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ABSTRACT
Front camera data from tablets used in educational settings
offer valuable clues to student behavior, attention, and affec-
tive state. Due to the camera’s angle of view, the face of the
student is partially occluded and skewed. This hinders the
ability of experts to adequately capture the learning process
and student states. In this paper, we present a pipeline and
techniques for image reconstruction of front camera record-
ings. Our setting consists of a cheap and unobtrusive mirror
construction to improve the visibility of the face. We then
process the image and use neural inpainting to reconstruct
missing data in the recordings. We demonstrate the applica-
bility of our setting and processing pipeline on affective state
prediction based on front camera recordings (i.e., action units,
eye gaze, eye blinks, and movement) during math-solving
tasks (active) and emotional stimuli from pictures (passive)
shown on a tablet. We show that our setup provides compa-
rable performance for affective state prediction to recordings
taken with an external and more obtrusive GoPro camera.

Keywords
Front Camera Setup, Inpainting, Affective Computing, Clas-
sification, Deep Learning

1. INTRODUCTION
Tablet computers have found quick application in educa-
tion [14] as the technology offers new opportunities to stu-
dents and teachers. It has been shown that tablets can influ-
ence learning pathways [19] and improve digital skills [47].
Moreover, tablets typically have built-in cameras, which can
be used to unobtrusively record the student during the learn-
ing. Such data offers valuable clues to experts about the
student’s learning behavior and attention. Student observa-
tion has been implemented in studies with external camera
setups [56]. Such frontal-view camera data can also be used
for predictions of the affective states of a student based on

facial feature extraction [46], which works robustly even with
low-resolution recordings [43]. Affective states are psycho-
physiological constructs describing emotions (short-term)
and moods (long-term) elicited by a stimulus [36, 51], and
their impact on learning has attracted considerable attention
in research on intelligent tutoring systems and education [3,
13, 41]. For example, Craig et al. [12] have found a posi-
tive correlation between learning and flow and a negative
correlation between learning and boredom.

Using external cameras for frontal view recordings of students
provides an optimal viewing angle for robust facial feature
extraction and affective state prediction. However, such se-
tups require externally positioned cameras, which can be
obtrusive and further depend on timestamp synchronization
with the digital learning environment. Using tablet comput-
ers for learning circumvents these problems, as the built-in
camera can be leveraged and timestamps are inherently in
sync. Built-in cameras have, however, a sub-optimal viewing
angle, leading to partially occluded and skewed faces in the
recordings that makes it difficult to robustly extract facial
features for affect prediction.

In this paper, we therefore propose a camera setup for
tablet computers and a deep learning-based image process-
ing pipeline to reconstruct high-quality facial recordings of
students. The setup requires a small mirror to be attached
to the camera to improve the visibility of the face. Then, the
image is reconstructed using a neural inpainting approach.
We demonstrate the advantage of this setup and our recon-
struction by an application for predicting affective states.
The high quality of the reconstructed image enables facial
feature extraction, such as head pose, eye gaze, and facial
landmarks. We compare our method with an external cam-
era setup (GoPro camera) and show that we can achieve
a similar performance for predicting two levels (high and
low) of valence and arousal for students performing active
tasks, i.e., solving math tasks (up to 0.73 AUC) and students
performing passive tasks, i.e., exposed to emotional stimuli
from pictures (up to 0.80 AUC).

2. RELATED WORK
Inpainting. Image inpainting is an image processing method
to reconstruct missing or corrupted regions of an image.
Common application areas include image restoration (e.g.,
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removing scratches and text) [34], photo-editing (e.g., object
removal) [50], and image coding and transmission (e.g., recov-
ering the missing blocks) [54]. In this work, we focus on the
specific task of face completion. Popular non-learning based
approaches applied to faces consist of patch-based methods,
where image patches are copied to missing areas. Similar
patches can be identified by using a face image dataset [58].
We refer to Guillemot and Le Meur [21] for a complete
overview of non-learning based models.

While non-learning based methods can have difficulties to en-
sure consistent image structures [24, 45, 55], learning-based
approaches typically generate smoother results. A popular
line of learning-based methods uses generative adversarial
networks (GAN) to inpaint missing regions of an image.
GANs consist of a generative network to create a new image
and a discriminator network to distinguish the new image
from actual ground truth images. Using such a GAN ap-
proach, Malesevic et al. [37] reported a peak signal-to-noise
ratio (PSNR) of up to 20.57 for inpainting missing regions in
faces. A similar performance of up to 20.2 PSNR and 0.84
structural similarity (SSIM) was achieved by Li et al. [31]
using an encoder-decoder network as the generator, a local
and global loss function and a semantic regularization term.
On the other hand, Liao et al. [32] used a collaborative model
by training a GAN simultaneously on multiple tasks (i.e.,
face completion, landmark detection, and semantic segmenta-
tion). Using this knowledge-sharing approach, they reported
a PSNR of up to 31.5 and an SSIM of 0.97 on face inpainting.

Convolutional neural networks (CNN) have been used for
image inpainting as well. The encoder compresses the image
with convolutional operations into a latent space, and the
decoder reconstructs the image from the compressed represen-
tation. Guo et al. [22] proposed an encoder-decoder network
using full-resolution residual blocks. For face inpainting, they
reported a PSNR of 29 and an SSIM of 0.95. On the other
hand, Liu et al. [35] achieved a PSNR of 34.69 and an SSIM
of 0.99 by adding a coherent semantic attention layer to the
encoder. One disadvantage of this method is its long runtime
of 0.82 seconds per image of size 256 × 256 rendering this
method inapplicable for real-time video processing with more
than one frame per second. Another problem with existing
CNN-based methods is that the convolution operations are
applied both to the valid and missing pixels at the same time,
which can lead to visual artifacts (e.g., color discrepancy and
blurriness). To overcome this issue, Liu et al. [34] proposed
partial convolutions, where the convolution operations are
only applied to valid pixels by masking regions that need
to be inpainted. The mask is updated during training of
the network, including newly inpainted values. The authors
demonstrated that the approach could produce semantically
meaningful predictions also for inpainting regions with dif-
ferent shapes and sizes, achieving a PSNR of up to 34.34
and an SSIM of up to 0.95. We use this partial convolution
approach to inpaint missing regions in images from front cam-
era recordings. The dataset used for training the network is
tailored to our use case.

Affective State Prediction. In our work, we focus on the
prediction of affective states in the educational domain, such
as in classroom settings and online courses. It was shown that
affective states have an impact on learning gain in general,

and during math learning in particular [29, 44]. For example,
Csikszentmihalyi [13] showed that engaged concentration
has a positive effect on learning, while boredom negatively
influences learning. Affective states are often grouped into
basic emotions identified by Ekman [16] (i.e., anger, disgust,
fear, happiness, sadness, and surprise) or described by the
valence and arousal dimensions [40]. Valence indicates if
an emotion is perceived as positive or negative, and arousal
represents the intensity of an emotion.

Different modalities have been used to predict affective
states using the valence-arousal space in educational settings.
Acoustic features from student voices during interaction with
tutors have been used to predict three levels of valence [33].
On the other hand, bio-sensors (i.e., skin conductance, heart
rate, and skin temperature) and handwriting data have been
successfully used to predict affective states in the valence-
arousal space during math solving tasks [53]. Another line
of research predicted valence and arousal using mouse and
keyboard interaction data collected during text writing [49].
Multi-modal approaches fusing different modalities have also
been introduced for the prediction of affective states. We
refer to D’Mello et al. [15] that provides a concise overview
of such methods.

