed.
All metrics are standardized based on the mean and standard
deviation during a baseline typing period.

Since touch inputs are inherently spatial, we aggregate the
touch event metrics into two-dimensional heat maps. These
heat maps cover the keyboard region and the send button (see
the red dashed line in Figure 4B) as we only include keyboard
inputs in this work. We use a sliding window with a window
size of 180 seconds shifted by 5 seconds to extract a sequence
of heat maps for each user. Since the down-down speed and
up-down speed metrics always correspond to two consecutive
touch events Ei and Ei+1 we assign their value to every pixel
on a straight line between the events (see Figure 3B and 3C).
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Figure 3. Examples of heat maps extracted from the touch events of a user. A) The color indicates the average pressure applied. B) and C) Consecutive
touch events are connected by a line, and the color indicates the down-down and up-down speed between these two events, respectively. The colors are
for visualization purposes only.

Finally, we apply Gaussian smoothing to the heat maps to
reduce high-frequency noise. We use a kernel of size k =
31× 31 pixels, which is twice the typical key distance in
pixels, and prevents smearing into neighboring keys while
keeping inter-key resolution high. In addition, we use σ = 5
provided by OpenCV [10].

Figure 3 shows examples of extracted heat maps for pressure,
down-down speed, and up-down speed. The colors in the heat
maps are for visualization purposes only. In our pipeline, we
only use one value per pixel.

Variational Auto-encoder
While touch data is available continuously, labels are sparse.
We make use of the unlabeled data by learning a low-
dimensional representation of the heat maps that capture as
much information from the original heat maps as possible.
To extract such a low-dimensional representation (also called
latent space or embedding), we employ a particular type of
neural network called variational auto-encoder [37] (see Figure
2A). Variational auto-encoders have the advantage of provid-
ing representations with disentangled factors and allow control
over modeling the latent distribution (in our case, multivariate
Gaussian) [25, 38]. Previous research has shown that vari-
ational auto-encoders are capable of automatically learning
meaningful low-dimensional representations in different do-
mains [1, 40].

A variational auto-encoder consists of an encoder and decoder.
The encoder network qφ (z|x) learns an efficient compression
of the input data x (heat map) into a low-dimensional space z
using a deep neural network parameterized by φ . The decoder
network pθ (x|z) reconstructs the input based on sampling
from the distribution of the latent space. Here, θ are the
parameters of the decoder network. We train the variational
auto-encoder using the loss function

L (φ ,θ ,x) = Eqφ (z|x) [log pθ (x|z)]−β KL
[
qφ (z|x)||p(z)

]
,

where KL denotes the Kullback-Leibler divergence. The left
term measures the reconstruction quality, and the right term
regularizes the latent space towards the prior p(z). By using
the Lagrangian multiplier β , we introduce a trade-off between
reconstruction quality and disentanglement of the latent fac-
tors fostering a more efficient encoding. This modification
of the loss function has been successfully used for training
variational auto-encoders [26].

For the auto-encoder, we use two-dimensional convolutions
with symmetric encoder and decoder. Depending on the reso-
lution of the input heat maps, it is necessary to down-sample
the heat maps to reduce training time. Input data is commonly
scaled before training. We use Min-Max scaling of the heat
maps per user.

Classification
We take advantage of the learned low-dimensional represen-
tation by adding a classification network to the pre-trained
encoder network (see Figure 2B). The classification network
consists of fully connected layers with rectified linear unit
activations except for the last layer, where we use softmax ac-
tivation for the classification output. The different heat maps
are aggregated by stacking the latent space of the individual
heat maps.

The fully-connected network is trained on the labeled data
(heat maps and corresponding affective states) using backprop-
agation that minimize the cross-entropy loss. Fine-tuning the
classification network has shown good performance in other
domains [62].

