ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2020

J. Bender and T. Popa
(Guest Editors)

Volume 39 (2020), Number 8

Latent Space Subdivision:
Stable and Controllable Time Predictions for Fluid Flow

S. Wiewel', B. Kim?, V. C. Azevedo?, B. Solenthaler?, N. Thuereyl t

Technical University of Munich
2ETH Zurich

Figure 1: Given two consecutive data points (ty,t1) of a fluid simulation, a stable long-term prediction of complex 3D flows is generated
(tr,13,14) from the compressed information in the latent space. Thereby, our novel split loss allows for modification and control of the
learned-physics predictor, e.g., by injecting a density state resulting from an external advection step into the latent space part ¢ g,p,.
This density field contains, for example, temporally coherent data and proper boundary conditions for moving obstacles or inflows.

Abstract

We propose an end-to-end trained neural network architecture to robustly predict the complex dynamics of fluid flows with
high temporal stability. We focus on single-phase smoke simulations in 2D and 3D based on the incompressible Navier-Stokes
(NS) equations, which are relevant for a wide range of practical problems. To achieve stable predictions for long-term flow
sequences with linear execution times, a convolutional neural network (CNN) is trained for spatial compression in combination
with a temporal prediction network that consists of stacked Long Short-Term Memory (LSTM) layers. Our core contribution is a
novel latent space subdivision (LSS) to separate the respective input quantities into individual parts of the encoded latent space
domain. As a result, this allows to distinctively alter the encoded quantities without interfering with the remaining latent space
values and hence maximizes external control. By selectively overwriting parts of the predicted latent space points, our proposed
method is capable to robustly predict long-term sequences of complex physics problems, like the flow of fluids. In addition,
we highlight the benefits of a recurrent training on the latent space creation, which is performed by the spatial compression
network. Furthermore, we thoroughly evaluate and discuss several different components of our method.

CCS Concepts

o Computing methodologies — Neural networks; Physical simulation;

1. Introduction

Computing the dynamics of fluids requires solving a set of com-
plex equations over time. This process is computationally very ex-
pensive, especially when considering that the stability requirement
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poses a constraint on the maximal time step size that can be used in
a simulation.

Due to the high computational resources, approaches for ma-
chine learning based physics simulations have recently been ex-
plored. One of the first approaches used Regression Forest as a re-
gressor to forward the state of a fluid over time [LJS*15]. Hand-
crafted features have been used, representing the individual terms
of the Navier-Stokes equations. These context-based integral fea-
tures can be evaluated in constant time and robustly forward the
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state of the system over time. In contrast, using neural networks for
the time prediction has the advantage that no features have to be
defined manually, and hence these methods have recently gained
increased attention. In graphics, the presented neural prediction
methods [MJIKW18; KCT*19; WBT19] use a two-step approach,
where first the physics fields are translated into a compressed rep-
resentation, i.e., the latent space. Then, a second network is used
to predict the state of the system over time in the latent space.
The two networks are trained individually, which is an intuitive ap-
proach as spatial and temporal representations can be separated by
design. In practice, the first network (i.e., the autoencoder) intro-
duces small errors in the encoding and decoding in each time step.
In combination with a temporal prediction network these errors ac-
cumulate over time, introducing drifting over prolonged time spans
and can even lead to instability, as we will show later. This is es-
pecially problematic in supervised learned latent space representa-
tions, since the drift will shift the initial, user-specified conditions
(e.g., an object’s position) into an erroneous latent space configura-
tion.

Like previous work, we use a neural network to predict the mo-
tion of a fluid over time, but with the central goal to increase accu-
racy and robustness of long-term predictions. We propose to use a
Jjoint end-to-end training of both components: the fluid state com-
pression and the temporal prediction of the motion. Such a joint
training allows both components to build a holistic view of the un-
derlying task, which is not the case for individual training. The joint
training enables the network to propagate the error gradients from
the spatial decoder through multiple recurrently connected tempo-
ral prediction blocks to the spatial encoder. Another key observa-
tion is the need to control the learned latent space, such that we
can modify it during the simulation process to impose boundary
conditions and other known information external to the simulation
state. Without such control capabilities, the underlying prediction
model cannot react to external changes in the simulation domain.
We therefore propose structuring the latent space through subdi-
visions, which separate the encoded quantities in the latent space
domain. This enables us to directly manipulate the individual quan-
tities in the encoded latent space domain and therefore, e.g., feed
back a density field advected externally with the predicted veloc-
ity field. The subdivision is enforced with a split latent space soft-
constraint for the input quantities velocity and density, and hence
allows for alteration of the individual encoded components sepa-
rately. This separation is a key component to robustly predict long-
term sequences as demonstrated by our results. It enables us to pre-
cisely adjust parts of the latent space to adhere to physical behavior
determined externally by well-understood classical methods.

2. Related Work and Background

Our work concentrates on single-phase flows, which are usually
modeled by a pressure-velocity formulation of the incompressible
Navier-Stokes equations:
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where p denotes pressure, u the flow velocity, and pg,V, g denote
the density of the fluid (which is assumed to be constant), kinematic
viscosity, and external forces, respectively. Often, a passive marker
quantity p is advected with the velocity u, e.g., to model smoke. An
overview of fluid simulation techniques in computer graphics can
be found in [Bril5].

Data-driven flow modelling encompasses two distinguished and
complementary efforts: dimensionality reduction and reduced-
order modelling. Dimensionality reduction (e.g., Singular Value
Decomposition) scales down the analyzed data into a set of impor-
tant features in an attempt to increase the sparsity of the representa-
tion, while reduced-order modelling (e.g., Galerkin Projection) de-
scribes the spatial and temporal dynamics of a system represented
by a set of reduced parameters. In computer graphics, the work
of Treuille et al. [TLPO6] was the first to use Principal Compo-
nent Analysis (PCA) for dimensionality reduction coupled with a
Galerkin Projection method for subspace simulation. This approach
was later extended [KD13] with a cubature approach for enabling
semi-Lagrangian and MacCormack [SFK*08] advection schemes,
while improving the handling of boundary conditions. Reduced-
order modelling was also explored to accelerate the pressure pro-
jection step in liquid simulations [ATW15].