Prediction of affective states from video recordings is one of
the most popular approaches nowadays as it allows different
features to be exploited, such as body language and posture,
head movement, eye gaze and facial expressions [57]. Bosch
et al. [6] calculated statistics (i.e., maximum, median and
standard deviation) of the frame-level likelihood values of 19
different action units (AU) (i.e., facial muscle movements),
the head position and gross body movement from webcam
video recordings of students playing an educational physics
game. They predicted two levels of boredom (0.61 AUC),
confusion (0.65 AUC), delight (0.87 AUC), engagement (0.68
AUC) and frustration (0.63 AUC). Based on this work, Kai
et al. [26] found that an interaction-based model using tim-
ing and counting-based features performs worse than the
video-based model. Similarly, using a math tutor, Arroyo
et al. [2] found facial expressions to be more predictive for
confidence, frustration, excitement, and interest than con-
ductance bracelets, pressure mice, and a posture analysis
seat. Also in other domains facial expressions have found to
be a good predictor for affective states. In text comprehen-
sion tasks, confusion (0.64 AUC), engagement (0.55 AUC),
and frustration (0.61 AUC) have been successfully predicted
using 20 different AUs [11]. On the other hand, Grafsgaard
et al. [20] found upper face movements predictive for engage-
ment, frustration, and learning in a setting consisting of a
programming tutor and a webcam. Finally, based on eye
gaze features (e.g., fixation and view angle) extracted from
a specialized eye capturing device, boredom (69 %) and cu-
riosity (73 %) have been successfully predicted on two levels
each [25]. A survey of different video-based approaches for
predicting affective states is provided by Zeng et al. [57].

A majority of the existing vision-based approaches use ex-
ternal devices, such as webcams, and rely on posed facial
expressions to predict basic emotions [57]. In contrast, we
present a novel setup for reliably recording the face of users
based on the front camera of tablet computers only, and
hence without the need for expensive devices or synchroniza-
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tion between the devices. We demonstrate the usefulness
of our setting by predicting affective states in terms of va-
lence and arousal using data from an experiment containing
spontaneous (non-posed) facial expressions. Finally, for our
vision-based model, we fuse different existing approaches
with novel features.

3. CAMERA SETUP
We present a low-cost hardware setup for recordings from the
integrated front camera of a tablet computer, maximizing the
visibility of the face of the users. Videos and images captured
by the front camera are preprocessed, and missing parts are
inpainted using a deep learning model to reconstruct the
face of the users. Our approach is image-based and processes
captured videos frame by frame.

3.1 Hardware Setup
While working on a tablet (e.g., writing with a stylus) it
is convenient to have the device lying on the table (see
Figure 1a). Due to the field of view of the front camera,
only part of a users’ face is visible. To adjust the field of
view of the front camera, we attached a circular mirror (3 cm
radius) to the tablet using a hinge (see Figure 1b). The
hinge was fixed with glue so that the mirror would remain
in a stable position. The mirror was mounted with an angle
of 75 degrees relative to the tablet. This angle was chosen
so that the visibility of the face was maximized. Due to
the mirror setup, the upper part of the recordings is mirror-
inverted (see Figure 1c). Depending on the conditions of the
illumination of the recording environment, the exposure time
of the camera of the recording device (e.g., tablet) needs
to be adapted accordingly so that the camera focuses on
the face instead of the background. This adjustment of the
exposure time can lead to an overexposed background (see
Figure 1c).

3.2 Image Processing Pipeline
A raw image captured by the front camera is split by the
mirror into two parts with the upper part of the image being
mirror-inverted (see Figure 2A). To reconstruct the image, we
propose a series of processing steps applied to the image (i.e.,
flattening the splitting boundary, face composition, image
rotation, and extracting the face area). Image rotation and
extraction of the face area are conducted as a preprocessing
step for inpainting. Further, to train our inpainting model
at a later stage, we assume that we have access to a dataset
Ψ of square-shaped face images.

Splitting boundary. We apply a transformation to flatten
the splitting boundary of the image (green line in Figure 2A),
which simplifies image processing in the later stages and
improves the final results qualitatively. We divide the image
into 16 rectangles with equal width. An example of such
a rectangle is shown in purple in Figure 2A. For each such
rectangle, we transform the region defined by the vertices
p1, p2, p3, and p4 into the region defined by the vertices p1,
p2, p5, and p6 using a perspective transformation with linear
interpolation. The location of these points can be calculated
beforehand (or read from the image) because the mirror
remains in a fixed position. The result of the transformation
is shown in Figure 2B, where the splitting boundary (green)
is a straight line.

Face composition. We rearrange the image by moving
the part below the splitting boundary to the top and the
flipped upper part to the bottom (see Figure 2C). The cut
line defined by the mirror is shown in black. In addition, we
adapt the height of this cut line because depending on the
distance of the face, the missing part is increasing (increasing
distance) or decreasing (decreasing distance). As a next step,
we push the bottom corner of the upper face towards the
middle by applying a second perspective transformation to
the image so that the upper and lower part of the face are
matching (see Figure 2D).

Image rotation. We then rotate the front camera image so
that the eyes are horizontally aligned (see Figure 2E). Using
dlib [28], we extract the coordinates of the facial landmarks
belonging to the left and right eye. From these landmarks,
we calculate the position of the center of each eye and rotate
the image around the midpoint between the eye centers so
that the line connecting the center of the eyes is horizontally
aligned.

Face area. We extract the face area by computing a square
bounding box encompassing the face (see the orange box in
Figure 2E). This bounding box is defined by the vertices
p7 = (x7, y7) and p8 = (x8, y8) and is given by

x7 = cx,I −
wIΨ

2
∗ δI
δIΨ

(1)

x8 = cx,I +
wIΨ

2
∗ δI
δIΨ

(2)

y7 = cy,I −
cy,IΨ

hIΨ

∗ (x8 − x7) (3)

y8 = cy,I +
hI − cy,IΨ

hIΨ

∗ (x8 − x7), (4)

where I and IΨ denote an image of the front camera and an
image in the dataset Ψ, respectively. The width and height
in pixels of an image are given by w and h. The x- and
y-coordinate of the midpoint between the left and right eye
are denoted by cx and cy, respectively, and δ is the distance
between the eyes. Here, we assume that the origin is located
at the top left of the image.

The part of the front camera image I outlined by the orange
bounding box is then resized to the resolution wIΨ × hIΨ

using bilinear interpolation. If the head of the user is close
to the mirror, the face covers the full height of the image,
and the bounding box might go over the upper and/or lower
image borders. In such a case, we fill the parts overlapping
the image with black pixels to get consistently sized bounding
boxes (note that for visualization purpose only, the orange
box in Figure 2E does not reflect this but instead is cut at
the image border). We use the face detector of dlib [28]
to test if a face and hence the landmarks of the eyes are
identified in the image. In cases where the face cannot be
detected, we use the landmarks of the eyes of the last image
where the face could be identified (assuming that we have a
video recording available, i.e., a series of images).