EXPERIMENT
We conducted a controlled lab experiment to validate our
pipeline for the prediction of affective states based on smart-
phone touch data. The experiment was approved by the ethics
board of ETH Zurich. During the experiment, we collected
smartphone touch data while participants interacted with a
chat application (i.e., Skype) for approximately 70 minutes.
We used text-based chat conversations because they are widely
used [2] and would be familiar to the participants in the study.
In addition, these applications require interaction with the
smartphone and can provide the data necessary for testing our
prediction model.

Participants
We recruited 70 participants (35 female) between the ages of
18 and 31 (mean = 23.0, standard deviation SD = 2.7) from 20
different departments at the master and bachelor level of ETH
Zurich and University of Zurich. We only considered partici-
pants that were fluent in English1 and used smartphone-based
1A post-experiment questionnaire revealed that 94% of the partici-
pants judged their English level to be "proficient" (C2) or "advanced"
(C1) according to the Common European Framework of Reference
for Languages.
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Figure 4. Experimental setup. A) During each session, participants engaged in chat conversations using Skype on a smartphone (1). At regular intervals,
participants were asked to complete self-reports on a tablet (2). B) Chat interface and the region that was considered in the prediction model (red-dashed
area). C) Self-reports for capturing valence, arousal and dominance (left), basic emotions, and stress level (right).

chat applications on a daily basis. We excluded participants
taking any type of medication, tranquilizers, or psychotropic
drugs (e.g., anti-depressants) as well as participants affected
by any type of the autism spectrum disorders. To control for
external environmental factors, we kept the room tempera-
ture and the humidity at an average of 23.9°(SD = 0.24°) and
30.1% (SD = 3.6%), respectively. All participants provided
written informed consent before the start of the experiment
and were rewarded with CHF 45 for their participation. Partic-
ipants were rewarded with an additional CHF 5 if they missed
only one response window when completing the self-report
measures.

Apparatus
Participants interacted with five contacts within the Skype ap-
plication on a Huawei P9 Plus smartphone running Android
7.0. This smartphone provides over 17000 levels of touch pres-
sure sensitivity. The software keyboard used was Gboard with
auto-correction and spell-checker features disabled. Through-
out the experiment, we recorded their interaction with the
device, including sensor (acceleration and orientation) and
touch (pressure and position) data. In addition, participants
used a Huawei MediaPad M2 tablet to report their emotional
state at regular intervals during the experiment. Figure 4A
presents the experimental setup.

Self-Reports
To gather ground truth data for our model, we asked partic-
ipants to complete the Self-Assessment Manikin (SAM) [9]
at regular intervals during the experiment. The SAM is a pic-
torial assessment used to quantify levels of valence, arousal,
and dominance on a 9-point scale. Participants were also
asked to select from a series of basic emotions (i.e., anger, sad-
ness, happiness, and surprise) represented by different emojis.
To ensure that choices were independent, participants were
allowed to simultaneously select more than one emoji at a
time (e.g., anger and surprise). The basic emotions did not
include fear and disgust after a pilot study (n = 8) revealed
that participants did not experience these emotions during the
chat conversations. However, participants had the choice of
selecting a "stress" emoji when reporting their emotions. Par-
ticipants were allowed to select all possible combinations of
the basic emotions and stress without any restrictions. Figure
4C shows an illustration of the self-reports.

Procedure
Before the day of the experiment, participants were asked to
complete the Patient Health Questionnaire [43] and the Big
Five Inventory [30, 31] as measures of mental health and per-
sonality traits, respectively. On the day of the experiment,
the participants were given an oral overview of the procedure,
including an introduction to the self-report questionnaires and
an explanation regarding the use of the smartphone. The ex-
perimenter then exited the room and used one of the Skype
contacts (guiding contact) to start a conversation (5 minutes)
with the participants. During this conversation, the experi-
menter asked 6 predefined questions about well-being, age,
living place, work, hobbies, and family. These questions
were used to make the participants comfortable with the key-
board and the handling of the smartphone. Next, participants
were instructed to watch a nature video for 5 minutes on the
smartphone that was used as relaxation and allowed them to
acclimate to the room environment. At the end of the nature
video, participants were asked to type two well-known pan-
grams (149 characters) that served as a baseline for touch input
during the modeling stage. During the main phase of the ex-
periment, participants chatted with four different Skype users.
These Skype users were fake accounts created and controlled
by the experimenter sitting in an adjacent room. After finish-
ing all four chat conversations, participants were asked to type
once again the two pangrams. Finally, participants completed
an exit questionnaire on smartphone use, demographics, and
overall mood. Figure 5A provides an overview of the proce-
dure used in the experiment (see supplemental material for
additional information about the experiment).