Instead of computing reduced representations from pre-
simulated velocity fields, alternative basis functions can be used
for reduced-order modelling; examples of basis functions in-
clude Legendre Polynomials [GNO7], modular [WST09] and spec-
tral [LRO9] representations. Also Laplacian Eigenfunctions have
been successfully employed for dimensionality reduction, due to
their natural sparsity and inherent incompressibility. De Witt et
al. [DLF12] combined Laplacian Eigenfunctions with a Galerkin
Projection method, enabling fast and energy-preserving fluid sim-
ulations. The approach was extended to handle arbitrarily-shaped
domains [LMH*15], combined with a Discrete Cosine Trans-
form (DCT) for compression [JSK16], and improved for scalabil-
ity [CSK18].

A separate line of work proposed direction interpolations of flow
representations in order to synthesize new instances [RWTT14;
Thul6; SDN18]. For particle-based fluid simulations, a temporal
state prediction using Regression Forest was presented in Ladicky
et al. [LJS*15]. Input features are evaluated in particle neighbor-
hoods and serve as input to the regressor, which then predicts the
particle velocity of the next time step.

Several of the methods above use linear basis functions for di-
mensionality reduction. This enables the use of Galerkin Projection
for subspace integration, but it limits the power of the reconstruc-
tion when compared to non-linear embeddings. The latent spaces
generated by autoencoders (AE) are non-linear and richly capture
the input space with fewer variables [RMC16; WZX*16]. In light
of that, Wiewel et al. [WBT19] combined a latent space represen-
tation with recurrent neural networks (RNN) to predict the tem-
poral evolution of fluid functions in the latent space domain. Kim
et al. [KCT*19] introduced a generative deep neural network for
parameterized fluid simulations that only takes a small set of phys-
ical parameters as input to very efficiently synthesize points in the
learned parameter space. Their method also proposes an extension
to latent space integration by training a fully connected neural net-
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work that maps subsequent latent spaces. Our work is related to
these two methods, but a main difference is that we use an end-
to-end training of both the spatial compression and the temporal
prediction. In combination with our latent space subdivision, our
predictions are more stable, while previous approaches fail to prop-
erly recover long-term integration correspondences due to the lack
of autoencoder regularization.

In the context of grid-based (Eulerian) fluid simulations, Tomp-
son et al. [TSSP17] used a convolutional neural network (CNN)
to model spatial dependencies in conjunction with an unsupervised
loss function formulation to infer pressure fields. A simpler three-
layer fully connected neural network for the same goal was like-
wise proposed [YYX16]. As an alternative, learned time evolutions
for Koopman operators were proposed [MJKW 18], which however
employ a pre-computed dimensionality reduction via PCA. Chu et
al. [CT17] enhance coarse fluid simulations to generate highly de-
tailed turbulent flows. Individual low-resolution fluid patches were
tracked and mapped to high-resolution counterparts via learned de-
scriptors. Xie et al. [XFCT18] extended this approach by using a
conditional generative adversarial network with a spatio-temporal
discriminator supervision. Small-scale splash details in hybrid fluid
solvers were targeted with deep learning-based stochastic mod-
els [UHT18].

3. Method

The central goal of our models is to robustly and accurately predict
long-term sequences of flow dynamics. For this, we need an au-
toencoder to translate high-dimensional physics fields into a com-
pressed representation (latent space) and a temporal prediction net-
work to advance the state of the simulation over time. A key ob-
servation is that if these two network components are trained indi-
vidually, neither component has a holistic view on the underlying
problem. The autoencoder, consisting of an encoder E and a de-
coder D, generates a compressed representation ¢ = E(x), which
focuses solely on the reconstruction ¥ = D(c) of the given input x.
Hence, the loss function to minimize is given by ||x — ¥||. Without
considering the aspect of time, the autoencoder’s latent space only
stores spatial descriptors. Due to the exclusive focus on space, tem-
porally consecutive data points are not necessarily placed close to
each other in the latent space domain. This poses substantial chal-
lenges for the temporal prediction network.

Therefore, we consider the aspect of time within the training of
the autoencoder in order to shape its latent space with respect to
temporal information, in addition to the spatial information. Thus,
we propose an end-to-end training procedure, where we train our
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Figure 2: A direct AE reconstruction loss, Equation 5, is per-
formed on 20, whereas the supervised parameter loss, Equa-
tion 4, is performed on &?p. The superscript denotes the time
step of the input data used during training.
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autoencoder and temporal prediction network simultaneously by
internally connecting the latter as a recurrent block to the encod-
ing and decoding blocks of the spatial autoencoder. As a result, the
latent space domain is aware of temporal changes, and can yield
temporally coherent latent space points that are suitable for the time
prediction network. By default, our training process includes the
combined training of our spatial autoencoder and temporal predic-
tion network as shown in Figure 2 and Figure 3, respectively. In
those figures, the encoder E, decoder D and prediction network P
are duplicated for visualization purposes. In the next sections, we
describe each individual network in more detail.

3.1. Spatial Encoding

The spatial encoding of the data is performed by a regular autoen-
coder, the network for which is split into an encoding and decoding
part [KCT*19]. The encoder contains 16 convolution layers with
skip connections, which connect its internal layers, followed by one
fully-connected layer. The decoder consists of a fully-connected
layer, which is followed by 17 convolution layers with skip connec-
tions. For the fluid simulation dataset used in this work, the input is
either 2D or 3D, leading to the usage of 2D- or 3D-convolutions
and a feature dimension of 3 or 4, respectively. Furthermore, a
data-specific curl-layer is appended to the decoder network to en-
force zero divergence in the resulting velocity field [KCT*19], as
required by the NS equations (see Equation 1).

The dimensionality of the latent space ¢ for a given x is defined
by the final layer of the encoder and can be freely chosen. We pass
a velocity u as well as the density of a passive marker field p to our
encoder, i.e., x = [u,p]. Note that this marker density is different
from the (constant) density of the fluid itself. The velocity field is an
active quantity that is used in fluid simulations to advect a passive
quantity forward in time. In case of smoke simulations, which is
a specific instance of fluid simulations, the passive density field is
advected by the flow velocity. As a result, ¢ contains information
about both the active and passive fields, i.e., velocity and density.
Hence, we can accurately advect the passive quantity density with
a velocity field with low computational effort, it makes sense to

Figure 3: A prediction loss, last term of Equation 6, is per-
formed on %...%". The prediction networks input window
is set to w = 2. Thus, the count of recurrent predictions is

nj=n—2.
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compute the advection outside of the network and project the new
state into the latent space.