Inpainting missing area. As the last step in our image
preprocessing pipeline, we inpaint the missing parts in the
bounding box of the image (black region of the orange box
in Figure 2E) with the neural inpainting approach of Liu
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a) Overall Setup b) Camera Setup c) Front Camera Recordinga) Experimental setup b) Camera setup c) Front camera recordings

Figure 1: The hardware setup. A user is working on the tablet (a). A mirror is attached to the tablet using
a hinge (b). Due to the mirror reflections, the field of view of the front camera is changed so that the face
of the participant is visible (c).

et al. [34] described in Section 3.3. We apply the neural
inpainting only to the bounding box because it contains
the important parts of the face (i.e., eyebrows, eyes, and
mouth). We inpaint other parts of the image outside the
bounding box using a simple Navier-Stokes based inpainting
method provided by OpenCV [8] which is based on a circular
neighborhood of three pixels for each inpainted pixel. Finally,
we rotate the image back to its original orientation. This then
leads to the final reconstructed image shown in Figure 2F.

3.3 Neural Inpainting
For the neural inpainting approach, we use the dataset Ψ of
square-shaped face images with customized missing regions
tailored to our application of tablet front camera recordings
and then train the network on this dataset.

Training dataset. The model is trained on a large corpus
of images from the dataset Ψ together with a mask for each
image indicating the missing parts (a mask is a matrix with
the same size as the image having a ′1′ entry for missing pixels
and a ′0′ entry otherwise). We create the corresponding mask
randomly and similar in shape (rectangle) to the expected
mask in our front camera recordings (see Figure 3 for an
example of two such masks applied to two images from the
CelebA-HQ dataset [27]). Note that the mask (missing image
region) is not necessarily horizontal but rotates if a user is
rotating the tablet or the head (vertical in the extreme).

Inpainting method. Liu et al. [34] use a neural network
that consists of an encoder E and a decoder D. The en-
coder network transforms the input image I∈RM×N into a
low-dimensional (latent) space z = E(I). The decoder then
reconstructs the original image based on this low-dimensional
representation Î = D(z). The encoder and decoder networks
consist of n = 8 partial convolutional layers denoted as
E1, . . . , En and D1, . . . , Dn for the encoder and decoder net-
works, respectively. Before each convolution operation, the
image is constrained by the mask to condition the operation
on only valid pixels. The mask is updated for the next layer re-
moving masking for pixels where the convolutional operation
operated on unmasked values. In addition, each layer in the

encoder network Ei is connected to the corresponding layer
in the decoder network Di,∀i ∈ {1 . . . , n} using skip links.
These skip links allow for copying unmasked pixels directly
from the encoder to the decoder without passing the bottle-
neck (latent space). To direct the training of the network
towards semantically meaningful inpaintings, a combination
of four loss functions is used (i.e., per-pixel loss, perceptual
loss, style loss, and total variation loss). Using these loss
functions smooth transitions of the predicted masked values
into their neighboring pixels is also taken into account. As
activation functions Rectified Linear Unit (encoder) and a
leaky version of a Rectified Linear Unit (decoder) are used.

4. AFFECTIVE STATE PREDICTION
We present the prediction of affective states as an example
application of our mirror setup and image processing pipeline.
Our classification pipeline can be generally applied to any
recordings captured with a tablet front camera or an external
camera (such as a GoPro). Our method assumes that we
have access to reports of affective states of users based on
the circumplex model of affect [48]. The circumplex model
defines affective states in a two-dimensional space spanned by
valence and arousal. The classification task then amounts to
preprocessing the camera recordings to adjust the brightness
and the frame rate and predicting valence and arousal based
on features extracted from the adjusted camera recordings.
Affectiva [39] provides out of the box predictions of the basic
emotions and valence based on images and video recordings.
However, initial tests revealed that these predictions are not
of sufficient quality when applied to our use case. Thus,
we developed our own set of features incorporating some
additional features not taken into account by Affectiva, such
as movement and fidgeting. Moreover, by using our own
extracted features, we can predict arousal in addition to
valence.

4.1 Preprocessing
First, we resample the camera recordings using FFmpeg [5]
to a constant frame rate close to the mean frame rate. De-
pending on the recording device, the frame rate can vary
(e.g., the frame rate can drop due to the higher load of the
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Figure 2: The main inpainting steps. The splitting boundary of front camera recordings (A) is flattened using
a perspective transformation (B). The face is reconstructed from the upper and lower parts (C) and warped
so that the upper and lower part match (D). Finally, after horizontally aligning the eyes (E), the missing
regions (black) are inpainted (F).

Figure 3: Two example masks applied to images of
the CelebA-HQ dataset [27].

device). A constant frame rate facilitates the extraction of
the features and the processing of the recordings in later
stages. In addition, we adjust the brightness of the record-
ings based on the brightness estimation of Affectiva [39] to
improve the lighting of the face for the analysis. Depending
on the conditions of illumination at recording time the face
can be underexposed (too dark) or overexposed (too bright,
e.g., when the camera is directed towards a lamp). This
can hinder the accurate detection and extraction of facial
features such as landmarks.

4.2 Feature Extraction
From the camera recordings, we extract several different
feature types. We design all features such that they are inde-
pendent of the frame rate (e.g., using percentages instead of
absolute positions) to support cameras with different frame
rates. To extract facial landmarks, eye gaze, and head po-
sition from the camera recordings, we rely on OpenFace [4]
using static extraction (i.e., per frame without calibrating
to a person). OpenFace also provides a confidence value
c(i) ∈ [0, 1] for each frame i indicating the confidence in
the landmark detection estimate. If c(i) < 0.82, we discard
the frames i− 5, . . . , i+ 5 (i.e., 11 frames). The number of

frames to discard (11) and the threshold (0.82) were heuris-
tically determined. All features are computed over a window
containing N frames. If, after considering the confidence
value, less than 80 % of the frames are remaining, we discard
the window and the corresponding data point. Again, this
threshold was determined heuristically. Where appropriate,
we calculate for the different feature types basic statistics
over the window (i.e., maximum, minimum, relative position
of minimum and maximum, mean, standard deviation, and
the slope of a fitted linear regression line), providing 282 fea-
tures in total. In addition, to correct for differences between
individuals related to facial expressions and posture, we nor-
malize each feature according to a baseline by subtracting
the feature calculated over a baseline period (e.g., watching
a nature video putting the individuals in a relaxed state).

Action units. Facial action units (AUs) are based on the
Facial Action Coding System (FACS) and identify indepen-
dent motions of the face [17]. We extract basic statistics of
the intensity (from 0 to 5) of 17 AUs covering motions in
the eye, cheek, nose, mouth, and chin region. In addition,
for each AU, we calculate the percentage of the presence
(absent versus present) in the window. Moreover, the AUs
can be directly mapped to the six basic emotions identified by
Ekman [16]. Thus, for each basic emotion, we also calculate
the basic statistics of the corresponding added up AUs.

