
Implicit Ray Casting of the Parallel Vectors Operator
Ramon Witschi and Tobias Günther

Department of Computer Science, ETH Zurich

ABSTRACT

Feature extraction is an essential aspect of scientific data analysis, as
it allows for a data reduction onto relevant structures. The extraction
of such features from scalar and vector fields, however, can be com-
putationally expensive and numerically challenging. In this paper,
we concentrate on 3D line features in vector fields that are defined by
the parallel vectors operator. Common examples are vortex corelines
and hyperbolic trajectories, i.e., lines around which particles are ro-
tating, or from which particles are repelled and attracted locally the
strongest. In our work, we use a GPU volume rendering framework
to calculate the lines on-the-fly via a parallel vectors implementation
in the volume rendering kernels. We achieve real-time performance
for the feature curve extraction, which enables interactive filtering
and parameter adjustment.

Keywords: Scientific visualization, vortex extraction, parallel
vectors

1 INTRODUCTION

This is the author’s preprint.
The definite version will appear on IEEE Xplore.

Vector fields can contain numerous features, such as vortices [8,
28, 30] and hyperbolic trajectories [12, 16, 24, 27]. The study of
such features remains important in many application areas, such as
computational fluid dynamics, medicine and various engineering
disciplines. For the definition of line features, the parallel vectors
operator [23] proved to be a versatile formalism, which identifies
locations at which two vector fields are parallel. Past research in
this area revealed two main classes of extraction approaches: local
techniques that decide per voxel if a feature curve exists [18, 23, 30],
and integration-based techniques that trace out the curves by integra-
tion in a derived vector field [1, 3, 29, 31, 34]. However, the precise
numerical extraction of those curves is often time-consuming, which
makes adjustments of the visualization a posteriori cumbersome. For
this reason, feature curves are typically first extracted in a preprocess
and are afterwards filtered and visualized.

In this paper, we follow a different approach. We devise an
efficient preview rendering technique, which can be used during
parameter exploration of the feature definition. This is especially
time-saving when the underlying fields are parameter-dependent,
for instance reference frame parameters [2, 11] or the size of finite-
sized particles [7]. Afterwards, explicit line geometry can be ex-
tracted either with a particle-based approach [19] or with traditional
grid-based subdivision [23]. For efficient preview rendering, we
implement a parallel vectors ray caster directly on the GPU by cast-
ing the feature curves implicitly. Rather than phrasing the parallel
vector line computation as an extremal line extraction as done by
Kindlmann et al. [19], we phrase it as a root-finding problem. Our
lines are implicitly represented by spheres or cylinders in order to
resemble tubes, and the GPU-based real-time ray tracing is capable
of varying tube radius, color and transparency for shading based
on local properties. The key to an efficient implicit ray casting of
parallel vector features is two-fold. First, an empty cell skipping is
required to avoid work in voxels that cannot contain parallel vectors

solutions. To do so, we transform the cross product of the trilin-
early interpolated vector fields into Bézier-Bernstein basis and use
the convex hull property to discard voxels for which roots cannot
exist in the cross-product components. Second, we need an efficient
method to determine a nearby parallel vectors feature curve in order
to intersect the view ray implicitly with the curve representation.
For this, we apply an efficient sectional Newton descent solver. Our
contributions are

• the first implicit ray caster of parallel vectors feature curves
that reaches real-time performance for interactive parameter
exploration and preview,

• two acceleration methods that are tailored to the extraction of
parallel vector solutions in a direct volume renderer, namely
empty-space skipping through tensor product culling and a
sectional Newton descent for implicit rendering of the feature
curves.

The novelty of the method lies in the application of tensor product
culling and the sectional Newton descent in an interactive ray caster
to implicitly render parallel vectors solutions.

2 RELATED WORK

2.1 Parallel Vectors Operator
The parallel vectors (PV) operator is a versatile operator that was
introduced by Peikert and Roth [23] in order to describe a number
of feature curves in scalar and vector fields. Given two vector fields
v(x),w(x) : Rn→ Rn, the PV operator is defined as follows

v ‖ w = {x ∈ Rn | v(x) = 0}∪{x ∈ Rn | ∃λ ∈ R : v(x) = λw(x)}

In other words, given two vector fields v(x) and w(x), the parallel
vectors operator returns a set of points, representing all locations at
which those two vector fields are parallel, i.e., linearly dependent. An
equivalent formulation in three dimensions is given by localization
of the roots of the cross product of v and w, i.e.:

v ‖ w ⇔ {x ∈ Rn | v(x)×w(x) = 0} (1)

A number of algorithms have been proposed to extract the features
defined by the PV operator, which can be classified into local and
integration-based techniques. Among the local methods, Peikert and
Roth [23] showed that the solution on the faces of piece-wise linear
vector fields is an eigenvector problem, as used for instance by Ger-
rits et al. [5]. For trilinear vector fields, Newton-Raphson iterations
can be applied on each cell face to descend from an initial solution.
Ju et al. [17] proposed a parity test to determine the number of paral-
lel vector solutions on the face of a cell. In higher dimensions [9,21]
tensor products have been used to recursively subdivide cells, nar-
rowing down the location of the parallel vectors solution. Recently,
a high-dimensional dependent vectors operator was introduced by
Hofmann and Sadlo [14]. Among the integration-based methods,
feature flow fields [32] have been used to track parallel vector solu-
tions [31]. Van Gelder and Pang [34] extended the above approach,
accounting for a direction change of the PV solution. Weinkauf et
al. [36] proposed a stabilization to reduce the integration error by
adding a vector field that guides back to the parallel vectors solution.
Pagot et al. [22] searched for parallel vector lines in higher-order

ieeexplore.ieee.org

v ‖ a v ‖ b v ‖ a v ‖ b

Figure 1: Comparison of parallel vectors solutions to v ‖ a and to
v ‖ b. Here, shown with direct volume rendering of vorticity for the
SWIRLING JET (left) and the BORROMEAN RINGS (right).

