
EUROGRAPHICS 2020 / U. Assarsson and D. Panozzo
(Guest Editors)

Volume 39 (2020), Number 2

Fast Nonlinear Least Squares Optimization of
Large-Scale Semi-Sparse Problems

M. Fratarcangeli1,2 D. Bradley2 A. Gruber3 G. Zoss2,3 T. Beeler2

1Chalmers University of Technology 2DisneyResearch|Studios 3ETH Zurich

Log Time [s]Reference Our SolverCeres Solver Di�erence

11

10

0.01 0.1 1 10

Re
si

du
al

 C
os

t (
x1

00
0)

0 mm

0.2 mm

8

9

Figure 1: We propose a new method for solving nonlinear least squares problems that is highly parallel and scalable, allowing large-scale
semi-sparse optimization on graphics hardware. Here we apply our solver to the problem of model-based facial capture, and compare to a
standard Ceres solver implementation.

Abstract

Many problems in computer graphics and vision can be formulated as a nonlinear least squares optimization problem, for
which numerous off-the-shelf solvers are readily available. Depending on the structure of the problem, however, existing solvers
may be more or less suitable, and in some cases the solution comes at the cost of lengthy convergence times. One such case is
semi-sparse optimization problems, emerging for example in localized facial performance reconstruction, where the nonlinear
least squares problem can be composed of hundreds of thousands of cost functions, each one involving many of the optimization
parameters. While such problems can be solved with existing solvers, the computation time can severely hinder the applicability
of these methods. We introduce a novel iterative solver for nonlinear least squares optimization of large-scale semi-sparse
problems. We use the nonlinear Levenberg-Marquardt method to locally linearize the problem in parallel, based on its first-
order approximation. Then, we decompose the linear problem in small blocks, using the local Schur complement, leading to a
more compact linear system without loss of information. The resulting system is dense but its size is small enough to be solved
using a parallel direct method in a short amount of time. The main benefit we get by using such an approach is that the overall
optimization process is entirely parallel and scalable, making it suitable to be mapped onto graphics hardware (GPU). By
using our minimizer, results are obtained up to one order of magnitude faster than other existing solvers, without sacrificing
the generality and the accuracy of the model. We provide a detailed analysis of our approach and validate our results with the
application of performance-based facial capture using a recently-proposed anatomical local face deformation model.

CCS Concepts
• Computing methodologies → Massively parallel and high-performance simulations; Animation;

1. Introduction

Numerical optimization lies at the heart of many problems in com-
puter science. Computer graphics is no exception, however most

often the novelty lies in the formulation of the problem and the
constraints rather than the optimization itself. This is largely be-
cause many generic solvers have already been proposed for dif-

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0002-1156-3760


M. Fratarcangeli, D. Bradley, A. Gruber, G. Zoss & T. Beeler / Fast Nonlinear Least Squares Optimization on the GPU

ferent types of problems, and therefore organizing a problem to
fit an existing solver nearly always represents the lion share of
the novelty in our field. As an example, challenges like mesh
processing, including deformation, parameterization and matching
[ELaC19,SPSH∗17,FBT∗18,MHR∗16], or for motion reconstruc-
tion and modeling [Sug11, ZNI∗14, TZS∗16, HLSO12, LGL∗19],
have been reduced to nonlinear least squares optimization problems
and solved with the popular Gauss-Newton method [BV04], or its
variant, Levenberg-Marquardt [Lev44, Mar63]. The issue with re-
lying on off-the-shelf generic solvers, however, is that they may not
be designed for the problem at hand.

In this work, we consider optimizing nonlinear, large-scale,
semi-sparse least squares problems. By ‘large-scale’ we mean that
the problem requires a significant number of interdependent resid-
ual functions (up to several hundreds of thousands), each one con-
sidering a large number of parameters (up to several hundreds).
By ‘semi-sparse’ we mean that certain sub-blocks of the problem
structure may appear dense, but the sub-blocks are coupled together
only sparsely at the global scale. While existing optimizers, like the
Ceres solver [AMO], are fully capable of finding an accurate solu-
tion to such problems, the convergence time can be quite slow. An
alternative is to accept only an approximate solution in less time,
however this trade-off may not be desirable. In this paper, we pro-
pose a new solver for nonlinear least squares optimization of large-
scale semi-sparse problems which is both fast and accurate.