At the beginning of the experiment, participants were given
an oral explanation regarding the procedure for answering the
self-reports and had a chance to practice with 4 examples. We
collected a total of 1893 self-reports covering a large range of
the SAM response space.

During the experiment, participants were alerted with an audio
notification when it was time to complete the self-report. At
this time, the SAM and emojis appeared on the tablet, and
participants had 20 seconds to start the self-report. This time
buffer, allowed participants to finish the current sentence in
the Skype conversation without having to rush to complete
the self-report. If participants were slow to respond, the tablet
started to vibrate as a final reminder. After completing the
self-reports, a delay of 90 seconds was introduced until the
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Figure 5. Overview of the different parts of the experiment. A) Overall experimental procedure. B) Changes in valence, arousal, and dominance for
one participant during the four chat conversations.

next self-report was presented. This time interval was decided
based on feedback from participants in the pilot experiment
as it provided the best trade-off between the amount of data
collected and the number of interruptions.

Tasks
To trigger different affective states, we created four different
types of chat conversations (i.e., exciting, shocking, rude,
and confusing) by varying the content and context of the text
messages sent to the participants. Participants saw a list of
five contacts in the Skype application on the smartphone that
was provided to them. Each contact was associated with one
of the conversation types. A fifth contact representing the
experimenter was created to guide participants through the
experiment and to provide help in case of questions.

To make the chat task more credible, we employed NVIDIA’s
face generator [33] to create fake profile pictures for each of
the four contacts. We used the image of the experimenter for
the fifth contact. In addition, participants were told that the
four contacts were real people sitting next door. All conversa-
tions followed a predetermined script to keep them consistent
across participants. The paragraphs below describe in more
detail each of these conversations.

Exciting conversation. During this conversation, the partici-
pants were chatting about their most beautiful holiday expe-
rience. This conversation was designed to make participants
remember and reminisce, leading to positive feelings (e.g.,
enjoyment).

Shocking conversation. This conversation focused on the
topic of the Rohingya refugee crisis, which is an ongoing
persecution of Muslim Rohingya people in Myanmar by the
government. This conversation was intended to sadden the
participants leading to negative feelings (e.g., anger).

Rude conversation. In this conversation, we asked participants
to provide help with a malfunctioning smartphone. Indepen-
dent of the help participants provided, they could not resolve
the issue at any point during the conversation. Here, the Skype
contact chatting with participants became increasingly rude
and was intended to trigger negative feelings (e.g., anger) and
surprise.

Confusing conversation. For this conversation, we used Clever-
bot [12]. Cleverbot is a well-known chatbot that learns from
past conversations. We have found this chatbot to be a good
way to trigger confusion, anger, and surprise. We have reset
the chatbot engine for every participant to avoid introducing
potential bias from conversations with previous participants.
A post-experiment questionnaire revealed that 63% of the par-
ticipants did not recognize that this conversation was with a
chatbot.

The order of conversations was randomized across participants
with the exception that the confusing conversation was always
last to prevent participants from behaving differently should
they recognize that they were chatting with a chatbot [27].
This lead to the counterbalancing of three conditions and a
total of six orders. With our randomization approach, we
achieved an almost complete counter balanced distribution
(12, 11, 11, 14, 10, 12). In general, the average duration of
the rude and confusing conversations (836 seconds and 650
seconds) was shorter compared to the exciting and shocking
conversations (1212 seconds and 1272 seconds). These shorter
durations may be related to the fact that participants became
tired of engaging in the conversations.