vector fields. Gerrits et al. [5] searched for the approximate par-
allel vectors solution in an ensemble of flow fields, for which they
found the lines at which the mean field and the eigendirection with
highest variance are aligned. The approximate PV solution of an
entire ensemble is thereby reduced to a single standard PV problem.
Hofmann and Sadlo [15] considered an n-dimensional vector field
with k additional vector fields. They searched for the k-dimensional
space, where all n-dimensional vector fields are linearly dependent,
which is expressed as roots of the wedge product. For this, they
iterate the (n− k)-faces of the n-dimensional grid and apply Gauss-
Newton iterations to find one of the isolated intersection points of
the k-dimensional solution space. The isolated points are later recur-
sively connected to form manifolds. Hofmann and Sadlo formulated
a general feature extraction algorithm for high-dimensional vector
fields, while we accelerate a special case: the parallel vectors oper-
ator for n = 3 and k = 1. In contrast to the approaches above, we
extract the parallel vectors solutions implicitly and along a ray rather
than on the faces of a discretization (tetrahedra or voxels).

In the same spirit, Kindlmann et al. [19] proposed an implicit ray
casting method of extremal lines and surfaces that uses a standard
Newton descent scheme. Since they described the parallel vector
solution as extremal line of P(x), along which the dot product of the
two normalized vector fields is +1 or −1:

P(x) =
v(x)
‖v(x)‖

· w(x)
‖w(x)‖

(2)

their approach needs second-order derivatives of v/‖v‖ and w/‖w‖.
The division by the norm can cause problems, when ‖v‖ = 0 or
‖w‖ = 0. For example, in case of vortex coreline extraction in
2D space-time, Sujudi-Haimes [30] is directly Galilean-invariant.
However, in this case, the PV solution is equivalently found as
location with zero acceleration [8], i.e., ‖w‖= 0. Our method, on
the other hand, seeks roots of the cross product of the two vector
fields v and w, which only requires first-order derivatives of v and
w.

2.2 Feature Lines in Scientific Visualization

The parallel vectors operator lends itself to define many feature lines
that are of interest in scientific visualization problems. We refer to
Kindlmann et al. [19] for the extraction of extremal features and to
Peikert and Roth [23] for an overview of feature curves expressed
by the parallel vectors operator. Given a steady vector field v(x),
three derived quantities are needed to define feature curves. With
∇ = ∂

∂x being the nabla operator, we use Jacobian J(x), acceleration
a(x) and jerk vector b(x):

J(x) = ∇v(x), a(x) = J(x) ·v(x), b(x) = ∇a(x) ·v(x) (3)

In this paper, we extract first-order feature curves using v ‖ a [27,30]
and second-order feature curves using v ‖ b [28], as shown in Fig. 1.
The feature curve segments are categorized by the eigenvalues of
the Jacobian into vortex corelines (eigenvalues are complex) and
bifurcation lines (attraction and separation are present) [27, 30].

3 REAL-TIME RAY CASTING OF LINE FEATURES

Our goal is to efficiently render the solutions to the parallel vectors
operator within a GPU-based volume ray casting framework. Input
to our method are the two vector fields v(x) and w(x), which are
both discretized onto a regular grid. The output of our approach is an
image, in which the solutions v(x) ‖ w(x) are visually represented
by many spheres or cylinders in order to resemble tubes. In order
to achieve interactivity, we employ two acceleration strategies: we
pre-compute a filter mask for empty space skipping and we use a
sectional Newton descent to quickly descend to a PV solution. Fig. 2
illustrates our pipeline steps in the steady DELTA WING flow. In
(a), streamlines of the input vector fields v and w are shown. The
pre-computed filter mask is visible in (b). Our solution is compared
to an offline method in (c). Finally, (d) shows our solution along with
a volume rendering of vorticity and selected streamlines. We refer
to the additional material for pseudocode of the various steps. In the
following, we discuss the implicit ray casting and its acceleration
strategies in more detail.

3.1 Filter Mask for Empty Space Skipping
The runtime of our algorithm is mainly determined by the search
for a nearby parallel vectors solution inside the volume rendering
kernels. In order to avoid unnecessary work, we pre-compute a filter
field s(x) that allows us to identify voxels in which a PV solution
is guaranteed to not exist. These voxels can be skipped during ray
marching. We assume that the vector fields v(x) and w(x) are both
trilinearly interpolated from a grid. Since PV solutions are curves,
we know that the curves will intersect the faces of the voxels. In
order to determine whether a solution passes through a voxel, it is
sufficient for us to check whether any of the faces contains a PV
solution. In principle, it is possible that a PV line exists inside a
voxel and never leaves it. We will ignore those cases, since we are
interested in feature curves larger than a voxel. On the face of each
voxel, the vector fields v(x) and w(x) are interpolated bilinearly.
Parallel vector solutions are locations at which the cross product
vanishes:

f(x,y) = v(x,y)×w(x,y) =

 f1(x,y)
f2(x,y)
f3(x,y)

=

0
0
0

 (4)

Finding the locations (x,y) therefore becomes a root-finding prob-
lem. A simple way to test whether the scalar components fk(x,y)
can contain a root for any x,y ∈ [0,1] is to transform the scalar fields
into a tensor product representation [21]. Since a tensor product
surface always stays within the convex hull of its control polygon, it
is sufficient to test whether all Bézier control points are positive or
negative. With the Bernstein basis functions Bn

i (t) =
(n

i
)
t i(1− t)n−i,

we convert each component of Eq. (4) into a bi-quadratic tensor
product surface:

fk(x,y) =
2

∑
i=0

2

∑
j=0

Bn
i (x) ·Bn

j(y) ·bk
i, j (5)

Note that a bi-quadratic representation is needed, since the cross
product of two bilinear fields in Eq. (4) is bi-quadratic. The Bézier
control polygons of the three scalar components f1, f2 and f3 are
illustrated in Fig. 3. The above PV test can only tell whether a
PV solution cannot exist. In order to find the precise location, the
quad would have to be recursively subdivided. We use this recursive
approach to obtain the ground truth PV locations or when the user
wishes to extract an explicit parallel vectors solution. For our filter
s(x), we do not perform the subdivisions and instead compute a
binary flag that determines whether a solution may exist inside a
voxel. Since we are ultimately placing spheres or cylinders at PV
lines, we grow the masked regions by the size of the maximum

(a) Input vector fields v (left) and w (right) (b) Filter mask (c) Ground truth (left) and ours (right) (d) with vorticity

Figure 2: Overview of our implicit parallel vectors ray casting pipeline. (a) Input to our ray casting module are the two vector fields v and w.
(b) We compute a filter mask that allows us to do empty-space skipping. (c) Our ray caster and an offline computation method produce the
same result. (d) The implicitly ray casted PV curves are shown interactively together with a context volume rendering and streamlines.