In order to be able to alter active and passive fields individ-
ually in the compressed representation ¢, with given input field
X = [X,,X4en) Where the subscripts vel and den thereby denote the
velocity and density part, we subdivide ¢ into separate parts for ve-
locity ¢,,; and density ¢4, respectively. This property of the latent
space is needed for projecting the new state of the passive quantity
into the latent space domain. Additionally, to exert explicit exter-
nal control over the prediction, we designate another part of ¢ to
contain supervised parameters, called csp as proposed by Kim et
al. [KCT*19]. In our case of, e.g., a smoke simulation with a rotat-
ing cup filled with smoke, such supervised parameters can be the
position of a smoke source or the rotation angle of a solid obstacle.
With this subdivision, we increase the stability of our predictions
and allow for explicit external control. This subdivision is visual-
ized in Figure 4 and Equation 2, where v, d, and sp describe the
indices of the velocity, density, and supervised parameter parts in
the latent space domain, respectively.

To arrive at our desired latent space subdivision (LSS), the split
loss Lgp;;; is used as a loss function in the training process. It is
modelled as a soft constraint and thereby does not enforce the parts
el and ¢g,,, to be strictly disjunct, hence separated by the | symbol
in Equation 2. The loss is defined as

Lypiir (€15, 1e) = Z lleillr- 3)
Since we divide the latent space in three parts, L, is applied
twice (see Figure 5). For the velocity part ¢, the indices Iy = v+ 1
and I, = d are chosen to indicate that the density part must not be
used on encoding velocities, i.e., L, (c,v+ 1,d). In contrast to
the previous limits, for the density part ¢, the velocity part is in-
dicated by choosing the indices I =0 and I = v, i.e., Ly (¢, 0,v).
First, only the velocity part x,,; of input x is encoded (the density
part Xz, is zero, i.e., X = [X,¢;,0]), yielding ¢ = E(X). Vice versa,
the density part x,,, of input x is encoded, whereas the velocity part
X, is replaced with zeros, i.e., ¥ = [0,X4,], resulting in é = E(%).
Therefore, the split loss is applied twice for the ¢ and ¢ encodings
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Figure 4: Visualization of a LS with |c¢| = 7. Using the split
loss, we optimally obtain a clear differentiation of the input
quantities velocity and density, while their influence is spread
across the whole domain using classical training methods as
visualized below the No-Split label.

as Lgpir(¢,v+1,d) and L, (€,0,v), respectively. Note that we
refer to classical autoencoders trained without such a split loss as
No-Split in the following. The split in the latent space domain is
not required to separate the influence of the quantities in half. By
carefully choosing the indices v and d the influence range of the
individual quantities on the latent space domain can be adjusted.
Later on we reference this as split percentage, i.e., the influence
range of the velocity in the latent space domain is given as a per-
centage. If not stated otherwise we use a split percentage of 66%,
meaning that the index v is configured so that velocity takes up 66%
of the latent space.

In order to exhibit external control over the prediction, csp
is enforced to contain parameters describing certain attributes of
the simulation. While training the network, an additional soft-
constraint is applied, which forces the encoder to produce the
supervised parameters. The soft-constraint is implemented as the
mean-squared error of the values generated by the encoder ¢, and
the ground truth data ¢;p and consitutes the supervised loss L, as

R A2
Lsup(€sp,sp) = |lesp — Espll2 4

Additionally, an AE loss L4r (Equation 5) is applied to the de-
coded field x. It forces the velocity part of the decoded field to
be close to the input velocity by applying the mean-absolute error.
To take the rate of change of the velocities into consideration as
well, the mean-absolute error of the velocities’ gradient is added to
the formulation. We found empirically that the L1 norm is a good
choice for our vector field data and was also applied in previous
work on similar data [KCT*19]. In contrast, the density part is han-
dled by directly applying the mean-squared error on the decoded
output density and the input. For density, a scalar field, we use a
L2 norm as it performed better empirically. The AE loss is thereby
defined as

vel Hxvel —Xyel Hl
+ vael Hvxvel — Vi, ||1

['AE (x,fc) =A

5 2
+}"den ||x¢len _xdenH2~ (5)

The weights A7, Avye; and Ay, put focus on the reconstruction
of the velocities, their gradients or the density values. In our ex-
periments we used A,e; = Avye; = Agen = 1 for normalized data in
accordance with the method of Kim et al. [KCT*19].
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Figure 5: The velocity and density quantities in x° are sep-
arated, i.e., 3 = [x°,,0] and X° = [0,x,,]. The LSS is en-
forced by applying the split loss, Equation 3, on the high-

lighted cden and ¢ cvel for velocity and density, respectively.
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3.2. Time Prediction Network

The prediction network performs a temporal transformation of its
input to the temporal consecutive state. This means a input win-
dow of w states is transformed to the consecutive state as follows
c¥...¢"~! — & Therefore, the inputs to the prediction network
are a series of w consecutive input states. The prediction network
block contains two recurrent LSTM layers, followed by two 1D-
convolutional layers. In our case of 2D smoke simulations, two
consecutive latent space points of dimension 16 are used as input,
i.e., w = 2. Those are fed to the prediction layers and result in one
latent space point of dimension 16, called the residuum Ac’. After-
wards, the residuum is added to the last input state to arrive at the
next consecutive state, i.e., & ! = ¢/ + Ac'.

Due to the subdivision capability of our autoencoder, our tempo-
ral prediction network supports external influence over the predic-
tions it generates. After each prediction, it is possible to replace or
update information without the need of re-encoding the predicted
data. Instead, only parts of the predicted latent space point can be
replaced, enabling fine-grained control over the flow. For exam-
ple, in the case of smoke simulations, the passive smoke density
quantity can be overwritten with an externally updated version, i.e.,
the ¢4, part is replaced by c. This allows for adding new smoke
sources or modifying the current flow by removing smoke from
certain parts of the simulation domain.