Figure 5B depicts the changes in valence, arousal, and domi-
nance during the four chat conversations for one participant.
The figure shows that valence increases during the exciting
and confusing conversations and decreases for the other two
conversations (we see the opposite pattern for arousal). The
rude and shocking conversations seemed to be more intense
than the exciting and confusing conversations. We also see
that dominance is following a similar pattern than valence with
the participant feeling more in control during the exciting and
confusing conversations.

RESULTS
We evaluated our classification pipeline based on the data
we collected during the experiment. We collected 1893 self-
reports on the affective and emotional state of participants that
were used as the ground truth to our model. Because the SAM
is scored on a 9-point scale, we evaluated the performance of
the classifier for three classes (low, medium, high) of valence,
arousal, and dominance. We also recorded 3720 minutes of
touch data from which we extracted 44625 heat maps for each



of the three types of heat maps (i.e., pressure, down-down
speed, and up-down speed). We also reveal the runtime of our
method to analyze the real-time applicability of our method.
To measure the performance of our model, we calculated the
accuracy (chance level = 0.33 for three classes and 0.5 for two
classes) and the micro-averaged area under curve (AUC) of the
receiver operating characteristic (ROC) curve (chance level =
0.5). The micro-averaged AUC aggregates the contributions of
all classes by considering each element of the label indicator
matrix as a label. Because these two metrics are both affected
by class imbalance, we also calculated the macro-averaged
AUC (chance level = 0.5) by taking the mean of the class-wise
AUCs. We have evaluated our model using leave-one-user-out
cross-validation to ensure that data from a user is not used for
training and testing at the same time.

Network Parameters
Variational auto-encoder. For each of the three types of heat
maps, we have trained a variational auto-encoder to learn a
low-dimensional representation. We used a resolution of the
heat maps of 80× 64 pixels. To find the network parame-
ters, we have employed the approach described by Bengio [6].
Specifically, we have increased the number of layers, and the
number of features maps per layer until a good fit of the data
was achieved (i.e., the loss was minimal). For the pressure heat
maps, this resulted in a variational auto-encoder consisting of
2 layers (32 and 64 feature maps) for the encoder and decoder,
a kernel size of 4×4, and a latent space with 10 dimensions.
For the down-down speed and up-down speed heat maps, this
resulted in a variational auto-encoder with 4 layers (32, 64,
128, and 256 feature maps) for the encoder and decoder, a
kernel size of 3×3 and a latent space with twenty dimensions.
In comparison to the network for the pressure heat maps, the
down-down speed and up-down speed network was deeper
and with a dimensionality of the latent space twice as high due
to the higher complexity of the heat maps. For both networks,
we have used a stride of 2×2 for each convolution. We chose
a relatively small β = 0.00001 (compared to [26]) because of
the difference in magnitude between reconstruction loss and
the Kullback Leibler divergence. We trained the variational
auto-encoders for 200 epochs with a batch size of 64 on 40162
heat maps and used 4463 heat maps as the validation set.

Fully-connected network. The network parameters for the
fully-connected network used for classification were defined
using a randomized search with 50 iterations. We trained
the network using nested leave-one-user-out cross-validation
for 100 epochs with a batch size of 8. All networks were
implemented using the Keras framework with TensorFlowTM

back-end and optimized using Adam optimization with stan-
dard parameters [36].