Figure 3: Visualization of the three cross product components
f1(x,y), f2(x,y) and f3(x,y) (blue) of two bilinearly interpolated
vector fields, and their corresponding Bézier control polygons (red).
If all control points are above or below zero for any of the compo-
nents, the blue surface cannot cross zero, i.e., there is no parallel
vectors solution.

radius that we are going to apply. An example of a filter mask is
shown in Fig. 2b.

3.2 Ray Marching
We integrate our implicit parallel vectors ray caster in a standard
direct volume renderer [10] with early ray termination. We use
a GPU ray casting framework that parallelizes the computation
across the pixels on the screen and apply a step size of half a voxel
to avoid aliasing. At a given location x along the ray, we first
perform a lookup from the filter field s(x) to determine whether the
parallel vectors search can be skipped, either because no parallel
vectors solution can exist or because a custom filter does not apply.
If x passes the filter criterion, it is treated as a seed point for a
root-finding scheme, which potentially returns the location of a
root x∗. If a root has been found, the line geometry has to be
spanned. A common approach is to use cylinders [13], for which
we need to determine the orientation vector t in order to align the
cylinder with the direction of the feature line. We used the feature
flow field [32] of Theisel et al. [31] which they proposed to trace
parallel vector solutions, i.e., they constructed a derived vector field
that is tangential to the feature curve by the fact that it must be
perpendicular to the gradients of the components of f = v×w at root
x∗. The radius of the cylinder is fixed globally or can be mapped via
transfer function from a scalar field. Note that the root-finding can
be terminated if the search is taking us too far away from the ray
and a cylinder intersection cannot exist. If a cylinder intersection is
found, the fragment is shaded. Optionally, transparency is assigned
via transfer function. The quality of the visualization can be traded
for performance by varying the ray marching step size, as shown in
the additional material.

3.3 Locating Feature Curves
The most performance-critical component of our algorithm is the
fast localization of a nearby parallel vectors solution. With Eq. (1),

we have seen that the search for a parallel vectors solution is a
root-finding problem in 3D, i.e.:

v(x)×w(x) = f(x) =

 f1(x)
f2(x)
f3(x)

=

0
0
0

 (6)

In contrast to the previous sections, we are now searching for a
solution in 3D, instead of a solution on the 2D face of a voxel.

In general, the roots of a multi-variate function can be found with
the Newton-Raphson algorithm [26], which requires the computation
of the pseudoinverse of ∇f(x), since this matrix becomes singular
on the PV solution [34]. In order to avoid the computationally
expensive calculation of the pseudoinverse of a 3×3 matrix, we use
the following simpler algorithm.

Sectional Newton Descent. Schindler et al. [29] proposed a
predictor-corrector method to trace a parallel vectors solution, which
includes a corrector part that descends onto a nearby PV line that
we use as follows. The Jacobian ∇f of the cross-product f in Eq. (6)
tells us by first-order Taylor approximation how f changes when
stepping in a certain direction d = xi+1−xi:

f(xi+1)≈ f(xi)+∇f(xi) · (xi+1−xi) (7)
= f(xi)+∇f(xi) ·d (8)

Our goal is to find roots of f. Requesting that the next value f(xi+1)
vanishes to zero, i.e., f(xi+1) = 0, gives:

∇f(xi) ·d =−f(xi) (9)

Since the third component of the cross-product vanishes to zero if
the first two components are zero [29] (except for the special case of
v(x) 6= 0, w(x) 6= 0 and v3 = w3 = 0 [29], see additional material),
it is sufficient to consider only two of the components. To maximize
the improvement we select the two components fk, fl with largest
magnitude of the cross product of the gradients:

k, l = argmax
k,l∈{0,1,2}

‖∇ fk(xi)×∇ fl(xi)‖2 , s.t. k 6= l (10)

which maximizes the gradient norms and the angle between the
gradients, since ‖∇ fk(xi)×∇ fl(xi)‖2 = ‖∇ fk(xi)‖2 · ‖∇ fl(xi)‖2 ·
sinθk,l . Maximizing the angle as well avoids the selection of linearly
dependent gradients. We can expect the biggest change in direction d
to be a linear combination of the two gradients maximizing Eq. (10).
We can solve for d directly using

d =−
(
∇ fk(xi), ∇ fl(xi)

)
·A-1 ·

(
fk(xi)
fl(xi)

)
(11)

Grid PV baseline pre-compute Ours, far view in fps. Ours, close-up in fps.
Data Set Resolution in sec. Filter s(x) in sec. w/ Filter w/o Filter w/ Filter w/o Filter
Stuart Vortex 128×128×128 0.70 0.07 11.71 2.60 16.15 3.84
Borromean Rings 128×128×128 0.87 0.07 10.91 4.17 7.85 2.51
Cylinder 380×47×100 1.52 0.18 20.73 7.89 13.17 3.98
Swirling Jet 201×221×201 3.28 0.32 6.33 2.34 5.19 1.48
Delta Wing 250×125×100 0.89 0.18 11.03 10.56 11.63 10.21

Table 1: For each data set: grid resolution, time to compute a baseline with tensor product subdivision (until 10−5 residual), time for the one-
time filter field precomputation, frames per second (fps) for our implicit ray-marching using the NVIDIA IndeX CUDA kernel implementation
with a ray traversal step size of half a voxel, 1000×1000 resolution, and 10 iterations of sectional Newton descent, with (w/) and without (w/o)
filter fields. All timings for v ‖ a without volume rendering or LIC.