Considering the exposure of the prediction input window w,
which can be chosen freely, and the desired internal iteration count
n; = n—w, the additive prediction error is brought into considera-
tion for the prediction network P while training, i.e., it is traversed
n; times. The number n defines the count of ground truth pairs given
to the combined network during a training step. This leads to a com-
bined training loss of AE and P defined as

L= 7‘-dir [/AE,direct + 7\-sup ﬁsup + Arsv £split:vel + }‘-sd »Cspliz,den

1
+>"[7 Z (‘CAE,pred,v)v (6)
i=0
where L4 is applied to the corresponding pairs of the decoded out-
puts #...%" of the prediction network P and their corresponding
ground-truth x.x Thereby, our final loss is the weighted sum of
all the previously presented losses. The individual weights empha-
size the impact of the different losses on the overall learning. In
practice, we used Ag; = Asup = Asy = Agg = Ap = 1 for our exam-
ples.

In our combined training approach (see Figure 6), both networks
update their weights by applying holistic gradient evaluations, i.e.,
are trained end-to-end. The benefit of the end-to-end training is that
the spatial AE also incorporates temporal aspects when updating
its weights. In addition, by recurrently applying L4g on the predic-
tions, the prediction network P is trained to actively minimize accu-
mulating additive errors. To incorporate temporal awareness in the
autoencoder, the decoder block is connected to the individual pre-
diction outputs and is thereby reused several times in one network
traversal. The recurrent usage of the decoding block is commonly
known as weight sharing [BGL*93]. Furthermore, by applying the
prediction losses on the decoded predictions, the spatial autoen-
coder adapts to the changes induced by the temporal prediction as
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well, which furthers the focus of the autoencoder to produce latent
spaces suitable for temporal predictions. As a result, the prediction
network is capable of robustly and accurately predicting long-term
sequences of complex fluid flows.

4. Training Datasets

The datasets we used to train our networks contain randomized
smoke flows simulated with an open source framework [TP18§]. In
total, three different scene setups were used to capture a wide range
of complex physical behavior. The first scene contains a moving
smoke inflow source that generates hot smoke continuously, which
is rising and producing complex swirls (see Figure 7).

The second and third scenes simulate cold smoke in a cup-
shaped obstacle. The former rotates the cup randomly around a
fixed axis, while the latter additionally applies a translation (see
Figure 7). The rising smoke and the rotating cup scene each expose
one control parameter, i.e., movement on the x-axis and rotation
around the z-axis, whereas the rotating and moving cup scene ex-
poses both of these control parameters. Each of the three datasets in
2D contains 200 randomly generated scenes with 600 consecutive
frames. Additionally, the moving smoke as well as the rotating and
moving cup dataset was generated in 3D with 100 randomly gen-
erated scenes and 600 consecutive frames (see Table 1). The 3D
moving smoke dataset contains a smoke inflow source that hovers
over the ground plane and moves in x- and z-direction while gen-
erating hot smoke continuously, which is rising up and producing
complex swirls. On the other hand, the 3D moving and rotating cup
dataset contains scenes with a hovering cup, filled with cold smoke,
that moves over the ground while also rotating around the z-axis.
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Figure 6: Combined training of autoencoder and temporal
prediction. The superscript denotes the time step of the input
data. The prediction networks input window is set to w = 2.
Thus, the count of recurrent predictions is nj =n—2. The LSS
is enforced by applying the split loss, Equation 3, on Egm and
Egel for velocity and density, respectively. A direct AE recon-
struction loss, Equation 5, is only performed on £°, whereas
a prediction loss, last term of Equation 6, is performed on

2%
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Figure 7: Example sequences of our 2D datasets: moving
smoke (top), rotating (center) and moving cup (bottom). The
smoke density is shown as black and the cup-shaped obstacle
in blue.

5. Evaluation

In this section, we compare our architecture to the baseline of pre-
vious work. We also perform an ablation study on different set-
tings of our proposed architecture to compare their respective in-
fluence on the output. We compute the mean peak signal-to-noise
ratio (PSNR) for all our comparisons, i.e., larger values are better.
For each case, we measure accuracy of our prediction w.r.t. density
and velocity in terms of PSNR for ten simulations setups that were
not seen during training.

For a thorough evaluation, we supply two prediction approaches.
First, we evaluate a regular prediction approach with no reinjection
of physical information (denoted VelDen) that is in sync with pre-
vious work [KCT*19; WBT19]. This approach is formulated as

¢=pE2d, @)

where the previously predicted latent space points & 2 and &'

are used to evaluate the next time step & . Afterwards, & is decoded
D(&") and the density part iﬁim is directly displayed, i.e., no exter-
nal physical information about the system state is influencing the
output of our VelDen benchmarks.

In the second approach, we make use of our LSS to reinject the
advected density into the prediction to benefit from well understood
physical computations that keep our predictions stable and can be
performed in a fast manner. The prediction process utilizing our

Table 1: Statistics of our datasets.

Scene Type Resolution  # Scene  # Frames
Rotating and Moving Cup (3D) 483 100 600
Moving Smoke (3D) 483 100 600
Rotating and Moving Cup (2D) 642 200 600
Rotating Cup (2D) 482 200 600
Moving Smoke (2D) 32 x 64 200 600

LSS is denoted as Vel and is given as
—1

d=r@" , (8)

¥ = [xvelvxden] = D( ¢

)

¢ :E([ velaxden] s

)

)

Hjen = Adv(¥jg)  Frr),
)

= [&er> Eenls

]

[xvel ’ xd enls

where we are using the decoded predicted velocity ¥,,, to advect
the simulation density )'cf[l and reinject its encoded form into our
latent space &'. The new latent space representatlon &' is thereby
formed by concatenating the new encoded density ¢’;,,, and the pre-
dicted encoded velocity field Ei,e,. By reinjecting the advected den-
sity field xiien’ we inform the prediction network about boundary
conditions as well as other known physical information that is ex-
ternal to the prediction state. The current simulation state is stored
in &, i.e., the density part xﬁ,e,, will be advected in the next time
step whereas the encoded simulation state & drives the prediction
process as ¢! Inthe following we will ablate on different as-
pects of our method to evaluate their respective influence on the
final results.