Experimental Validation
We conducted three Kruskal-Wallis tests to investigate whether
the four text conversations elicited different levels of va-
lence, arousal, and dominance. Results revealed signifi-
cant differences in terms of valence (H = 144.431, 3 d.f.,
p < 0.001), arousal (H = 19.461, 3 d.f., p < 0.001) and
dominance (H = 39.982, 3 d.f., p < 0.001). We performed
five additional ANOVAs to investigate whether there were

significant differences in terms of the basic emotions and
stress reported by participants during the four conversations.
For the ANOVAs, we added the times that participants re-
ported a specific basic emotion or stress during each of the
conversations. Here again, we found significant differences
in terms of anger (F(3,233) = 21.768, p < 0.001), happi-
ness (F(3,233) = 238.068, p < 0.001), sadness (F(3,233) =
79.389, p < 0.001), surprise (F(3,233) = 6.158, p < 0.001)
and stress (F(3,233) = 5.525, p = 0.001). All tests are signif-
icant after Bonferroni correction. Table 1 presents the means
and standard deviation for each of these variables (see supple-
mental material for additional statistics).

Table 1. Means and standard deviations (in brackets) for the self-
reported SAM, four basic emotions, and stress during the four conver-
sations. Percentages for the four basic emotions and stress do not add to
100% since participants could either simultaneously pick more than one
emotion or not pick an emotion at all.

Exciting Shocking Rude Confusing Total

Valence 7.3 (1.5) 3.3 (1.6) 4.8 (2.1) 5.2 (1.6) 5.2 (2.3)
Arousal 4.3 (2.1) 5.0 (2.2) 4.4 (2.2) 3.4 (1.9) 4.4 (2.2)
Dominance 6.3 (1.7) 4.8 (2.1) 5.3 (2.2) 5.1 (2.2) 5.4 (2.1)

Anger 0.7% 28.6% 25.4% 10.3% 15.7%
Happiness 77.5% 2.6% 16.7% 21.8% 33.1%
Sadness 2.9% 52.7% 10.5% 2.5% 21.0%
Surprise 7.6% 12.5% 18.7% 37.4% 16.0%
Stress 2.1% 8.0% 20.5% 15.6% 9.3%

We also performed a series of correlations to investigate the
relationship between the SAM ratings for valence, arousal,
and dominance and the four basic emotions and stress. Table
2 presents the results for each of these correlations. Notably,
these results suggest a close match between the SAM ratings
and the four basic emotions and stress.

Table 2. Effect sizes of the Pearson correlations between valence, arousal,
and dominance (from the SAM) and the four basic emotions and stress.
Asterisks denote correlations that survived Bonferroni correction (p =
0.003).

Anger Happiness Sadness Surprise Stress

Valence −0.55∗ +0.79∗ −0.62∗ −0.14 −0.30∗
Arousal +0.41∗ +0.07 +0.37∗ +0.03 +0.18
Dominance −0.19∗ +0.43∗ −0.24∗ −0.10 −0.33∗

Affective State Prediction
The performance of our model was evaluated with regards to
the prediction of three classes (low ∈ [1,3], medium ∈ [4,6],
high∈ [7,9]) of valence (523, 712 and 660 data points), arousal
(786, 758, 349) and dominance (375, 886, 632). We chose
these three classes to cover the entire space considering all
available ratings. Figure 6 and Table 3 present the performance
of our model (ROC curves were calculated using the micro-
averaging approach). See supplemental material for additional
metrics.

Classification performance. Using all heat maps in combi-
nation, our model achieves an accuracy of 67% for valence,
63% for arousal, and 65% for dominance (chance level =
33%). Here, the slightly lower values for the macro-averaged
AUC (0.83, 0.80, 0.80) compared to the micro-averaged AUC
(0.84, 0.82, 0.82) may be attributed to class imbalance. If we
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Figure 6. ROC curves and micro-averaged AUC scores for classification of three levels (low, medium, high) of A) valence, B) arousal, and C) dominance.

Table 3. Performance for the prediction of three classes (low, medium,
high) of valence, arousal, and dominance. AUCmicro and AUCmacro
represent micro-averaged and macro-averaged AUC, respectively. The
chance level of accuracy and AUC is 0.33 and 0.5, respectively.