Figure 4: Visualization of the 2D STUART vortex in 2D space-time,
i.e., time is mapped to the vertical spatial dimension.

Figure 5: Visualization of PV solutions in the CYLINDER flow.

where A is a symmetric matrix

A =

(
‖∇ fk(xi)‖2

2 ∇ fk(xi) ·∇ fl(xi)

∇ fl(xi) ·∇ fk(xi) ‖∇ fl(xi)‖2
2

)
(12)

Derivations are in the additional material. For Eq. (11), we symboli-
cally invert the positive semi-definite 2×2 matrix.

4 RESULT

Next, we apply our method to a number of vector fields. Note that
while the parallel vectors operator is defined for 3D steady flows, it
can be applied to unsteady flows with certain assumptions [6] or after
certain transformations [2, 11]. Thus, we can apply our approach to
3D steady flows (in space) and 2D unsteady flows (in space-time).

4.1 Datasets
We use a 2D version [6] of a uniformly-translating Stuart vortex [35].
In Fig. 4, we show the vortex corelines (green) and the bifurcation
line (yellow) in the domain [−6,3]× [−2,2]× [1,3]. The swirling
strength, i.e., the imaginary part of the Jacobian, is visualized with
direct volume rendering, indicating that swirling motion is present
near the vortex corelines. In addition, pathlines are shown in 2D
space-time, and a LIC slice is shown, for which the unit translation
was subtracted from the u component to reveal the critical points.
The parallel vector lines pass through critical points of the LIC slice.

In Fig. 5, we study a numerically simulated unsteady 2D vector
field [6, 25]. Since vortices move with nearly constant speed, we as-
sume Galilean invariance extracting vortex corelines and bifurcation
lines in 2D space-time with the criterion v ‖ a.

The DELTA WING [33] was provided by Markus Rütten. To filter
the vortex corelines from the remaining PV solution, we apply a
swirling strength filter of 0.1. Results are shown in Fig. 2, where
the inputs, filter mask, a ground truth comparison and a context
visualization of vorticity are found.

All previous examples only applied the first-order vortex criterion
v ‖ a. In the following, we apply our implicit parallel vectors ray

caster to the numerically more challenging criterion v ‖ b. For this,
we visualize all PV solution in a magnetic field [4]. For comparison,
we show the solutions to v ‖ a and the solutions to v ‖ b in Fig. 1
(bottom) together with a volume rendering of the vorticity.

Our last example contains a 3D unsteady swirling jet flow that
undergoes a vortex breakdown [20]. In this flow, we visualize
parallel vectors solutions of a single time slice, i.e., we visualize
streamline-oriented behavior and not pathline-oriented behavior. We
demonstrate the unfiltered solutions to v ‖ a and v ‖ b in Fig. 1 (top).

4.2 Performance
We tested our method on an Intel Core i7-8700k, with 6 physical
cores clocked at 3.7Ghz, 48GB RAM and an RTX2080TI with
11GB VRAM. In principle, our approach can be implemented in
any existing volume ray marcher, see Alg. 2 in additional material.
We implemented the method with floating point precision both in
Nvidia Index using CUDA kernels, as well as in Direct3D using
pixel shaders. An OpenGL implementation would be likewise possi-
ble. All performance measurements in Table 1 are reported for the
CUDA implementation. Our method includes a pre-processing step
to determine the filter mask for empty space skipping, for which
the computation time is listed. Across all examples, we obtained
a frame rate of at least 6.3 fps when looking from outside at the
domain, and at least 5.1 fps when moving into the domain. Without
empty space skipping, the frame rate dropped in the worst case to
1.4 fps. The worst performance occurred in the SWIRLING JET due
to its dense coverage with parallel vectors solutions. In other vector
fields, the empty space skipping could be applied more often, since
the parallel vectors solutions were more sparse, resulting in a better
performance. The scaling for varying viewport resolutions is shown
in the additional material, demonstrating interactive performance.

5 CONCLUSION

In flow visualization, we are frequently interested in line features,
which are usually extracted and visualized in two separate steps. In
this paper, we integrated the feature extraction into the rendering
algorithm in an implicit way. To this end, we implemented the
parallel vectors operator inside a direct volume renderer, which is
accelerated by the NVIDIA IndeX API. In order to accelerate the
computation, we applied two optimization strategies: the utilization
of a filter field that analyses the tensor product representation of the
cross product components of the parallel vectors, and a sectional
Newton descent algorithm that quickly identifies a nearby parallel
vectors solution, allowing us to implicitly create a geometry that the
view ray is intersected with. Implicit methods have the advantage
that they only compute the parallel vectors problem, where the
structures are visible. In the future, we plan to investigate adaptive
methods to march through empty spaces quicker.

ACKNOWLEDGMENTS

We thank Alexander Kuhn and the IndeX team at Nvidia Berlin
for the fruitful discussions. This work was supported by the
Swiss National Science Foundation (SNSF) Ambizione grant no.
PZ00P2 180114.

REFERENCES

[1] R. Bader, M. Sprenger, N. Ban, S. Rüdisühli, C. Schär, and T. Günther.
Extraction and visual analysis of potential vorticity banners around
the alps. IEEE Transactions on Visualization and Computer Graphics
(Proc. IEEE Scientific Visualization 2019), 26:256–259, 2020. doi: 10.
1109/TVCG.2019.2934310

[2] I. Baeza Rojo and T. Günther. Vector field topology of time-dependent
flows in a steady reference frame. IEEE Transactions on Visualization
and Computer Graphics (Proc. IEEE Scientific Visualization 2019),
26:280–290, 2020. doi: 10.1109/TVCG.2019.2934375

[3] D. Banks and B. Singer. A predictor-corrector technique for visu-
alizing unsteady flow. Visualization and Computer Graphics, IEEE
Transactions on, 1:151 – 163, 07 1995. doi: 10.1109/2945.468404