Eye blinks. Researchers have found a correlation between
eye blink frequency and stressful situations in a car driving
simulation [23]. Similarly, a correlation between eye blinks
and affective states in learning environments was found [38].
Here, we base the eye blink detection on the signal from
the AU that represents eye closure as a continuous signal
(from 0 to 5) with peaks indicating potential eye blinks. We
detect peaks belonging to an eye blink by thresholding the
signal according to the ratio between the prominence (how
much a peak stands out measured as the vertical distance
between the peak and its lowest contour line) and width of a
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a) Eye gaze regions b) Mouth aspect ratio

Figure 4: Eye gaze regions and mouth aspect ra-
tio (MAR). The gaze angle is discretized into nine
different gaze regions, including the center (gazing
towards the camera lens) (a). MAR is calculated
based on the height and width of the mouth (b).

peak. Heuristically, we found a threshold of 0.026 to provide
the best results. We found that taking into account the
width of the peaks is necessary to accurately detect peaks
belonging to eye blinks because the prominence of the peaks
differs among users and head pose. We extract the number of
blinks and the basic statistics of the duration between blinks,
the prominence, and the width of each blink. In addition,
inspired by interbeat intervals (time interval between indi-
vidual heartbeats) and the calculation of heartbeats thereof,
we linearly interpolate the duration between two consecutive
peaks surviving the threshold (i.e., eye blinks) to infer a con-
tinuous signal. We then calculate the number of eye blinks
for every frame by taking the inverse of this interpolated
signal. Subsequently, we again calculate the basic statistics
over the number of eye blinks.

Eye gaze. The intention behind features related to eye
gaze is that individuals might look away when thinking while
solving math tasks or when looking at emotionally disturbing
pictures. Thus, we compute the basic statistics on the angle
in the x-direction (looking left-right) and y-direction (looking
up-down) of the eye gaze averaged for both eyes and measured
in radians in world coordinates. In addition, we discretize
the eye gaze angle by defining nine different gaze regions (see
Figure 4a). The center corresponds to a line of gaze directed
towards the camera lens. For each of the nine regions, we
count the number of occurrences and normalize it over s∗ fps,
where s is the window size and fps is the frame rate per
second (so that it is independent of the used camera, i.e., the
frame rate).

Mouth aspect ratio. Previously, the mouth aspect ratio
(MAR) was used to detect driver drowsiness [52]. It is defined
by the ratio between the height and the width of the mouth,
which is increased when opening the mouth (see Figure 4b):

MAR =
‖p2 − p8‖+ ‖p3 − p7‖+ ‖p4 − p6‖

3 ∗ ‖p5 − p1‖
. (5)

Each point pi,∀i ∈ {1, . . . , 8}, is defined as the average of
the inner and outer mouth landmarks. From the MAR, we
calculate the basic statistics.

Head Movement. From the longest head moving sequence
of an individual in the window, we extract the position of the
first frame of the sequence in relation to the beginning of the
window, the duration of the movement, and the total distance
of the movement. The position of the first frame and the
duration are normalized by s ∗ fps. We also sum up the total

A) Original B) Fidgetinga) Original b) Fidgeting

Figure 5: Fidgeting of a user. From the original
image (a), the fidgeting image (b) is calculated by
pixel-wise thresholding the difference of the current
(a) to the past grayscale images.

distance moved over the entire window to capture individuals
continually moving back and forth. In addition, we calculate
the basic statistics of the velocity and acceleration of the head
movements in the window. All these features are extracted
for the x-axis, y-axis, and z-axis separately. Finally, we also
extract the basic statistics of the distance of the head to the
camera in the three-dimensional space.

Fidgeting. Navarathna et al. [42] introduced a fidgeting
index for predicting movie ratings from audience behavior
by calculating the total energy individuals are using for the
movement. In contrast to features related to the head move-
ment, fidgeting captures all the movement in the video (i.e.,
also body and face). First, we define the grayscale adaptive
background bgray, which is a weighted average of past frames.
To calculate the energy E for a new frame fgray (converted
into grayscale), we subtract the adaptive background bgray

from fgray, binarize the image by thresholding it, and then
calculating the percentage of surviving pixels with respect to
the camera resolution (see Figure 5b). We have chosen the
threshold such that noise from the background is minimized,
and the visibility of movements is maximized. Finally, the
adaptive background is updated using

bgray = (1− a) ∗ bgray + a ∗ fgray, (6)

where a is a weight term (we found a = 0.2 to provide the
qualitatively best results). From the energy E of each frame
in the window, we calculate basic statistics, sum up the
energies over all frames and use the position of the frame
with minimum and maximum energy normalized by s ∗ fps.

4.3 Classification
We build the ground truth for our classifiers by splitting
valence and arousal into two levels (high and low). We then
use classifiers to predict these levels based on the features ex-
tracted from the camera recordings. In addition, we remove
features having a correlation greater than a threshold, select
features based on the ANOVA F-value between the class
labels and the features, and standardize the features to have
zero mean and unit variance. We use four different classifiers
(i.e., Random Forest, Support Vector Machine, k-Nearest
Neighbors and Gaussian Naive Bayes) because these classi-
fiers have been most promising in initial tests and they have
shown to provide good results for predicting affective states
from video data in other works [25, 10, 6]. We use leave-
one-user-out cross-validation to evaluate our models, which
ensures that data of a participant is not used for training and
testing at the same time. Finally, we optimize the hyperpa-
rameters (i.e., number of selected features, the threshold for
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removing correlated features, and parameters of the model)
using random search with nested cross-validation.

5. RESULTS
We conducted a qualitative and quantitative evaluation of
our mirror setup and image processing pipeline with neural
inpainting and investigated the applicability of our setup to
predict affective states during math-solving tasks (active)
and during exposure to emotional stimuli from images (pas-
sive). For training the neural inpainting model, we have
used the celebA-HQ dataset [27] consisting of 30000 face
aligned colored images from celebrities with a resolution of
1024× 1024 pixels (we downsampled the images to 512× 512
pixels). We split the dataset into a training set of 25000
images, a test set of 2500 images and a validation set of 2500
images. We set the parameters for the network in the same
way as proposed by Liu et al. [34]. The results of the affective
state prediction are based on a Random Forest classifier since
this was the best performing model. Hyperparameters were
optimized using random search with 50 iterations. Finally,
for measuring the performance of our model, we used the area
under curve (AUC) of the receiver operating characteristic
curve and accuracy (chance level = 0.5).

5.1 Experiment
We reused a dataset that we collected in a controlled lab
experiment [53]. The dataset consists of data from 88 par-
ticipants (45 female) from age 18 to 29 (mean = 22.1,
standard deviation SD = 2.0) of university students in the
bachelor program. The participants used a Huawei Media-
Pad M2 10.0 tablet running Android 5.1 during the experi-
ment. They were recorded by the front camera (resolution
of 1280× 720 pixels) using our proposed mirror construction
setup and a GoPro HERO3 camera (frame rate per second
FPS of 59.94 and a resolution of 1920× 1080 pixels) (see the
setup in Figure 1a). Due to the varying load of the tablet
during the experiment, the fps was variable (mean = 20.02,
SD = 1.92). We resampled the recordings from the tablet
and the GoPro to an fps of 25 and 60, respectively. To syn-
chronize the timestamps between the GoPro and the tablet,
a beep signal was played on the tablet before the start of
each session.