Dimension Heat Map AUCmicro AUCmacro Accuracy
Valence Pressure 0.75 0.74 56%

Down-down 0.81 0.81 64%
Up-down 0.79 0.79 61%
Combination 0.84 0.83 67%

Arousal Pressure 0.80 0.78 62%
Down-down 0.75 0.73 55%
Up-down 0.73 0.70 53%
Combination 0.82 0.80 63%

Dominance Pressure 0.79 0.77 63%
Down-down 0.80 0.78 63%
Up-down 0.78 0.76 61%
Combination 0.82 0.80 65%

consider the percentage of the most frequent class as base-
line (valence = 38%, arousal = 42%, dominance = 47%), the
predictions of our model are also above this baseline for all
three dimensions. Figure 7 presents the confusion matrices
for valence, arousal, and dominance based on the combination
of all heat maps. The confusion matrices are calculated by
predicting self-reports across all chat conversations. The ma-
trices show that for valence, arousal, and dominance the low
and high classes were often wrongly predicted as the medium
class. As expected, the larger the distance between the classes,
the easier it is to differentiate them for our model (i.e., the
low class was only rarely confused with the high class and
vice versa). Interestingly, for arousal, the medium class was
most often wrongly predicted as the low class (Figure 7B),
but medium dominance was more often confused with high
dominance (Figure 7C).

Heat map comparison. Pressure is the best predictor of arousal
(+0.05 AUC), while down-down speed and up-down speed
are the best predictors for valence (+0.06 AUC). In terms of
dominance, all three heat maps perform similarly (up to 0.80
AUC). Overall, the combination of all heat maps provides only
marginal improvements compared to the individual heat maps
(up to 0.03 AUC).

Affective Sequence Analysis
Affective states can change over time, and this may be char-
acterized either by smooth transitions or abrupt changes (e.g.,

from low to high states). We hypothesize that the performance
of our classifier can be affected by the period over which af-
fective states are constant. For example, if affective states
are alternating in short time, it can be much harder to make
an accurate prediction compared to when affective states are
constant over a longer period. This potential fluctuation in
affective states, cannot be taken into account if we consider all
labeled data from the conversations. As such, we recalculated
the accuracy measure by considering only the data points for
which the affective state was constant over a certain period
(i.e., a specific number of preceding data points with the same
class). Figure 8 shows the result of this accuracy measure
for valence, arousal, and dominance. Here, a sequence length
of zero corresponds to considering all data while sequence
lengths of one, two, and three imply that we only considered
data points having at least one, two, and three preceding data
points with the same label. By excluding only immediate
jumps (sequence length of one), we observe a steep increase in
accuracy, reaching 78%, 75%, and 77% for valence, arousal,
and dominance. In contrast, increasing the sequence length
to two or three preceding data points provides only marginal
improvements.

Basic Emotion and Stress Prediction
With regard to the four basic emotions and stress, our classifier
achieved a predictive performance of 87% (0.84 AUC) for
anger, 81% (0.88 AUC) for happiness, 84% (0.87 AUC) for
sadness, 84% (0.76 AUC) for surprise and 92% (0.80 AUC)
for stress. The large differences between accuracy and AUC
can be attributed to class imbalance (e.g., 164 vs. 1729 labels
for stress). Altogether, these results reveal that our model is
not only able to predict affective states measured in terms of
valence, arousal, and dominance but is also predictive for a
subset of the basic emotions and stress.

Runtime Analysis
For evaluating the applicability of our method for realtime
predictions, we have conducted a runtime analysis of the dif-
ferent parts of our model. Our computing environment con-
sisted of an Intel® Xeon® CPU E5-2698 v4 @ 2.20GHz and
an NVIDIA GeForce® GTX 1080 Ti. Prediction of a new
data point consisted of extracting heat maps (mean = 0.38
seconds, SD = 0.09 seconds), followed by extracting the low-
dimensional embedding of the heat maps using the encoder
(mean = 0.065 seconds, SD = 0.0089 seconds) and using the
fully-connected network for prediction (mean = 0.002 seconds,
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Figure 7. Confusion matrices for classification of three levels (low, medium, high) of A) valence, B) arousal, and C) dominance. The confusion matrices
are calculated by predicting self-reports across all chat conversations.