[4] S. Candelaresi and A. Brandenburg. Decay of helical and nonheli-
cal magnetic knots. Phys. Rev. E, 84:016406, 2011. doi: 10.1103/
PhysRevE.84.016406

[5] T. Gerrits, C. Rössl, and H. Theisel. An approximate parallel vectors
operator for multiple vector fields. Computer Graphics Forum (Proc.
EuroVis 2018), 37(3):315–326, 2018. doi: 10.1111/cgf.13422

[6] T. Günther, M. Gross, and H. Theisel. Generic objective vortices for
flow visualization. ACM Transactions on Graphics (Proc. SIGGRAPH),
36(4):141:1–141:11, 2017. doi: 10.1145/3072959.3073684

[7] T. Günther and H. Theisel. Vortex cores of inertial particles. IEEE
Transactions on Visualization and Computer Graphics (Proc. IEEE
Scientific Visualization 2014), 20(12):2535–2544, dec 2014. doi: 10.
1109/TVCG.2014.2346415

[8] T. Günther and H. Theisel. The state of the art in vortex extraction.
Computer Graphics Forum, 37:149–173, 2018. doi: 10.1111/cgf.13319

[9] T. Günther and H. Theisel. Objective vortex corelines of finite-sized ob-
jects in fluid flows. IEEE Transactions on Visualization and Computer
Graphics (Proc. IEEE Scientific Visualization 2018), 25(1):956–966,
2019. doi: 10.1109/TVCG.2018.2864828

[10] M. Hadwiger, P. Ljung, C. R. Salama, and T. Ropinski. Advanced
illumination techniques for GPU-based volume raycasting. In ACM
SIGGRAPH 2009 Courses, SIGGRAPH ’09, pp. 2:1–2:166. ACM,
New York, NY, USA, 2009. doi: 10.1145/1667239.1667241

[11] M. Hadwiger, M. Mlejnek, T. Theußl, and P. Rautek. Time-dependent
flow seen through approximate observer killing fields. IEEE Transac-
tions on Visualization and Computer Graphics, 25(1):1257–1266, Jan
2019. doi: 10.1109/TVCG.2018.2864839

[12] G. Haller. Finding finite-time invariant manifolds in two-dimensional
velocity fields. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 10(1):99–108, 2000. doi: 10.1063/1.166479

[13] M. Han, I. Wald, W. Usher, Q. Wu, F. Wang, V. Pascucci, C. D. Hansen,
and C. R. Johnson. Ray tracing generalized tube primitives: Method
and applications. Computer Graphics Forum, 38(3):467–478, 2019.
doi: 10.1111/cgf.13703

[14] L. Hofmann and F. Sadlo. The dependent vectors operator. Computer
Graphics Forum, 38(3):261–272, 2019. doi: 10.1111/cgf.13687

[15] L. Hofmann and F. Sadlo. The dependent vectors operator. Computer
Graphics Forum (Proc. EuroVis 2019), 38(3):261–272, 2019. doi: 10.
1111/cgf.13687

[16] L. Hofmann and F. Sadlo. Extraction of distinguished hyperbolic
trajectories for2d time-dependent vector field topology. Computer
Graphics Forum (Proc. EuroVis), p. in print, 2020.

[17] T. Ju, M. Cheng, X. Wang, and Y. Duan. A robust parity test for
extracting parallel vectors in 3D. IEEE Transactions on Visualization
and Computer Graphics, 20(12):2526–2534, Dec 2014. doi: 10.1109/
TVCG.2014.2346412

[18] M. Kern, T. Hewson, F. Sadlo, R. Westermann, and M. Rautenhaus. Ro-
bust detection and visualization of jet-stream core lines in atmospheric
flow. IEEE Transactions on Visualization and Computer Graphics,
24(1):893–902, 2017. doi: 10.1109/TVCG.2017.2743989

[19] G. Kindlmann, C. Chiw, T. Huynh, A. Gyulassy, J. Reppy, and P.-
T. Bremer. Rendering and extracting extremal features in 3D fields.
Computer Graphics Forum, 37(3):525–536, 2018. doi: 10.1111/cgf.
13439

[20] K. Oberleithner, M. Sieber, C. N. Nayeri, C. O. Paschereit, C. Petz, H.-
C. Hege, B. R. Noack, and I. Wygnanski. Three-dimensional coherent

structures in a swirling jet undergoing vortex breakdown: stability
analysis and empirical mode construction. Journal of Fluid Mechanics,
679:383–414, 2011. doi: 10.1017/jfm.2011.141

[21] T. Oster, C. Rössl, and H. Theisel. Core lines in 3D second-order
tensor fields. Computer Graphics Forum (Proc. EuroVis), 37(3):327–
337, 2018. doi: 10.1111/cgf.13423

[22] C. Pagot, D. Osmari, F. Sadlo, D. Weiskopf, T. Ertl, and J. Comba.
Efficient parallel vectors feature extraction from higher-order data.
Computer Graphics Forum, 30(3):751–760, 2011. doi: 10.1111/j.1467
-8659.2011.01924.x

[23] R. Peikert and M. Roth. The ”parallel vectors” operator - A vector field
visualization primitive. In D. S. Ebert, M. H. Gross, and B. Hamann,
eds., IEEE Visualization 1999, 24-29 October 1999, San Francisco, CA,
USA, Proceedings, pp. 263–270. IEEE Computer Society and ACM,
1999. doi: 10.1109/VISUAL.1999.809896

[24] A. E. Perry and M. S. Chong. A description of eddying motions and
flow patterns using critical-point concepts. Annual Review of Fluid
Mechanics, 19(1):125–155, 1987. doi: 10.1146/annurev.fl.19.010187.
001013

[25] S. Popinet. Free computational fluid dynamics. ClusterWorld, 2(6),
2004.

[26] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Nu-
merical recipes: the art of scientific computing, 3rd Edition. Cambridge
University Press, 2007.