5.1. Latent Space Temporal Awareness

The temporal awareness of our spatial autoencoder is evaluated in
this section, since it has a significant impact on the performance
of our temporal prediction network. In Figure 8§ we evaluate three
networks trained with different loss functions in terms of the stabil-
ity of the latent space they generate for sequences. For each of the
plots, 200 frames of 20 different smoke simulations were encoded
to the latent space domain with an autoencoder. The resulting la-
tent space points were normalized with their respective maximum
to the range of [—1,1] and afterwards transformed to 3 dimensions
with PCA. The supervised part was removed before normalization.
For our comparison we chose 3 autoencoders with a latent space
dimension of 16.

The results in Figure 8a were generated with a classic AE that
was trained to only reproduce its input, i.e., only a direct loss on
the output (Equation 5) was applied. For this classic AE no tempo-
ral constraints were imposed, and no supervised parameters were
added to the latent space. The resulting PCA decomposition shows
a very uneven distribution: large distances between consecutive
points exist in some siutations, whereas a large part of the samples
are placed closely together in a cluster.

When adding the supervised parameter loss (Equation 4) in the
second evaluation [KCT*19] the trajectories become more ordered,
as shown in Figure 8b, but still exhibit a noticeably uneven distribu-
tion. Thus, the supervised parameter, despite being excluded from
the PCA, has a noticeable influence on the latent space construc-
tion.

In Figure 8c, the results of the AE trained with our proposed
time-aware end-to-end training method are shown. This AE applies
the supervised parameter loss (Equation 4) as well as the direct loss
on the output (Equation 5) and was trained in combination with

(© 2020 The Author(s)
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(a) No temporal constraints or supervised (b) No temporal constraints but with su- (¢) With temporal constraints and super-

parameters.

pervised parameters.

vised parameters (ours).

Figure 8: Spatial encodings of 200 frames of 20 different smoke simulations. The latent space points are normalized to their respective
maximum and processed with PCA for visualization purposes. Each color stands for a single simulation and represents a series of 200

frames.

the temporal prediction network P as described in Section 3.2. The
visualization of the PCA decomposition shows that a strong tem-
poral coherence of the consecutive data points emerges. This vi-
sualization indicates why our prediction networks yield substantial
improvements in terms of accuracy: the end-to-end training pro-
vides the autoencoder with gradients that guide it towards learning
a latent space mapping that is suitable for temporal predictions.
Intuitively, changes over time require relatively small and smooth
updates, which results in the visually more regular curves shown in
Figure 8c.

5.2. Simple-Split vs. Latent Space Subdivision

A simple approach to arrive at a latent space with a clear subdi-
vision in terms of input quantities is to use two separate spatial
AE:s for the individual input quantities. After encoding, the two re-
sulting latent space points c¢,e; = E,;(#) and cgep, = Egen(p) can
be concatenated, yielding cgimpre = [Cvel; Cden]. This is denoted as
the Simple-Split variant in the following. In contrast to the simple
approach, our LSS directly encodes both quantities with a single
AE as crss = E([u,p]) and enforces the subdivision with a soft-
constraint. The combined training with the prediction network is
performed identical for both spatial compression versions. It be-
comes apparent from the results in Table 2 b), that the network
trained with our soft-constraint outperforms the Simple-Split vari-
ant. Especially, when reinjecting the simulation density in the Vel
benchmarks, we see a better PSNR value of 30.28 for u and 17.66
for p for our method in comparison to 26.95 and 16.35 for u and
p, respectively. The reason for this is that the Simple-Split version
can not take advantage of synergistic effects in the input data, since
both input quantities are encoded in separate AEs. In contrast, our
method uses the synergies of the physically interconnected velocity
and density fields and robustly predicts future time steps.

(© 2020 The Author(s)
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Table 2: Evaluations for Vel and VelDen predictions; rotat-
ing and moving cup: a) Internal predictions n;; b) Simple-
Split vs. LSS; c¢) LS dimensionality comparison

Vel VelDen
a)n; PSNRu PSNRp PSNRu PSNRp
1 33.04 25.19 33.11 22.28
6 35.89 26.28 36.07 25.41
12 36.61 26.61 36.61 25.69
b) Type PSNRu PSNRp PSNRu PSNRp
Simple-Split 26.95 16.35 29.51 15.63
LSS (ours) 30.28 17.66 29.11 17.12

¢)LS Dimension |¢] PSNRu PSNRp PSNRu PSNRp

16 30.28 17.66 29.11 17.12
32 30.40 17.64 31.58 18.90
48 30.86 17.92 30.97 18.96

5.3. Internal Iterations

We compare the internal iteration count of the prediction network
in the training process in Table 2 a). By performing multiple re-
current evaluations of our temporal network already in the training
process we minimize the additive error build-up of many consecu-
tive predictions. To fight the additive prediction errors over a long
time horizon is important to arrive at a robust and exact predicted
sequence. We chose the values of 1, 6 and 12 internal iterations for
our comparison. It becomes apparent, that the network trained with
12 internal iterations and thereby the longest prediction horizon is
superior in both evaluations. It should be noted, that the predictions
with reinjection of the physical density field (Vel) have a lower er-
ror on the density than the prediction-only (VelDen) approach, e.g.
a PSNR value of 26.61 in contrast to 25.69 for the density field of
the 12 iteration version. This supports the usefulness of our pro-
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Table 3: LSS and No-Split comparison; rotating and moving
cup; 400 time steps; split percentage of 66%.

LS Split Type PSNRu PSNRp

No-Split VelDen 17.41 10.71
LSS (ours)  VelDen 26.81 17.07
LSS (ours) Vel 28.15 21.74

posed latent space subdivision, that is needed to reinject external
information.