The study procedure consisted of three main steps conducted
on the tablet to collect baseline data and trigger different
affective states. First, each participant was watching a seven
minutes nature video, which served as a baseline. Second,
the participants were presented 40 pictures in random order
from the International Affective Picture System (IAPS) [30]
for around 20 minutes. The IAPS is a collection of 1182
pictures standardized in terms of valence and arousal and
is widely used in psychological research for the study of
emotions. Each image was shown for ten seconds and was
followed by a ten seconds fixation cross. The 40 images have
been selected from the IAPS dataset such that a wide range
of the valence-arousal space was covered.

Finally, each participant solved multiple-choice math tasks
for approximately 30 minutes. The math tasks were selected
from a collection of math tasks provided by ACT [1] and
divided into three different conditions varying in difficulty
level, available completion time, and monetary reward (par-
ticipants were rewarded and penalized depending on the

correctness of the solution and started with a credit of CHF
40). In the repetitive condition, easy and repetitive (i.e.,
similar) tasks were presented with more than enough avail-
able time to solve the tasks and a minor reward (+CHF 0.2)
and penalty (−CHF 0.2). In the challenge condition, tasks
with medium difficulty levels were shown with sufficient time
to solve the tasks, and a large monetary reward (+CHF 2)
but an only minor penalty (−CHF 0.2). The overchallenge
condition consisted of tasks with a high difficulty level, insuf-
ficient time to solve the tasks and a small monetary reward
(+CHF 0.2) but a large penalty (−CHF 2). The tasks were
presented in six blocks. Each block contained tasks from a
specific condition, and each condition was assigned randomly
to two blocks.

After each image and math task, participants were asked
to fill in the self-assessment manikin (SAM) [7] to judge
their current valence and arousal level on a 9-point Likert
scale. To build our affective prediction model, we split the
valence and arousal ratings of the participants into two classes
(low ∈ {1, . . . , 3} and high ∈ {7, . . . , 9}). For IAPS, the
number of data points amounted to 843 (1206) and 1218
(982) for low and high valence (arousal), respectively. On
the other hand, for math tasks, the number of low and high
valence (arousal) ratings amounted to 724 (1380) and 1422
(726), respectively.

5.2 Face Recognition
We provide qualitative and quantitative results of our setup
using neural inpainting. In particular, we compare our results
to recordings taken by the GoPro camera.

Qualitative evaluation. Figure 6 shows the facial land-
marks detected by OpenFace for three participants from the
front camera without inpainting, using neural inpainting, and
from the GoPro. The positions of the detected landmarks
without inpainting are inferior compared to neural inpainting.
For participant 3, the landmarks at the upper face (eyebrows,
eyes, and nose) are misaligned without inpainting. Often
no facial landmarks could be detected (see Figure 6 partici-
pants 1a and 2a). With our neural inpainting approach, we
achieved a qualitatively good recovered image independent
of the position of the missing region (e.g., eyes and mouth).
It is noteworthy that the inpainting and facial landmark
detection also worked for participants wearing glasses. The
detected landmarks after neural inpainting are similar to the
landmarks detected from the GoPro recordings (see Figure
6c). Depending on the position of the head, the landmarks of
the eyes and the mouth can become locally condensed in the
GoPro recordings, and it might be hard to distinguish slight
facial movements. On the other hand, from the front camera,
the recordings are frontal, and the variations of facial parts
(e.g., eye and mouth) are better visible.

Quantitative evaluation. Table 1 presents the average
confidence in landmark detection of OpenFace over all frames
for the IAPS and math-solving tasks and the full recordings
(including also parts not belonging to the IAPS and math
tasks). Reported confidence values by OpenFace are between
0 (not confident) and 1 (fully confident). Without inpainting,
the confidence values are low, and standard deviations are
high due to the imperfect recognition of landmarks. With-
out inpainting landmarks were often only detected correctly
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Figure 6: Recordings of three participants. The facial landmarks were detected from the front camera
recordings without inpainting (a) and with neural inpainting (b) and from the external GoPro camera (c). If
no landmarks are visible, no landmarks were detected by OpenFace.

Table 1: Means of framewise confidence in landmark
detection for different camera sources, tasks (math
and IAPS) and the full recordings. Confidence val-
ues range from 0 (not confident) to 1 (fully confi-
dent). Standard deviations are given in brackets.

Source IAPS Math Complete

Front (no inpainting) 0.79 (0.36) 0.48 (0.45) 0.68 (0.42)
Front (inpainting) 0.94 (0.14) 0.90 (0.22) 0.93 (0.18)
GoPro 0.97 (0.08)) 0.93 (0.17) 0.95 (0.12)

when the missing regions were situated above the eyebrows
(i.e., no landmarks have been affected). After applying neu-
ral inpainting, the confidence values increased by 19 % and
88 % during IAPS and math sequences, respectively. When
considering the full video recordings, the increase amounts to
37 %. In addition, the standard deviation decreased substan-
tially. This increase of the confidence leads to an increase
in the number of samples (if a window used during feature
extraction contained less than 80 % frames with a confidence
value above 0.82 we discarded the corresponding data point).
For IAPS, this lead to 348 and 383 additional samples for
valence and arousal, respectively. For the math tasks, this
amounted to 1233 and 1179 additional samples for valence
and arousal, respectively. Finally, the confidence in landmark
detection of the GoPro recordings is comparable to the front
camera recordings with neural inpainting. In general, for
recordings taken during exposure to a stimulus set of images

Table 2: Performance of Random Forest on the math
and IAPS data from two levels (low and high) of va-
lence and arousal based on the front camera record-
ings with neural inpainting and the GoPro record-
ings. The chance level for accuracy and AUC is 0.5.

Source Data AUC Accuracy

Front camera Math (valence) 0.73 68 %
Math (arousal) 0.54 57 %
IAPS (valence) 0.80 73 %
IAPS (arousal) 0.70 66 %

GoPro Math (valence) 0.76 72 %
Math (arousal) 0.58 62 %
IAPS (valence) 0.78 72 %
IAPS (arousal) 0.73 67 %

the mean confidence is higher than during math tasks. This
can be attributed to the fact that while solving math tasks,
participants were moving more, which leads more often to
suboptimal head positions for landmark detection. This find-
ing is also reflected in the higher standard deviations of the
confidence values for math tasks.

5.3 Classification Performance
Before predicting the affective states, the reconstructed front
camera recordings and the GoPro recordings were prepro-
cessed (see Section 4.1). Features were extracted using a ten
seconds window encompassing the on-screen time of each pic-
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Table 3: Number of occurrences of each feature
type in the ten most predictive features. The
numbers are provided for each of the four models
(MV = math valence, MA = math arousal, IV =
IAPS valence, IA = IAPS arousal).

Feature Type MV MA IV IA

Action units 0 2 2 3
Eye blinks 1 4 0 1
Eye gaze 1 2 2 0
Mouth aspect ratio 0 0 0 0
Head Movement 5 2 5 6
Fidgeting 3 0 1 0

ture and the last ten seconds of each math task because each
picture was presented for ten seconds and the minimum task
duration was ten seconds (see Section 4.2). Table 2 presents
the performance of our model for predicting two levels (low
and high) of valence and arousal. Based on the findings that
the confidence in landmark detection increased up to 88 %
with neural inpainting, we used only the front camera record-
ings with neural inpainting. Using these recordings, our
model achieved a performance of 0.73 AUC and 0.80 AUC
for predicting valence on math tasks and IAPS, respectively.
For predicting arousal, the performance drops and is only at
random level for math tasks (0.54 AUC), while for IAPS it
is above random (0.70 AUC). A similar pattern is visible for
the GoPro recordings. While for predicting arousal based
on the math tasks, the performance is close to random (0.58
AUC), all other predictions are above random. In summary,
the predictions using the front camera are comparable to
using the GoPro recordings with a maximum difference of
0.04 AUC. For predicting valence based on IAPS, the perfor-
mance from the front camera recordings (0.80 AUC) exceeds
the performance achieved by using the GoPro (0.78 AUC).