[27] M. Roth. Automatic extraction of vortex core lines and other line type
features for scientific visualization. PhD thesis, ETH Zurich, 2000.
PhD dissertation number 13673. doi: 10.3929/ethz-a-004016407

[28] M. Roth and R. Peikert. A higher-order method for finding vortex
core lines. In Proc. IEEE Visualization, pp. 143–150, 1998. doi: 10.
1109/VISUAL.1998.745296

[29] B. Schindler, R. Fuchs, J. Biddiscombe, and R. Peikert. Predictor-
corrector schemes for visualization of smoothed particle hydrodynam-
ics data. IEEE Transactions on Visualization and Computer Graphics,
15:1243–, 11 2009. doi: 10.1109/TVCG.2009.173

[30] D. Sujudi and R. Haimes. Identification of swirling flow in 3-d vector
fields. AIAA Paper, pp. 792–800, 1995. doi: 10.2514/6.1995-1715

[31] H. Theisel, J. Sahner, T. Weinkauf, H.-C. Hege, and H.-P. Seidel.
Extraction of parallel vector surfaces in 3D time-dependent fields and
application to vortex core line tracking. In Proc. IEEE Visualization,
pp. 631–638, 2005. doi: 10.1109/VISUAL.2005.1532851

[32] H. Theisel and H.-P. Seidel. Feature flow fields. In Proceedings of
the Symposium on Data Visualisation 2003, VISSYM ’03, pp. 141–
148. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland,
2003.

[33] X. Tricoche, C. Garth, T. Bobach, G. Scheuermann, and M. Rütten.
Accurate and efficient visualization of flow structures in a delta wing
simulation. In 34th AIAA Fluid Dynamics Conference and Exhibit, p.
2153, 2004. doi: 10.2514/6.2004-2153

[34] A. Van Gelder and A. Pang. Using pvsolve to analyze and locate
positions of parallel vectors. IEEE Transactions on Visualization and
Computer Graphics, 15(4):682–695, 2009. doi: 10.1109/TVCG.2009.
11

[35] T. Weinkauf, J. Sahner, H. Theisel, and H.-C. Hege. Cores of swirling
particle motion in unsteady flows. IEEE Transactions on Visualization
and Computer Graphics, 13(6):1759–1766, 2007. doi: 10.1109/TVCG.
2007.70545

[36] T. Weinkauf, H. Theisel, A. Van Gelder, and A. Pang. Stable fea-
ture flow fields. IEEE Transactions on Visualization and Computer
Graphics, 17(6):770–780, June 2011. doi: 10.1109/TVCG.2010.93