5.4. Latent Space Dimensionality

The latent space dimensionality has a major impact on the result-
ing weight count of the autoencoder as well as the complexity of the
temporal predictions and thereby their difficulty. In Table 2 c) we
compare latent space sizes of 16, 32 and 48. When it comes to pre-
diction only (VelDen), the PSNR is better for a larger latent space
dimensionality. In contrast to this observation, the PSNR value is
on the same level for all latent space sizes, when the simulation
density is reinjected (Vel). For this reason we used a latent space
dimensionality of 16 for all further comparisons. Due to bouyancy,
the velocity and density of our smoke simulations are loosely cou-
pled. Thus, additional weights do not increase the overall perfor-
mance when the reconstruction of the individual parts of the re-
spective input quantities already converged.

5.5. No-Split vs. Latent Space Subdivision

In this section, we compare the performance of our LSS method
with its separation of quantities in the latent space domain to clas-
sical training methods without such a separation (as for example
demonstrated by Kim et al. and Wiewel et al. [KCT*19; WBT19]).
Instead of making use of the split loss as defined in Equation 3, we
trained a classical variant of our network, called No-Split, by re-
moving the split loss from Equation 6 leading to the following total
loss function

i

L = Agir ['AE,direct +Asup Lsup +Ap Z ([:AE.pred,-)~ )

i=0
No-Split
-
e W d W W L I
= ] — h
LSS (ours)
@ iy o % 99
GT

O.‘@‘I""‘

]
Figure 9: Long-term prediction of 400 time steps: Our
method robustly predicts the fluid flow, whereas the regular
prediction method (No-Split) fails to capture the movement
and even produces unphysical behavior. Compare the PSNR
values in Table 3.

We trained the classical version with our recurrently connected pre-
diction network as outlined in Section 3.2. Without a split loss, both
density and velocity are intertwined in the latent space. Hence, it
is not possible to influence the prediction by altering the encoded
density alone. Without such external correction, the prediction er-
rors accumulate over time, which leads to a decreased prediction
fidelity. Instead, with our LSS method, we enable precise injection
of external physical information, leading to robust long-term pre-
dictions.

In Table 3, we compare the long-term temporal prediction of 400
simulation steps for both No-Split and our LSS network. Since No-
Split autoencoders do not utilize the split loss and hence do not
enable reinjection of density values, a fair evaluation can only take
place for the prediction-only VelDen benchmark. Our LSS network
clearly outperforms the No-Split version as demonstrated by the
density PSNR values of 17.07 and 10.71, respectively. The result-
ing prediction remains stable whereas the No-Split approach fails
to capture the flow throughout the prediction horizon and produces
unphysical behavior, see Figure 9 for a qualitative comparison. Our
method can perform even better when using the reinjection capa-
bilities (Vel benchmark) considering the density PSNR value of
21.74.

5.6. Synergistic Effects of Latent Space Subdivision

As demonstrated in the previous section, our method performs bet-
ter for long-term predictions than classical methods even without
injecting external information. The reason for the superior perfor-
mance are synergies of our latent space subdivision that we will
investigate in more detail in the following.

In Figure 11, we visualize the reconstructed quantities velocity
and density with our method (top left) compared to the simulated
ground truth (bottom left) where our method produces quantities
very close to the ground truth. Our results are generated by first
encoding a single simulation frame with our autoencoder and then
directly decoding the resulting latent space again as shown in Fig-
ure 10. Note that the prediction network is not used in this scheme.
We then evaluate the impact of both velocity and density input (x,;,
X4.n) and latent space subdivisions (¢y.;, €4,) On the reconstruc-
tion quality.

Removing the density information in latent space, i.e., with
cgen = 0, the reconstructed quantities are still similar to our full
method but exhibit a decreased reconstruction quality. This indi-

\ cvet
[ Xwﬁ / { x,,e, )
Cden
/xdm F /@
Figure 10: Encode/Decode scheme. Our autoencoder pro-
duces the encodings €, €gen and csp for the inputs x,,; and
Xgen- The fields X,; and X4, are reconstructed to be close to

the input. This scheme can be used to evaluate the impact of
the different parts on the reconstructed fields.

/\\/
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Encode/Decode Caen =0 Xden =0, €gen =0
o o

Ground Truth
o

Figure 11: Density and velocity reconstructed with our en-
code/decode scheme (top left) and a ground truth simulation
frame (bottom left). In the following top row, we set the latent
space density €., the density input x;,,, or both to zero. We
do the same for velocity in the bottom row. We observe that
with zero input quantities (X, = 0, X430, = 0), only averaged
fields are obtained for both quantities. Setting the velocity
latent space to zero (¢, = 0) has a stronger impact on the
reconstruction quality compared to setting the density latent
space to zero (Cgen = 0). With the latter, the reconstructed
quantities are still similar to our full method’s result but ex-
hibit a decreased reconstruction quality.

cates that the encoded density is not essential for a meaningful re-
construction but certainly improves the quality when available. In
the bottom row second left, we see that without a meaningful en-
coded velocity, i.e., ¢, = 0, our reconstruction quality strongly
deteriorates. This is plausible since without any velocity informa-
tion, there is very little information about the state of the simu-
lation. Velocity is vector-valued in contrast to scalar density and
hence, contains more information. Furthermore, velocity encodes
temporal behaviour, which is crucial for reconstructing plausible
fluid motions.

If we don’t provide meaningful input fields for either velocity or
density (x,,; = 0, x4., = 0), we obtain trivially averaged velocity
and density fields, as expected. Such averaged fields are close to a
wide range of simulations starting at the given location. If we set
the latent space quantities to zero as well (¢,,; = 0, ¢z.,, = 0), the
results are unchanged. This indicates that our split loss is indeed
enforced, such that zero inputs lead to zero encoded quantities.

In summary, we find that both density and velocity fields are re-
constructed holistically, i.e., both quantities are reconstructed as a
whole, are aligned, and feature a similar reconstruction quality in-
dependent of which encoded quantity is set to zero. While our latent
space is subdivided, both encoder and decoder provide a holistic
view on the en- and decoding process. However, the encoded veloc-
ity provides a larger amount of essential information, such that the
decoder is able to reconstruct both quantities even when ¢y, = 0.

(© 2020 The Author(s)
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Figure 12: A circular solid obstacle, unseen during training,
is placed in the upper right. The prediction of our proposed
method (center) is stable and realistic. The prediction-only
approach (top) is not able to capture the obstacle.
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Figure 13: An additional inflow, unseen in training, is placed
during prediction. In contrast to our approach (center), the
prediction only approach (top) is not able to capture the sec-
ond inflow.