While the concepts behind our solver are generic in nature, we
will limit our application and evaluation of the algorithm to one
specific problem in computer graphics, that of facial performance
capture using anatomical local face models as proposed by Wu et
al. [WBGB16]. Facial capture has become the de-facto standard
for obtaining realistic facial animation in film and game produc-
tions, and this particular model-based method has shown incredible
promise in terms of accuracy, flexibility and ease-of-use. It suffers,
however, from the slow computational time mentioned above. To
further motivate our decision to demonstrate our new solver on this
particular problem, the anatomical local model for facial capture
has already been employed in the creation of digital characters for
several recent blockbuster films†. In this problem domain, the de-
formation of a virtual face is modeled as a nonlinear least squares
problem where the residual functions express both the anatomy of
the face and the particular target face expression, including the
bony configuration, the sliding of the skin and the wrinkle for-
mation. The description of the problem requires a large number
of interdependent residual functions, each one considering a large
number of parameters. The residuals differ in complexity and type,
making the problem non-homogeneous and difficult to decompose
and parallelize. As a consequence, while several solvers are already
available and able to find the solution to such a problem, the solving
process is still time consuming even for short animation sequences.
Just as an example, in our experiments a single solver iteration for
one frame of animation required approximately 10 seconds of com-
putation using Ceres on a 4-core CPU (8 threads) with a multi-
threaded linear solver (Intel MKL). Given that high-quality facial
reconstruction with this model typically requires up to 10 iterations

† http://studios.disneyresearch.com/anyma

per frame in practice, each single second of animation at 30 fps
would require approximately 50 minutes of solve time (in addi-
tion to other computation not related to the solve). Thus, there is a
need for a fast nonlinear solver for this problem in order to make it
tractable for high-throughput facial animation pipelines.

We use a standard and widely adopted technique for nonlin-
ear least squares problems, namely the Levenberg-Marquadt algo-
rithm [Lev44,Mar63], an iterative method known for its robustness
and fast convergence speed [TMHF00, BBC∗94]. Each nonlinear
iteration, however, may be slow to compute depending on the num-
ber of residuals and parameters. The method, in fact, relies on the
computation of the partial derivatives of each multivariate residual
function with respect to each parameter, and their inner products.
These are used to assemble the Jacobian matrix, which is employed
to linearize the residuals and produce a linear system, the so-called
normal equations. The normal equations are solved to improve the
estimate of the unknown parameters, update the value of the resid-
ual functions and iterate the process again until the residual error is
minimized.

Our minimizer leverages on the speed of modern graphics pro-
cessors (GPUs) to accelerate the computation of the inner linear
iterations of the Levenberg-Marquardt solver. We introduce two
main novelties to this purpose. First, we describe a compact data
structure to store all the partial derivatives. Its data layout is de-
signed to optimize the parallel computation of the Jacobian on the
GPU while using a small memory footprint. Second, we introduce a
domain decomposition technique to quickly solve the linear normal
equations by partitioning the numerical system into many small-
and-local problems. These can be solved directly in parallel and
then reassembled together leading to an accurate global solution.

The main benefit of such an approach is that the overall optimiza-
tion process is entirely parallel and scalable, making it suitable to
be mapped onto graphics hardware, without sacrificing the gener-
ality of the model. The result is a parallel GPU-based minimizer
for solving large-scale nonlinear least squares problems. Applied
in the context of facial capture with an anatomical local model,
our method can achieve accurate facial reconstructions in a short
amount of time, for example one solve can be computed in ap-
proximately one second on the GPU. So, each second of animation
composed by 30 frames at 10 solver iterations per frame, is reduced
to 300 seconds of solve time (i.e. 5 minutes) instead of 50 minutes
using Ceres, an order of magnitude speedup. Even though we vali-
date our results on a single (yet challenging) application, our solver
is a significant step towards a unified way to solve this class of op-
timization problems.

2. Related Work

Nonlinear optimization problems are ubiquitous in computer
graphics, vision and robotics. At their core, the vast majority are
least-squares problems. Generally speaking, given a nonlinear de-
formation energy f (x), the problem is to find the displacement δ

such that (x+δ) minimizes f (x), while satisfying some given mod-
eling constraints.

When each residual function depends on a small number of pa-
rameters, it is possible to reach a solution in real-time and achieve

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.



M. Fratarcangeli, D. Bradley, A. Gruber, G. Zoss & T. Beeler / Fast Nonlinear Least Squares Optimization on the GPU

interesting applications, e.g., [TZS∗16, MFZ∗17]. The problem
may also be sparse and defined on a regular domain, like an im-
age, a grid, or a mesh, i.e., they have a local nature. In these cases,
it is possible to write fast, dedicated GPU solvers, which quickly
solve the particular problem at hand but may be difficult to gener-
alize, e.g., in fluid simulation [LMAS16, WTYH18, CZY17], and
shape reconstruction [DNZ∗17]. If the topology of the system does
not change, then the solver can even be automatically created by
using a domain specific language, such as OptLang [DMZ∗17].