https://doi.org/10.1109/TVCG.2019.2934310
https://doi.org/10.1109/TVCG.2019.2934310
https://doi.org/10.1109/TVCG.2019.2934310
https://doi.org/10.1109/TVCG.2019.2934310
https://doi.org/10.1109/TVCG.2019.2934310
https://doi.org/10.1109/TVCG.2019.2934310
https://doi.org/10.1109/TVCG.2019.2934310
https://doi.org/10.1109/TVCG.2019.2934310
https://doi.org/10.1109/TVCG.2019.2934310
https://doi.org/10.1109/TVCG.2019.2934375
https://doi.org/10.1109/TVCG.2019.2934375
https://doi.org/10.1109/TVCG.2019.2934375
https://doi.org/10.1109/TVCG.2019.2934375
https://doi.org/10.1109/TVCG.2019.2934375
https://doi.org/10.1109/TVCG.2019.2934375
https://doi.org/10.1109/TVCG.2019.2934375
https://doi.org/10.1109/TVCG.2019.2934375
https://doi.org/10.1109/2945.468404
https://doi.org/10.1109/2945.468404
https://doi.org/10.1109/2945.468404
https://doi.org/10.1109/2945.468404
https://doi.org/10.1109/2945.468404
https://doi.org/10.1109/2945.468404
https://doi.org/10.1109/2945.468404
https://doi.org/10.1109/2945.468404
https://doi.org/10.1103/PhysRevE.84.016406
https://doi.org/10.1103/PhysRevE.84.016406
https://doi.org/10.1103/PhysRevE.84.016406
https://doi.org/10.1103/PhysRevE.84.016406
https://doi.org/10.1103/PhysRevE.84.016406
https://doi.org/10.1103/PhysRevE.84.016406
https://doi.org/10.1103/PhysRevE.84.016406
https://doi.org/10.1103/PhysRevE.84.016406
https://doi.org/10.1111/cgf.13422
https://doi.org/10.1111/cgf.13422
https://doi.org/10.1111/cgf.13422
https://doi.org/10.1111/cgf.13422
https://doi.org/10.1111/cgf.13422
https://doi.org/10.1111/cgf.13422
https://doi.org/10.1111/cgf.13422
https://doi.org/10.1111/cgf.13422
https://doi.org/10.1145/3072959.3073684
https://doi.org/10.1145/3072959.3073684
https://doi.org/10.1145/3072959.3073684
https://doi.org/10.1145/3072959.3073684
https://doi.org/10.1145/3072959.3073684
https://doi.org/10.1145/3072959.3073684
https://doi.org/10.1145/3072959.3073684
https://doi.org/10.1109/TVCG.2014.2346415
https://doi.org/10.1109/TVCG.2014.2346415
https://doi.org/10.1109/TVCG.2014.2346415
https://doi.org/10.1109/TVCG.2014.2346415
https://doi.org/10.1109/TVCG.2014.2346415
https://doi.org/10.1109/TVCG.2014.2346415
https://doi.org/10.1109/TVCG.2014.2346415
https://doi.org/10.1109/TVCG.2014.2346415
https://doi.org/10.1109/TVCG.2014.2346415
https://doi.org/10.1111/cgf.13319
https://doi.org/10.1111/cgf.13319
https://doi.org/10.1111/cgf.13319
https://doi.org/10.1111/cgf.13319
https://doi.org/10.1111/cgf.13319
https://doi.org/10.1111/cgf.13319
https://doi.org/10.1109/TVCG.2018.2864828
https://doi.org/10.1109/TVCG.2018.2864828
https://doi.org/10.1109/TVCG.2018.2864828
https://doi.org/10.1109/TVCG.2018.2864828
https://doi.org/10.1109/TVCG.2018.2864828
https://doi.org/10.1109/TVCG.2018.2864828
https://doi.org/10.1109/TVCG.2018.2864828
https://doi.org/10.1109/TVCG.2018.2864828
https://doi.org/10.1145/1667239.1667241
https://doi.org/10.1145/1667239.1667241
https://doi.org/10.1145/1667239.1667241
https://doi.org/10.1145/1667239.1667241
https://doi.org/10.1145/1667239.1667241
https://doi.org/10.1145/1667239.1667241
https://doi.org/10.1145/1667239.1667241
https://doi.org/10.1145/1667239.1667241
https://doi.org/10.1145/1667239.1667241
https://doi.org/10.1145/1667239.1667241
https://doi.org/10.1145/1667239.1667241
https://doi.org/10.1109/TVCG.2018.2864839
https://doi.org/10.1109/TVCG.2018.2864839
https://doi.org/10.1109/TVCG.2018.2864839
https://doi.org/10.1109/TVCG.2018.2864839
https://doi.org/10.1109/TVCG.2018.2864839
https://doi.org/10.1109/TVCG.2018.2864839
https://doi.org/10.1109/TVCG.2018.2864839
https://doi.org/10.1109/TVCG.2018.2864839
https://doi.org/10.1109/TVCG.2018.2864839
https://doi.org/10.1063/1.166479
https://doi.org/10.1063/1.166479
https://doi.org/10.1063/1.166479
https://doi.org/10.1063/1.166479
https://doi.org/10.1063/1.166479
https://doi.org/10.1063/1.166479
https://doi.org/10.1063/1.166479
https://doi.org/10.1063/1.166479
https://doi.org/10.1111/cgf.13703
https://doi.org/10.1111/cgf.13703
https://doi.org/10.1111/cgf.13703
https://doi.org/10.1111/cgf.13703
https://doi.org/10.1111/cgf.13703
https://doi.org/10.1111/cgf.13703
https://doi.org/10.1111/cgf.13703
https://doi.org/10.1111/cgf.13703
https://doi.org/10.1111/cgf.13687
https://doi.org/10.1111/cgf.13687
https://doi.org/10.1111/cgf.13687
https://doi.org/10.1111/cgf.13687
https://doi.org/10.1111/cgf.13687
https://doi.org/10.1111/cgf.13687
https://doi.org/10.1111/cgf.13687
https://doi.org/10.1111/cgf.13687
https://doi.org/10.1111/cgf.13687
https://doi.org/10.1111/cgf.13687
https://doi.org/10.1111/cgf.13687
https://doi.org/10.1111/cgf.13687
https://doi.org/10.1111/cgf.13687
https://doi.org/10.1111/cgf.13687
https://doi.org/10.1111/cgf.13687
https://doi.org/10.1109/TVCG.2014.2346412
https://doi.org/10.1109/TVCG.2014.2346412
https://doi.org/10.1109/TVCG.2014.2346412
https://doi.org/10.1109/TVCG.2014.2346412
https://doi.org/10.1109/TVCG.2014.2346412
https://doi.org/10.1109/TVCG.2014.2346412
https://doi.org/10.1109/TVCG.2014.2346412
https://doi.org/10.1109/TVCG.2014.2346412
https://doi.org/10.1109/TVCG.2014.2346412
https://doi.org/10.1109/TVCG.2017.2743989
https://doi.org/10.1109/TVCG.2017.2743989
https://doi.org/10.1109/TVCG.2017.2743989
https://doi.org/10.1109/TVCG.2017.2743989
https://doi.org/10.1109/TVCG.2017.2743989
https://doi.org/10.1109/TVCG.2017.2743989
https://doi.org/10.1109/TVCG.2017.2743989
https://doi.org/10.1109/TVCG.2017.2743989
https://doi.org/10.1111/cgf.13439
https://doi.org/10.1111/cgf.13439
https://doi.org/10.1111/cgf.13439
https://doi.org/10.1111/cgf.13439
https://doi.org/10.1111/cgf.13439
https://doi.org/10.1111/cgf.13439
https://doi.org/10.1111/cgf.13439
https://doi.org/10.1111/cgf.13439
https://doi.org/10.1017/jfm.2011.141