6. Results

We demonstrate the effectiveness of the subdivided latent space
with several generalization tests. As shown in Figure 12, our
method is capable of predicting the fluid motion even when an ob-
stacle is placed in the domain. Due to our split latent space, the ob-
stacle can be passively injected into the prediction process by sup-
plying an encoded density field with a masked out obstacle region.
We replaced the density part of the latent space with its encoded
state after advecting it with our predicted velocity field. Taking
into account that the network has not encountered obstacles dur-
ing training, the prediction remains stable and realistic even when
majorly altering parts of the latent space encodings to include the
newly placed obstacle. The prediction without injection of exter-
nal information is not capturing the obstacle and thereby deviates
from the ground truth. With this test we have shown that the spa-
tial decoder distinguishes between the two input quantities and still
outputs reasonable velocity fields.

In Figure 13 we show that our method is capable of predicting
the fluid motion even when a new inflow region is added that was
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Figure 14: Four different 3D moving smoke predictions. The
movement is completely predicted by our proposed method.

not seen while training. Our network performs reasonably well in
all tested experiments due to the reinjection capabilities provided
by the latent space subdivision, even though the generalization
scenes were not part of the training data.

To demonstrate the capabilities of our method, we trained a 3D
version of our network on the moving smoke scene; selected frames
are shown in Figure 14. Additionally, we compared the runtime
performance of our networks to the regular solver that was used for
generating the training data (see Table 4). Even though we need to
decode and encode the density field due to our reinjection method
and thereby copy it from GPU to CPU memory, we still arrive at
a performance measure of 0.059 seconds for an average prediction
step in our 3D scene. For comparison, a traditional multi-threaded
CPU-based solver takes 0.472 seconds on average for a simulation
step for the same scenes.

Table 4: Average timing of a simulation step computed via
regular pressure solve and our Vel prediction scheme. While
the former scales with data complexity, ours scales linearly
with the domain dimension. Average of 5 scenes with 100
simulation steps each. Measured on Intel(R) Xeon(R) ES-
1650 v3 (3.50GHz) and Nvidia GeForce RTX 2070.

Scene Resolution Type Solve [s]  Total [s]

Rot. mov. cup 3D 483 Simulation 0.891 0.960
Rot. mov. cup 3D 483 Prediction 0.074 0.156
Mov. smoke 3D 483 Simulation 0.472 0.537
Mov. smoke 3D 483 Prediction 0.059 0.132
Rot. mov. cup 642 Simulation 0.041 0.044
Rot. mov. cup 642 Prediction 0.012 0.019
Rot. cup 482 Simulation 0.018 0.019
Rot. cup 48? Prediction 0.011 0.015

7. Conclusion & Future Work

We have demonstrated an approach for subdividing latent spaces in
a controlled manner, to improve generalization and long-term sta-
bility of physics predictions. In combination with our time-aware
end-to-end training that learns a reduced representation together
with the time prediction, this makes it possible to predict sequences
with several hundred roll-out steps. In addition, our trained net-
works can be evaluated very efficiently, and yield significant speed-
ups compared to traditional solvers. As future work, we believe it
will be interesting to further extend the generalizing capabilities of
our network such that it can cover a wider range of physical be-
havior. In addition, it will be interesting to explore different archi-
tectures to reduce the hardware requirements for training large 3D
models with our approach.
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Supplemental Document for
Latent Space Subdivision:
Stable and Controllable Time Predictions
for Fluid Flow

Appendix A: Evaluation
Prediction Window Size

The prediction window w describes the count of consecutive time
steps that are taken as input by the temporal prediction network. In
our comparison we tested window sizes ranging from 2 over 3 up
to 4 consecutive input steps. The results in terms of PSNR values
are displayed in Table 5 and Table 6.

Table 6: Prediction win-
dow w comparison VelDen

Table 5: Prediction win-
dow w comparison Vel

w PSNRu PSNRp w PSNRu PSNRp
4 2967 17.04 4 2998 1824
3 2979 16.87 3 2952 17.84

2 30.28 17.66 2 29.11 17.12

It becomes apparent that the prediction-only approach (VelDen)
benefits from a larger input window, whereas the Vel approach with
reinjected external information performs best with a smaller input
window.

Latent Space Split Percentage

We evaluated the impact of the latent space split percentage on
three of our datasets. Therefore, we trained multiple models with
different split percentages on the individual datasets. The compar-
ison for our moving smoke scene is shown in Table 7 and Table 8.
The latter are the results of the prediction-only evaluation (denoted
VelDen), whereas the first table presents the results of our reinjected
density approach (denoted Vel). In this experiment all split versions
are outperformed by the No-Split version in the prediction-only
setup with PSNR values of 29.71 and 18.03 for velocity and den-
sity, respectively.

Table 8: LS split compari-

Table 7: LS split compari- son VelDen; moving smoke

son Vel; moving smoke

LSSplit PSNRu PSNRp

LS Split PSNRu PSNR p -
No-Split 29.71 18.03

0.33 28.07 15.84
0.33 28.49 16.63

0.5 29.28 16.49
0.5 29.06 17.38

0.66 30.28 17.66

0.66 29.11 17.12

Table 9: LS split compari-
son Vel; rotating cup

LS Split  PSNRu PSNRp

0.33 36.67 28.46
0.5 36.66 29.22
0.66 38.52 29.73

Table 11: LS split compar-
ison Vel; rotating and mov-

ing cup

Table 10: LS split compar-
ison VelDen; rotating cup

LS Split PSNRz PSNR p

No-Split ~ 37.90 22.68
0.33 37.52 25.01
0.5 36.77 25.13
0.66 37.57 25.32

Table 12: LS split compar-
ison VelDen; rotating and
moving cup

LS Split PSNRu PSNR p LS Split PSNRu PSNRp

0.33 35.67 25.10 0.33 37.89 26.45
0.5 36.94 26.59 0.5 37.30 26.16
0.66 36.50 26.25 0.66 37.56 26.14

Table 13: No-Split and LSS
comparison; rotating cup;
100 time steps

LSSplit  Type PSNRu PSNRp

No-Split VelDen 37.90 22.68
0.66 (ours)  VelDen 37.57 25.32

0.66 (ours) Vel 38.52 29.73

In contrast, the networks trained on the rotating cup dataset behave
different as shown in Table 9 and Table 10. The classic No-Split
version is outperformed by all other split versions in terms of den-
sity PSNR values in the prediction-only (VelDen) setup. In the rein-
jected density evaluation (Vel), the benefit of latent space splitting
becomes even more apparent when comparing the PSNR values
of velocity, 38.52 and density, 29.73 of the 0.66 network with the
velocity PSNR of 37.90 and density PSNR 22.68 of the No-Split
version.