To save memory, many GPU-based techniques use a matrix-
free approach, e.g., [ZNI∗14, WZN∗14, DMZ∗17], where the first
derivatives of the residual functions are computed when normal
equations are evaluated. Each partial derivative is recomputed ev-
ery time it is needed, but such redundancy is hidden by the massive
throughput of arithmetic-logic operations performed by the GPU.

In other domains, e.g., [HLSO12,WBGB16,LGL∗19], the nature
of the problem is global and the residual functions may affect the
whole domain. Furthermore, a residual function may be rather com-
plex and require a significant amount of data to be fetched by the
video memory with the consequent delay. In these cases, matrix-
free approaches become too slow. To mitigate this problem, partial
derivatives can be precomputed and stored, and then used to assem-
ble the normal equations. We apply this latter approach and present
a data structure for the efficient storage and retrieval of the partial
derivatives data in Sec. 4.1.

Solving the normal equations can be done by using relaxation
methods, which are widely used because they are fast, simple and
easy to implement on the GPU [FTP16, Wan15, WY16], but may
exhibit slow convergence for poorly conditioned problems. In con-
trast, direct methods can achieve greater accuracy, but they scale
poorly with problem size.

In our solver, we strive to achieve the same speed as relaxation
methods together with the accuracy of direct methods. To this end,
we use the local Schur complement, a technique to solve a Sym-
metric Positive Definite linear system of equations by reducing its
size without losing information [Saa03]. It may be used for both
reducing the size of large problems which do not fit into memory,
as in [LMAS16], and to speed up the computation of the solver, as
in [MEM∗19, CZY17]. Once the size of the matrix is reduced, we
simply apply a parallel Cholesky direct solver and find the global
solution of the system (Sec. 4.2).

To be effective, however, the input matrix must satisfy certain
conditions, in particular the majority of the coefficients must be lo-
cated around the diagonal of the matrix. This can be achieved by
partitioning the matrix, and assigning sequentially increasing in-
dices to the rows in the same partition. Ideally, the partitions should
have the same size for good load balancing, and be as disconnected
as possible to reduce the number of coefficients outside the diag-
onal blocks. This is a NP-hard problem, and in most of the works
in computer graphics, it is tackled by dividing the domain of the
problem according to the symmetry or some other geometric fea-
ture e.g., [HLSO12, LGL∗19]. In order to be generic, we abstract
entirely from the geometry of the problem and perform an algebraic
spectral partitioning of the matrix, as depicted in Sec. 4.3.

To our knowledge, we propose the first method for nonlinear

least squares optimization of large-scale semi-sparse problems that
is both parallel and scalable, making it suitable to be mapped to
graphics hardware for very fast solve times.

3. Background

We begin by laying down some background information before
describing our contributions in Sec. 4. We start by describing the
Anatomical Local Face Model (Sec. 3.1) which forms the example
to demonstrate our fast optimization, followed by a brief review of
the Levenberg-Marquardt algorithm (Sec. 3.2) and dual numbers
(Sec. 3.3), which are required by our method.

3.1. Anatomical Local Face Model

We will demonstrate our fast optimization method in the context
of 3D facial performance capture. The task of performance-based
facial animation is often posed as a model-fitting problem, where
a deformable face model is used as a prior for the actor’s facial
movements. The animation is then reconstructed by finding the op-
timal model parameters that best describe the performance. His-
torically, these priors have been rather simple linear models such
as blend-shape rigs [LAR∗14], which are fast to solve but tend
to lack expressivity and accuracy. Recently a new model has been
proposed [WBGB16], which excels at both accuracy and flexibil-
ity but comes at the cost of optimization complexity. The model
decomposes the face into many small local patches, overlapping
and not necessarily aligned into a grid, each with their own set of
rigid motion and non-rigid deformation parameters, coupled with
global parameters that define the rigid transformation of the under-
lying bone structures. As the model can represent local skin slid-
ing over bones, it is generally referred to as an anatomical local
model (ALM). With an ALM model as the actor prior, each frame
of the performance is reconstructed by jointly optimizing all the
local patch parameters together with the global rigid bone motion,
given a set of constraints from input video. This is a large nonlin-
ear optimization problem with many parameters contributing to the
cost functions, and is thus an ideal candidate for our novel fast op-
timization procedure. In the following we provide a brief overview
of the model parameters and optimization problem, and we refer to
Wu et al. [WBGB16] for more details.

Model Description. The ALM model has two main components -
a local patch deformation subspace and underlying bone structure
(as illustrated in Fig. 2).

The local shape Xi(t) of a patch i at time t is defined as

Xi(t) = Mi(t)

(
Ui +

K

∑
k=1

α
k
i (t)D

k
i

)
, (1)

where Mi(t) is the rigid motion of the patch, {α1
i (t), ...,α

K
i (t)} are

the coefficients of the K deformation components {Di}, and Ui is
the neutral patch shape. Considering all patches in the face, the re-
sulting large set of parameters can lead to an ill-posed fitting prob-
lem, and thus the skull and an anatomical subspace is introduced.
The anatomical subspace is defined as a skin thickness subspace,
where the position x̃ν(t) of vertex ν can be predicted at time t as

x̃ν(t) = Ms(t)
(
b̃ν(t)−dν(t)ñν(t)

)
, (2)

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.