https://doi.org/10.1017/jfm.2011.141
https://doi.org/10.1017/jfm.2011.141
https://doi.org/10.1017/jfm.2011.141
https://doi.org/10.1017/jfm.2011.141
https://doi.org/10.1017/jfm.2011.141
https://doi.org/10.1017/jfm.2011.141
https://doi.org/10.1017/jfm.2011.141
https://doi.org/10.1017/jfm.2011.141
https://doi.org/10.1111/cgf.13423
https://doi.org/10.1111/cgf.13423
https://doi.org/10.1111/cgf.13423
https://doi.org/10.1111/cgf.13423
https://doi.org/10.1111/cgf.13423
https://doi.org/10.1111/cgf.13423
https://doi.org/10.1111/cgf.13423
https://doi.org/10.1111/cgf.13423
https://doi.org/10.1111/j.1467-8659.2011.01924.x
https://doi.org/10.1111/j.1467-8659.2011.01924.x
https://doi.org/10.1111/j.1467-8659.2011.01924.x
https://doi.org/10.1111/j.1467-8659.2011.01924.x
https://doi.org/10.1111/j.1467-8659.2011.01924.x
https://doi.org/10.1111/j.1467-8659.2011.01924.x
https://doi.org/10.1111/j.1467-8659.2011.01924.x
https://doi.org/10.1109/VISUAL.1999.809896
https://doi.org/10.1109/VISUAL.1999.809896
https://doi.org/10.1109/VISUAL.1999.809896
https://doi.org/10.1109/VISUAL.1999.809896
https://doi.org/10.1109/VISUAL.1999.809896
https://doi.org/10.1109/VISUAL.1999.809896
https://doi.org/10.1109/VISUAL.1999.809896
https://doi.org/10.1109/VISUAL.1999.809896
https://doi.org/10.1109/VISUAL.1999.809896
https://doi.org/10.1109/VISUAL.1999.809896
https://doi.org/10.1146/annurev.fl.19.010187.001013
https://doi.org/10.1146/annurev.fl.19.010187.001013
https://doi.org/10.1146/annurev.fl.19.010187.001013
https://doi.org/10.1146/annurev.fl.19.010187.001013
https://doi.org/10.1146/annurev.fl.19.010187.001013
https://doi.org/10.1146/annurev.fl.19.010187.001013
https://doi.org/10.1146/annurev.fl.19.010187.001013
https://doi.org/10.1146/annurev.fl.19.010187.001013
https://doi.org/10.1146/annurev.fl.19.010187.001013
http://gfs.sf.net/
http://gfs.sf.net/
http://gfs.sf.net/
http://gfs.sf.net/
http://gfs.sf.net/
http://www.worldcat.org/oclc/123285342
http://www.worldcat.org/oclc/123285342
http://www.worldcat.org/oclc/123285342
http://www.worldcat.org/oclc/123285342
http://www.worldcat.org/oclc/123285342
http://www.worldcat.org/oclc/123285342
https://doi.org/10.3929/ethz-a-004016407
https://doi.org/10.3929/ethz-a-004016407
https://doi.org/10.3929/ethz-a-004016407
https://doi.org/10.3929/ethz-a-004016407
https://doi.org/10.3929/ethz-a-004016407
https://doi.org/10.3929/ethz-a-004016407
https://doi.org/10.3929/ethz-a-004016407
https://doi.org/10.3929/ethz-a-004016407
https://doi.org/10.1109/VISUAL.1998.745296
https://doi.org/10.1109/VISUAL.1998.745296
https://doi.org/10.1109/VISUAL.1998.745296
https://doi.org/10.1109/VISUAL.1998.745296
https://doi.org/10.1109/VISUAL.1998.745296
https://doi.org/10.1109/VISUAL.1998.745296
https://doi.org/10.1109/VISUAL.1998.745296
https://doi.org/10.1109/VISUAL.1998.745296
https://doi.org/10.1109/TVCG.2009.173
https://doi.org/10.1109/TVCG.2009.173
https://doi.org/10.1109/TVCG.2009.173
https://doi.org/10.1109/TVCG.2009.173
https://doi.org/10.1109/TVCG.2009.173
https://doi.org/10.1109/TVCG.2009.173
https://doi.org/10.1109/TVCG.2009.173
https://doi.org/10.1109/TVCG.2009.173
https://doi.org/10.2514/6.1995-1715
https://doi.org/10.2514/6.1995-1715
https://doi.org/10.2514/6.1995-1715
https://doi.org/10.2514/6.1995-1715
https://doi.org/10.2514/6.1995-1715
https://doi.org/10.2514/6.1995-1715
https://doi.org/10.2514/6.1995-1715
https://doi.org/10.1109/VISUAL.2005.1532851
https://doi.org/10.1109/VISUAL.2005.1532851
https://doi.org/10.1109/VISUAL.2005.1532851
https://doi.org/10.1109/VISUAL.2005.1532851
https://doi.org/10.1109/VISUAL.2005.1532851
https://doi.org/10.1109/VISUAL.2005.1532851
https://doi.org/10.1109/VISUAL.2005.1532851
http://dl.acm.org/citation.cfm?id=769922.769938
http://dl.acm.org/citation.cfm?id=769922.769938
http://dl.acm.org/citation.cfm?id=769922.769938
http://dl.acm.org/citation.cfm?id=769922.769938
http://dl.acm.org/citation.cfm?id=769922.769938
http://dl.acm.org/citation.cfm?id=769922.769938
http://dl.acm.org/citation.cfm?id=769922.769938
http://dl.acm.org/citation.cfm?id=769922.769938
http://dl.acm.org/citation.cfm?id=769922.769938
http://dl.acm.org/citation.cfm?id=769922.769938
https://doi.org/10.2514/6.2004-2153
https://doi.org/10.2514/6.2004-2153
https://doi.org/10.2514/6.2004-2153
https://doi.org/10.2514/6.2004-2153
https://doi.org/10.2514/6.2004-2153
https://doi.org/10.2514/6.2004-2153
https://doi.org/10.2514/6.2004-2153
https://doi.org/10.2514/6.2004-2153
https://doi.org/10.1109/TVCG.2009.11
https://doi.org/10.1109/TVCG.2009.11
https://doi.org/10.1109/TVCG.2009.11
https://doi.org/10.1109/TVCG.2009.11
https://doi.org/10.1109/TVCG.2009.11
https://doi.org/10.1109/TVCG.2009.11
https://doi.org/10.1109/TVCG.2009.11
https://doi.org/10.1109/TVCG.2009.11
https://doi.org/10.1109/TVCG.2009.11
https://doi.org/10.1109/TVCG.2007.70545
https://doi.org/10.1109/TVCG.2007.70545
https://doi.org/10.1109/TVCG.2007.70545
https://doi.org/10.1109/TVCG.2007.70545
https://doi.org/10.1109/TVCG.2007.70545
https://doi.org/10.1109/TVCG.2007.70545
https://doi.org/10.1109/TVCG.2007.70545
https://doi.org/10.1109/TVCG.2007.70545
https://doi.org/10.1109/TVCG.2007.70545
https://doi.org/10.1109/TVCG.2010.93
https://doi.org/10.1109/TVCG.2010.93
https://doi.org/10.1109/TVCG.2010.93
https://doi.org/10.1109/TVCG.2010.93
https://doi.org/10.1109/TVCG.2010.93
https://doi.org/10.1109/TVCG.2010.93
https://doi.org/10.1109/TVCG.2010.93
https://doi.org/10.1109/TVCG.2010.93

	Introduction
	Related Work
	Parallel Vectors Operator
	Feature Lines in Scientific Visualization

	Real-time Ray Casting of Line Features
	Filter Mask for Empty Space Skipping
	Ray Marching
	Locating Feature Curves

	Result
	Datasets
	Performance

	Conclusion