Feature importance. Table 3 presents the number of
occurrences of each feature type in the ten most important
features for each of the four models. We analyzed the feature
importance using the Gini importance measure provided
by the Random Forest classifier. Features related to head
movement contributed the most for predicting valence based
on math tasks (five features) and valence and arousal based
on IAPS (five and six features). For predicting arousal based
on math tasks, eye blinks provided four out of the ten most
important features. There were no MAR features among the
top ten features for any model. However, all feature types
appeared in the top 30 ranked features of each model. For
the model based on the math tasks, the maximum moved
distance in the x-direction and the number of eye blinks
were the highest scoring features for predicting valence and
arousal, respectively. For the model based on IAPS, the
mean acceleration in the x-direction and mean velocity in the
x-direction were most important for predicting valence and
arousal, respectively. Interestingly, head movement along
the x-axis (left and right) was more informative than along
the z-axis (forward and backward).

5.4 Runtime
We conducted a runtime analysis of the different parts of our
inpainting pipeline and affective state prediction model. Our
computing environment consisted of an Intel R© CoreTM CPU

i9-9900K @ 3.60GHz and an NVIDIA GeForce R© RTX 2080
Ti. Processing one frame consisted of flattening the splitting
boundary, face composition, image rotation and extracting
the face area (mean = 17.07 ms, SD = 4.74 ms), detecting
the position of the eyes using dlib (mean = 74.66 ms, SD =
6.43 ms), using the deep learning model to inpaint missing
regions in the face (mean = 76.25 ms, SD = 13.81 ms) and
inpainting the background of the image (mean = 47.01 ms,
SD = 11.87 ms). Summing up these values leads to a process-
ing time for one frame of 214.99 ms. Prediction of a new data
point consisted of feature extraction (mean = 16.37 ms, SD =
2.18 ms) and using the Random Forest classifier for predict-
ing valence and arousal (mean = 6.43 ms, SD = 10.52 ms),
leading to a total prediction time of 22.8 ms.

6. DISCUSSION
Our findings show that it is possible to use our tablet-based
front camera setup and processing pipeline to accurately
capture users for extracting features such as facial landmarks
and movement of the head and body. Our neural inpaint-
ing pipeline provides a qualitatively accurate restoration of
missing regions caused by our mirror construction setup and
increases the confidence in landmark detection by up to 88 %.
Compared to recordings from a GoPro camera, our setup pro-
vides better results in terms of face visibility (frontal view).
Thus, it potentially facilitates the recognition of minor facial
movements (e.g., mouth and eyes). In particular, for solving
math tasks we found the recording conditions of the GoPro
more challenging due to the viewing angle (participants were
bending over the tablet). This resulted in lower confidence
in landmark detection (0.93 for math tasks versus 0.97 for
IAPS). Similarly, the front camera recordings with neural
inpainting showed higher confidence in landmark detection
during IAPS (0.94) compared to solving math tasks (0.90).
During the exposure to a stimulus set of images from the
IAPS dataset, participants were sitting straight, implicat-
ing that the splitting boundary was located at the forehead,
which made inpainting easier. In contrast, during solving
math tasks, the splitting boundary was often located in the
middle (eye) or lower part of the face (mouth), creating a
more challenging situation for our neural inpainting model.

We showed the applicability of our setup for predicting affec-
tive states during active (math-solving) and passive (exposure
to pictures) tasks based on the recordings from the front cam-
era. Our model achieved better performance on IAPS (up to
0.80 AUC) than on the math tasks (up to 0.73 AUC). Due
to the active involvement of the participants while solving
math tasks, participants were moving more, which made ac-
curate tracking of facial landmarks, AUs, and eye gaze more
demanding. In addition, our model performed better for
predicting valence (0.73 AUC and 0.80 AUC) than arousal
(0.54 AUC and 0.70 AUC). One-third of the participants
rated arousal constantly as low or high without showing
much variation. This finding can affect the generalization of
our model to other participants for predicting arousal. In
addition, although affective states are universal, they also
have components that are individual to a person [18]. This
makes it harder to predict an affective state of a person
without having training data available of that person. Com-
paring the performance of our affective prediction pipeline
to other research is difficult because most existing work [10,
57] predicted basic emotions and used other settings.
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Our analysis of the feature importance showed that head
movement is a predictive feature in contrast to MAR. Some
AUs capture movements of the mouth. Thus, we analyzed
the correlation between MAR and AUs specific to the mouth
region. The correlations between the MAR feature and the
AUs specifying lip corner puller (−0.15, p-value = 0.15),
opening the mouth (0.25, p-value = 0.13) and jaw drop
(0.045, p-value = 0.26) have all been low and not significant.

In comparison to recordings from the GoPro, our model
based on front camera recordings performed equally well and
even better for predicting valence on IAPS (0.80 AUC versus
0.78 AUC). This renders our setup a viable alternative to
more expensive equipment such as a GoPro. Our setup comes
at low costs (CHF 5), is unobtrusive, can easily be mounted,
is flexible in the application (e.g., in classrooms or at home),
and eliminates the need for synchronizing different devices. In
contrast to external cameras, the camera (i.e., the lens) in our
setup is small and unobtrusive. Some participants reported
after the experiment that they got slightly distracted by the
GoPro but not by our mirror setup. Similarly, in the video
recordings, we recognized that participants were sometimes
glancing at the GoPro. Finally, with a processing time of
214.99 ms per frame, our pipeline can handle four frames
per second. Our affective prediction pipeline is capable of
making 43 new predictions every second.

Limitations. We acknowledge potential limitations to our
approach presented in this paper. Our setup is constrained
by the lighting conditions, head pose, and occlusions from
hand movement. We believe that other camera setups suffer
from the same constraints. Further, our mirror construction
is a prototype and not yet ready for production. Although
during the experiment the construction proved to be stable,
it can be improved in terms of stability and flexibility. Neural
inpainting provided qualitatively satisfactory results for most
facial parts. However, if the splitting boundary is covering the
eyes (i.e., both eyes are occluded), it is hard for the inpainting
model to reconstruct the eyes at a qualitatively high level.
Consequently, the landmark detection cannot recover eye
gaze and eye blinks, but still detects other facial features.
In addition, although the CelebA-HQ dataset consists of
facial images from celebrities with diverse ethnicity, age
and facial characteristics (e.g., glasses and facial hair), our
inpaining method might be less appropriate for students who
are underrepresented in the CelebA-HQ dataset. We further
acknowledge that our experiment is restricted to math tasks
and exposure to emotional stimuli from pictures in a lab
environment with bachelor students. We are optimistic that
our approach generalizes to a broader population and to
other tasks given that we used active (math-solving) and
passive (exposure to pictures) tasks and assuming a proper
baseline normalization of the features. Finally, we have
predicted valence and arousal on two levels omitting data
points in the medium range (4 to 6). Our main contribution
is the novel mirror construction and the processing pipeline.
We have mainly built our affective prediction model for
demonstrating the applicability of our setup. Nevertheless,
we believe that our features and pipeline can be interesting
for other researchers predicting affective states based on
video data.