Figure 8. Accuracy only considering data points with a specific number
of preceding data points with the same class label.

SD = 0.003 seconds). Summing up these values leads to a
prediction time of 0.447 seconds. In other words, the system
is capable of making two new predictions every second.

DISCUSSION
There has been a growing interest in the human-computer
interaction community to provide interfaces that are sensitive
to the emotions of users. In this paper, we presented a complete
classification pipeline that is capable of accurately predicting
three classes (low, medium, high) of valence (up to 0.84 AUC),
arousal (up to 0.82 AUC) and dominance (up to 0.82 AUC). In
addition, we also showed that we could accurately predict two
levels (present vs. not present) of stress (0.80 AUC) and the
basic emotions of anger (0.84 AUC), happiness (0.88 AUC),
sadness (0.87 AUC) and surprise (0.76 AUC).

These predictions were based on heat maps generated from
pressure and touch speed (i.e., down-down and up-down) col-
lected during text conversations. We found that all three types
of heat maps can predict valence, arousal, and dominance.
Interestingly, while down-down speed showed the best perfor-
mance for valence (0.81 AUC) and dominance (0.80 AUC),
pressure was most predictive for arousal (0.80 AUC). These
results may be related with the findings reported by Hernan-
dez et al. [24], suggesting that people apply more pressure
on keyboards under stressful conditions. Moreover, affective
states characterized by higher valence (e.g., excitement) can
lead to higher typing speed, increasing the down-down speed

and up-down speed, which has also been reported in previous
work (e.g., Lee et al. [46]).

The performance of our model cannot be directly compared
with previous work due to differences in experimental setup.
For example, Gao et al. [21] used a game-based setting and
different measures of emotional states while Huang et al. [28]
predicted mood on a regression scale. Our work did not focus
on the comparison of performance but instead on automatic
feature extraction in a different setting. Our use of heat maps
also allowed us to investigate the distributions of keystrokes
as a measure of affective states (e.g., use of more backspaces
when experiencing negative emotions). Interestingly, running
our model using only spatial heat maps, we achieved a per-
formance of only up to 0.60 AUC. Thus, we conclude that
the distribution of keystrokes alone has only little predictive
power.

We have also shown that accuracy depends on the sequence
of previous affective states and that accuracy tends to drop
if affective states alternate. The reason for this is that when
there is a preceding state belonging to a different class (e.g.,
low), noise is added to the window used for calculating the
heat maps because this window contains touch data from both
states whereby 1) the touch data is very different (e.g., low
and high classes) or 2) the touch data is similar, but the class
is different (e.g., low and medium classes).

Another noteworthy property of our model is its efficiency,
which is particularly relevant for interactive applications. The
computation of the heat maps, embedding, and prediction
takes 0.447 seconds in total, meaning that the system can
provide feedback on the user’s emotional state in less than a
second.

Applications
The ability to predict affective states based on touch patterns
during text conversations has a broad range of applications. In
the following, we present two possible applications that can
benefit from affective predictions.

Woebot. Woebot [64] is one of many therapeutic chatbots
available for Android and iOS devices. Using methods from
cognitive behavioral therapy, Woebot aims to increase the
overall mood of users and has shown to reduce symptoms of
depression and anxiety [20]. Woebot uses predefined questions



to adequately adapt the conversation to the mood of the user,
inferring the mood directly from the chat messages provided
by the user. Our approach could provide predictions of users’
affective states while they are engaged in chat conversations
with Woebot and has the potential of improving human-bot
interaction. Here, the bot would be able to adapt the responses
to the users’ changing affective state determined by typing
pressure and speed. Similarly, other typing based chat applica-
tions could benefit from affective predictions from our model,
such as customer service applications (e.g., Zendesk [66]).