No-Split vs. Latent Space Subdivision

In this section we present additional results for our rotating cup
dataset. See the main document for a long-term comparison of No-
Split vs. LSS for our more complicated moving and rotating cup
dataset. In Table 13 we compare the temporal prediction perfor-
mance of a No-Split version and our 0.66 LSS version over a time
horizon of 100 simulation steps. Our LSS 0.66 version with a den-
sity PSNR value of 29.73 clearly outperforms the No-Split version
with a density PSNR value of 22.68.

Generalization

Additionally, we show in Figure 15 that our method recovers from
the removal of smoke in a certain sink-region and is capable of
predicting the fluid motion.

(© 2020 The Author(s)
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Figure 15: An sink is placed in the upper right of our moving smoke scene. This was unseen during training. The prediction by our
proposed method remains stable and realistic. In the second row density reinjection was applied. In the top row no external information

was injected. Thus, the sink can’t be processed by the network.

Appendix B: Fluid Flow Data

Our work concentrates on single-phase flows, modelled by a
pressure-velocity formulation of the incompressible Navier-Stokes
equations as highlighted in Section 2. Thereby, we apply a clas-
sic NS solver to simulate our smoke flows based on R. Bridson
[Bril5]. In addition to Section 4, more information about the sim-
ulation procedure is provided in the following.

Simulation Setup

The linear system for pressure projection is solved with a conjugate
gradient method. The conjugate gradient (CG) solver accuracy is
set to 1-10™* for our moving smoke dataset, whereas an accuracy
of 11073 is utilized for the moving cup datasets. We generated all
our datasets with a time step of 0.5. Depending on the behavioral
requirements of our different experiments with rising, hot and sink-
ing, cold smoke we use the Boussinesq model with the smoke den-
sity in combination with a gravity constant of (0.0,—4-1073,0.0)
for the moving and rising smoke and (0.0, 1-10~2,0.0) for the ro-
tating cup dataset. To arrive at a more turbulent flow behavior, the
gravity constant was set to (0.0,1-1072,0.0) for our moving and
rotating cup dataset. We do not apply other forces or additional vis-
cosity. We purely rely on numerical diffusion to introduce viscosity
effects.

In combination with the quantities required by our classic NS
setup, namely flow velocity u, pressure p and density p, we also
need a flag grid f, an obstacle velocity field u,,, and the cor-
responding obstacle levelset for our obstacle supporting scenes.
Thereby our density p is passively advected within the flow ve-
locity u.

To handle the obstacle movement accordingly, we calculate the

(© 2020 The Author(s)
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obstacle velocity field by evaluating the displacement per mesh ver-
tex of the previous to the current time step and applying the interpo-
lated velocities to the according grid cells of the obstacle velocity
field. Afterwards, the obstacle velocity field values are averaged to
represent a correct discretization.

In Algorithm 1 the simulation procedure of the moving smoke
dataset is shown. For our obstacle datasets the procedure in Algo-
rithm 2 is used, with the prediction algorithm given in Algorithm 3.
Boundary conditions are abbreviated with BC in these algorithm.

Algorithm 1 Moving smoke simulation

1: while r —+7+1 do

2: p < applyInflowSource(p, s)
3 p < advect(p, u)

4: u < advect(u, u)

5 f < setWallBCs(f, u)

6 u < addBuoyancy(p, u, f, g)
7 p < solvePressure(f, u)

8: u < correctVelocity(u, p)

9: end while

Training Datasets

In Figure 16, Figure 17 and Figure 18 multiple simulations con-
tained in our training data set are displayed.
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Algorithm 2 Rotating and moving cup

10:
11:

1
2
3
4:
5:
6
7
8
9

: while t -1+ 1 do

p < applyInflowSource(p, s)
p < advect(p, u)
u < advect(u, u)
u,ps < computeObstacleVelocity(obstacle’, obstacle
f « setObstacleFlags(obstacle')
f < setWallBCs(f, u, obstacle', u,ps)
u < addBuoyancy(p, u, f, 8)
p < solvePressure(f, u)
u <+ correctVelocity(u, p)
end while

t+1)

Algorithm 3 Rotating and moving cup network prediction Vel

10:
11:
12:
13:

1
2
3
4:
5:
6.
7
8
9

: while t - r+1 do

p < applyInflowSource(p, s)

p < advect(p, u)

u < advect(u, u)

u,p,s < computeObstacleVelocity(obstacle', obstacle

f + setObstacleFlags(obstacle')

f — setWallBCs(f, u, obstacle', uyps)

&'« encode(it’, p")

¢ [ vel7cden]

#H predict(é 71, )

! p' !« decode(@ ) > p' ! is not used
H'l — ™! > overwrite the velocity with the prediction

t+1)

end while
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Figure 16: Four example sequences of our moving smoke
dataset. For visualization purposes we display frames 20 to
200 with a step size of 20 for the respective scenes. The smoke
density is shown as black.
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Figure 17: Three example sequences of our rotating cup
dataset. For visualization purposes we display frames 40 to
180 with a step size of 20 for the respective scenes. The cup-
shaped obstacle is highlighted in blue, whereas the smoke
density is shown as black.
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Figure 18: Three example sequences of our rotating and
moving cup dataset. For visualization purposes we display
frames 40 to 180 with a step size of 20 for the respec-
tive scenes. The cup-shaped obstacle is highlighted in blue,
whereas the smoke density is shown as black.
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