Future work. Future research comprises refining and ex-
tending our hardware setup and inpainting pipeline, as well
as evaluating our affective prediction model in other domains.
In particular, realtime performance would be desirable for
on-the-spot assessment of a student’s affective state. The
CelebA-HQ dataset, which we used to train our inpainting
model, contains only images with a frontal view of faces. In
our recordings, individuals are captured at different angles.
Thus, rotation of the recordings or using a dataset providing
faces at different angels can improve the neural inpainting
model. In addition, a deep learning model could be trained
on our features for affective prediction, and the feature set
could be extended by gesture-based features. Such features
have shown to be promising for predicting affective states [9].

7. CONCLUSION
In this paper, we presented a hardware setup consisting of a
cheap and unobtrusive mirror construction to improve the
visibility of the face in tablet-based front camera recordings.
Recordings were processed using an inpainting pipeline con-
sisting of a neural network for reconstructing missing data
in the recordings. We showed that the mirror construction
improved the visibility of the face in situations where ex-
ternal cameras (e.g., GoPro) struggle. With a qualitative
and quantitative evaluation, we demonstrated that we could
achieve results comparable to a GoPro camera. In particular,
neural inpainting improved confidence in facial landmark
detection by up to 88 %. We showed the applicability of our
setup and processing pipeline on affective state prediction
based on front camera recordings. Our model consisted of
features capturing information from movement, eyes, and
face. We evaluated our affective prediction model on data
from a lab experiment with 88 participants using leave-one-
user-out cross-validation. Participants were solving math
tasks (active) and were exposed to emotional stimuli from
pictures (passive). Our model accurately predicted two levels
(low and high) of valence (up to 0.80 AUC) and arousal
(up to 0.73 AUC) using data from the front camera. These
results were comparable to results obtained using recordings
from a GoPro camera (up to 0.78 AUC for valence and up
to 0.73 AUC for arousal). The novelty of our contribution
consists of the hardware setup and processing pipeline. In
addition, we proposed features for affective state prediction,
which can be useful for other researchers. Our setup is cheap
(CHF 5), easy to mount, and can be used in classrooms or
at home. Besides affective state prediction, it can be used
to monitor students or analyzing attention. Most existing
approaches use external cameras such as GoPros or webcams,
which are more expensive, more difficult to handle, and are
exposed to time synchronization problems. In our setup, the
camera data is recorded on the same device as the task is
conducted, and thus we circumvent such time synchroniza-
tion issues in an elegant way. The findings of this work are
important because they support the emerging trend of using
tablet computers in the classroom and for learning at home
by simplifying student recording and assessment.

Acknowledgments. We thank Katja Wolff and Fraser
Rothnie for their assistance in creating the figures.

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 254



8. REFERENCES
[1] ACT. The act technical manual, 2017.

[2] I. Arroyo, D. G. Cooper, W. Burleson, B. P. Woolf,
K. Muldner, and R. Christopherson. Emotion sensors
go to school. In AIED, volume 200, pages 17–24.
Citeseer, 2009.

[3] R. S. J. d. Baker, S. M. Gowda, M. Wixon, J. Kalka,
A. Z. Wagner, A. Salvi, V. Aleven, G. W. Kusbit,
J. Ocumpaugh, and L. Rossi. Towards sensor-free affect
detection in cognitive tutor algebra. International
Educational Data Mining Society, 2012.

[4] T. Baltrusaitis, A. Zadeh, Y. C. Lim, and L.-P.
Morency. Openface 2.0: Facial behavior analysis toolkit.
In 2018 13th IEEE International Conference on
Automatic Face & Gesture Recognition (FG 2018),
pages 59–66. IEEE, 2018.

[5] F. Bellard. Ffmpeg. https://ffmpeg.org/.

[6] N. Bosch, S. D’Mello, R. Baker, J. Ocumpaugh,
V. Shute, M. Ventura, L. Wang, and W. Zhao.
Automatic detection of learning-centered affective
states in the wild. In Proceedings of the 20th
international conference on intelligent user interfaces,
pages 379–388, 2015.

[7] M. M. Bradley and P. J. Lang. Measuring emotion: the
self-assessment manikin and the semantic differential.
Journal of behavior therapy and experimental
psychiatry, 25(1):49–59, 1994.

[8] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal
of Software Tools, 2000.

[9] D. M. Bustos, G. L. Chua, R. T. Cruz, J. M. Santos,
and M. T. Suarez. Gesture-based affect modeling for
intelligent tutoring systems. In International
Conference on Artificial Intelligence in Education,
pages 426–428. Springer, 2011.

[10] R. A. Calvo and S. D’Mello. Affect detection: An
interdisciplinary review of models, methods, and their
applications. IEEE Transactions on affective computing,
1(1):18–37, 2010.

[11] Y. Chen, N. Bosch, and S. D’Mello. Video-based affect
detection in noninteractive learning environments.
International Educational Data Mining Society, 2015.

[12] S. Craig, A. Graesser, J. Sullins, and B. Gholson.
Affect and learning: an exploratory look into the role of
affect in learning with autotutor. Journal of educational
media, 29(3):241–250, 2004.

[13] M. Czikszentmihalyi. Flow: The psychology of optimal
experience. New York: Harper & Row, 1990.

[14] C. Ditzler, E. Hong, and N. Strudler. How tablets are
utilized in the classroom. Journal of Research on
Technology in Education, 48(3):181–193, 2016.

[15] S. K. D’Mello, N. Bosch, and H. Chen.
Multimodal-Multisensor Affect Detection, page 167–202.
Association for Computing Machinery and Morgan &
Claypool, 2018.

[16] P. Ekman. Basic emotions. Handbook of cognition and
emotion, 98(45-60):16, 1999.

[17] P. Ekman and W. Friesen. Facial Action Coding
System: A Technique for the Measurement of Facial
Movement: Investigator’s Guide 2 Part. Consulting
Psychologists Press, 1978.

[18] H. A. Elfenbein and N. Ambady. Universals and

cultural differences in recognizing emotions. Current
directions in psychological science, 12(5):159–164, 2003.

[19] G. Falloon. Young students using iPads: App design
and content influences on their learning pathways.
Computers & Education, 68:505–521, 2013.

[20] J. Grafsgaard, J. B. Wiggins, K. E. Boyer, E. N. Wiebe,
and J. Lester. Automatically recognizing facial
expression: Predicting engagement and frustration. In
Educational Data Mining 2013, 2013.

[21] C. Guillemot and O. Le Meur. Image inpainting:
Overview and recent advances. IEEE signal processing
magazine, 31(1):127–144, 2013.

[22] Z. Guo, Z. Chen, T. Yu, J. Chen, and S. Liu.
Progressive image inpainting with full-resolution
residual network. In Proceedings of the 27th ACM
International Conference on Multimedia, pages
2496–2504, 2019.