Awareness. Knowledge about affective states can be leveraged
to increase self-awareness and to convey awareness of affec-
tive states to others. Here, textual or graphical elements can
be used to make users aware of their affective states. Such
feedback can make users think about their affective state and
encourage them to take regulatory actions (e.g., taking a break).
If the user agrees, these affective states can be communicated
to others using status messages that are common on social
networks and chat applications. Figure 9A provides an exam-
ple of our visualization for valence, arousal, and dominance.
The circle is divided into three equal-sized segments, one
for each dimension, and colored using color-blind friendly
palettes. Each segment is further subdivided into nine parts
representing the nine possible levels of the SAM. The parts
of the segments are filled according to the level of the corre-
sponding dimension. Figure 9B shows how our visualization
could be used as part of the header in a chat application.

A) Visualization B) Chat application

Figure 9. A possible visualization of affective states. A) One segment for
each affective dimension. The parts of the segments are filled according
to the level of the corresponding dimension. B) Example of how the
visualization can be used in a chat application.

Limitations
The experiment was restricted to a controlled lab environment
and a population consisting of bachelor and master students.
As such, generalizations to real-world situations with a more
diverse population requires further studies. The next step is to
evaluate the system in real-life settings on different devices.
Another limitation is the difficulty associated with collecting
a direct measure of affect or emotions [58]. In our experi-
ment, we have used self-reports, which can restrict our results
to the specific conceptualization of affect that we have cho-
sen. In addition, by querying emotions every 90 seconds, we
might miss finer changes in emotions. A remedy would be
to allow users to manually fill in self-reports when they face
changes in emotions or to allow retrospective ratings. Finally,
we acknowledge that using the pressure signal is limited to
devices supporting pressure measurement. Pressure can also
be measured using the contact area of the fingertips, which

is a supported measure by many smartphones nowadays, but
this might negatively affect the performance of the prediction
because the contact area can only approximate real pressure.

Future Work
Future work could move data collection outside the laboratory
to match real-world settings. This change would also allow for
the collection of other types of interaction data, including ac-
celeration and gyroscope, which could be used to complement
touch data. Moreover, the presented prototype visualization
for affective states could be connected to our model to provide
visual feedback in real-time. Lastly, personality traits could be
considered, which we have already measured in the current ex-
periment. This would complement ongoing research that has
shown feasibility of predicting personality based on keyboard
input [34].

CONCLUSION
In this paper, we presented a semi-supervised pipeline for
predicting affective states and emotions based on heat maps
generated from smartphone touch data. We validated our
pipeline on touch data collected from text conversations in a
lab experiment with 70 participants. We conducted the evalua-
tion using a leave-one-user-out cross-validation, which ensures
that our results generalize among users, and similar results
can be expected when applying our pipeline to data from new
users. We demonstrated that our pipeline could accurately
predict three classes (low, medium, high) of valence (up to
0.84 AUC), arousal (up to 0.82 AUC) and dominance (up to
0.82 AUC). We also presented results for the prediction of two
levels (present vs. not present) of anger (0.84 AUC), happiness
(0.88 AUC), sadness (0.87 AUC), surprise (0.76 AUC), and
stress (0.80 AUC). Considering the real-time applicability of
our method (predictions are possible in less than one second),
our pipeline can be useful in combination with our proposed
visualization of affective states. The novelty of our contribu-
tion consists of the semi-supervised deep learning pipeline
and efficient feature embedding of 2D heat maps. Our model
provides an elegant way to combine features (i.e., the features
are learned automatically by the encoder as part of the low-
dimensional embedding) without explicit feature engineering.
By using heat maps in contrast to raw data, we are also taking
into account the spatial distribution of the data. In contrast to
other work using sentiment and video analysis, our approach is
light-weight, less invasive, and can be used on different types
of mobile devices. The findings of this work are important
because they show a promising possibility of leveraging touch
data to create emotion-aware chat conversations.
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