[23] M. Haak, S. Bos, S. Panic, and L. J. M. Rothkrantz.
Detecting stress using eye blinks and brain activity
from EEG signals. Proceeding of the 1st driver car
interaction and interface (DCII 2008), pages 35–60,
2009.

[24] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Globally and
locally consistent image completion. ACM Transactions
on Graphics (ToG), 36(4):1–14, 2017.

[25] N. Jaques, C. Conati, J. M. Harley, and R. Azevedo.
Predicting affect from gaze data during interaction
with an intelligent tutoring system. In International
Conference on Intelligent Tutoring Systems, pages
29–38. Springer, 2014.

[26] S. Kai, L. Paquette, R. S. Baker, N. Bosch, S. D’Mello,
J. Ocumpaugh, V. Shute, and M. Ventura. A
comparison of video-based and interaction-based affect
detectors in physics playground. International
Educational Data Mining Society, 2015.

[27] T. Karras, T. Aila, S. Laine, and J. Lehtinen.
Progressive growing of gans for improved quality,
stability, and variation. In 6th International Conference
on Learning Representations, ICLR, 2018.

[28] D. E. King. Dlib-ml: A machine learning toolkit.
Journal of Machine Learning Research, 10:1755–1758,
2009.

[29] V. Kostyuk, M. V. Almeda, and R. S. Baker.
Correlating affect and behavior in reasoning mind with
state test achievement. In Proceedings of the 8th
International Conference on Learning Analytics and
Knowledge, pages 26–30. ACM, 2018.

[30] P. J. Lang, M. M. Bradley, and B. N. Cuthbert.
International affective picture system (IAPS): Affective
ratings of pictures and instruction manual. Technical
Report A-8, The Center for Research in
Psychophysiology, University of Florida, Gainesville,
FL, 2008.

[31] Y. Li, S. Liu, J. Yang, and M.-H. Yang. Generative face
completion. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages
3911–3919, 2017.

[32] H. Liao, G. Funka-Lea, Y. Zheng, J. Luo, and K. S.
Zhou. Face completion with semantic knowledge and
collaborative adversarial learning. In Asian Conference
on Computer Vision, pages 382–397. Springer, 2018.

[33] D. J. Litman and K. Forbes-Riley. Recognizing student

255 Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)

https://ffmpeg.org/


emotions and attitudes on the basis of utterances in
spoken tutoring dialogues with both human and
computer tutors. Speech communication, 48(5):559–590,
2006.

[34] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao,
and B. Catanzaro. Image inpainting for irregular holes
using partial convolutions. In Proceedings of the
European Conference on Computer Vision (ECCV),
pages 85–100, 2018.

[35] H. Liu, B. Jiang, Y. Xiao, and C. Yang. Coherent
semantic attention for image inpainting. In Proceedings
of the IEEE International Conference on Computer
Vision, pages 4170–4179, 2019.

[36] K. Lochner and M. Eid. Successful emotions: how
emotions drive cognitive performance. Springer, 2016.

[37] D. Malesevic, C. Mayer, S. Gu, and R. Timofte.
Photo-realistic and robust inpainting of faces using
refinement gans. In Inpainting and Denoising
Challenges, pages 129–144. Springer, 2019.

[38] B. McDaniel, S. D’Mello, B. King, P. Chipman,
K. Tapp, and A. Graesser. Facial features for affective
state detection in learning environments. Proceedings of
the 29th Annual Meeting of the Cognitive Science
Society, pages 467–472, 2007.

[39] D. McDuff, A. Mahmoud, M. Mavadati, M. Amr,
J. Turcot, and R. Kaliouby. Affdex sdk: a
cross-platform real-time multi-face expression
recognition toolkit. In Proceedings of the 2016 CHI
conference extended abstracts on human factors in
computing systems, pages 3723–3726, 2016.

[40] A. Mehrabian and J. A. Russell. An approach to
environmental psychology. MIT Press, 1974.

[41] M. Miserandino. Children who do well in school:
Individual differences in perceived competence and
autonomy in above-average children. Journal of
educational psychology, 88(2):203, 1996.

[42] R. Navarathna, P. Lucey, P. Carr, E. Carter,
S. Sridharan, and I. Matthews. Predicting movie
ratings from audience behaviors. In IEEE Winter
Conference on Applications of Computer Vision, pages
1058–1065. IEEE, 2014.

[43] B. T. Nguyen, M. H. Trinh, T. V. Phan, and H. D.
Nguyen. An efficient real-time emotion detection using
camera and facial landmarks. In 2017 Seventh
International Conference on Information Science and
Technology (ICIST), pages 251–255. IEEE, 2017.

[44] Z. A. Pardos, R. S. J. D. Baker, M. O. C. Z. San Pedro,
S. M. Gowda, and S. M. Gowda. Affective states and
state tests: Investigating how affect throughout the
school year predicts end of year learning outcomes. In
Proc. LAK, pages 117–124. ACM, 2013.

[45] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and
A. A. Efros. Context encoders: Feature learning by
inpainting. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages
2536–2544, 2016.

[46] P. Pham and J. Wang. Predicting learners’ emotions in
mobile mooc learning via a multimodal intelligent tutor.
In International Conference on Intelligent Tutoring
Systems, pages 150–159. Springer, 2018.

[47] D. Reid and N. Ostashewski. iPads in the
classroom–new technologies, old issues: Are they worth

the effort? In EdMedia+ Innovate Learning, pages
1689–1694. Association for the Advancement of
Computing in Education (AACE), 2011.

[48] J. A. Russell. A circumplex model of affect. Journal of
personality and social psychology, 39(6):1161, 1980.

[49] S. Salmeron-Majadas, R. S. Baker, O. C. Santos, and
J. G. Boticario. A machine learning approach to
leverage individual keyboard and mouse interaction
behavior from multiple users in real-world learning
scenarios. IEEE Access, 6:39154–39179, 2018.

[50] G. K. Sarpate and S. K. Guru. Image inpainting on
satellite image using texture synthesis & region filling
algorithm. In 2014 International Conference on
Advances in Communication and Computing
Technologies (ICACACT 2014), pages 1–5. IEEE, 2014.

[51] K. R. Scherer. What are emotions? and how can they
be measured? Social science information,
44(4):695–729, 2005.

[52] A. Singh, C. Chandewar, and P. Pattarkine. Driver
drowsiness alert system with effective feature
extraction. International Journal for Research in
Emerging Science and Technology, 5(4):26–31, 2018.

[53] R. Wampfler, S. Klingler, B. Solenthaler, V. Schinazi,
and M. Gross. Affective state prediction in a mobile
setting using wearable biometric sensors and stylus. In
Proceedings of The 12th International Conference on
Educational Data Mining (EDM 2019), pages 198–207,
2019.

[54] C. Wang, X. Sun, F. Wu, and H. Xiong. Image
compression with structure-aware inpainting. In 2006
IEEE International Symposium on Circuits and
Systems, pages 4–pp. IEEE, 2006.

[55] R. A. Yeh, C. Chen, T. Yian Lim, A. G. Schwing,
M. Hasegawa-Johnson, and M. N. Do. Semantic image
inpainting with deep generative models. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 5485–5493, 2017.
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