M. Fratarcangeli, D. Bradley, A. Gruber, G. Zoss & T. Beeler / Fast Nonlinear Least Squares Optimization on the GPU

Face Mesh Local Patches Anatomical Bones

Figure 2: The anatomical local face model (ALM) divides the face
into overlapping patches and optimizes for patch reconstructions
using local deformation subspaces and anatomical skin thickness
constraints, together with the global rigid bone motion.

where Ms(t) is the rigid motion of the skull, b̃ν(t) is the bone point
subspace, ñν(t) is the bone normal subspace, and dν(t) is the skin
thickness subspace. A thorough description of the ALM model is
beyond the scope of this work, but we refer to Wu et al. [WBGB16]
for detailed definitions.

Patch Optimization. Reconstructing the face is performed by es-
timating the model parameters that best describe the observed mo-
tion under a certain set of constraints through optimization. The
unknowns to solve for include the rigid local patch motion {Mi},
the local patch deformation coefficients {αi} and the rigid motion
of the anatomical bone Ms. The parameters are optimized by mini-
mizing the following energy

minimize
{Mi},{αi},Ms

EM(t)+EO(t)+EA(t), (3)

where EM is a data term that usually describes observed 2D motion
in video, EO is a patch overlap constraint that aims to make patches
conform to their neighbors in overlapping regions, and EA is an
anatomical constraint that preserves correct dynamic skin thickness
as skin slides over the bones. This optimization problem will be
the target of our proposed new solver. Since the patches are solved
jointly, there can be hundreds of parameters to optimize, and many
of them will contribute to each of the cost functions. Even though
the problem structure is dense at a patch level, it is globally semi-
sparse due to the sparse patch overlap constraint, making it ideally
suited for our algorithm.

Global Patch Blending. For completeness sake, it is worth noting
that solving for the model parameters will provide a reconstruction
of the skull motion and individual patch deformations, but the final
manifold face mesh is recovered through blending the individual
patch reconstructions with soft constraints in overlapping regions,
as described in the original ALM algorithm [WBGB16].

3.2. Levenberg-Marquardt Algorithm

Solving the anatomical local model (Eq. 3) is a challenging non-
linear optimization problem. In the following we briefly recall
the Gauss-Newton (GN) method for nonlinear optimization, and

then provide a short description of its extension, the Levenberg-
Marquardt (LM) algorithm, which interpolates between Gauss-
Newton and gradient descent, and forms the core of our optimiza-
tion approach.

Consider

f (x) =
1
2

m

∑
k=1

rk(x)
2, (4)

where x ∈ Rn, x = (x1,x2, . . . ,xn) and the nonlinear functions
rk(x) ∈ Rn → R are called residuals. We are interested in find-
ing x∗ minimizing f (x). Often, m� n, i.e., the problem is over-
constrained. To simplify the notation, f (x) can be represented by
the residual vector r = (r1,r2, · · · ,rm) and be rewritten as f (x) =
1
2 ‖r‖

2. In the general case, when rk(x) are nonlinear, the problem
is intractable so we set to find an approximate solution. One way to
find x∗ is to set the gradient ∇ f (x) to zero. Truncating its Taylor
series expansion to the first order

∇ f (x) =∇ f (x0)+(x− x0)
T∇2 f (x0)+O

(
‖x‖2

)
, (5)

x∗ can be found by using the following iteration scheme:

xi+1 = xi−
(
∇2 f (xi)

)−1
·∇ f (xi) . (6)

∇ f (xi) and ∇2 f (xi), i.e. the first- and the second-order gradients,
are:

∇ f (x) =
m

∑
k=1

rk(x)∇rk(x) = JT (x)r(x) (7)

∇2 f (x) = JT (x)J (x)+
m

∑
k=1

rk(x)∇2rk(x), (8)

where J ∈ Rm×n is the Jacobian matrix of the partial derivatives of
r in x, defined as:

J =
∂rk
∂x j

, 1≤ k ≤ m, 1≤ j ≤ n. (9)

If rk(x) is small enough, or locally linear (so that ∇2rk(x) will
be small), Eq. 8 can be approximated as

∇2 f (x) = JT (x)J (x) . (10)

By plugging Eq. 10 and Eq. 7 in Eq. 6, we obtain the so-called
normal equations:

JT (xi)J (xi)(xi+1− xi) =−JT (xi)r(xi). (11)

The normal equations are a linear system of size n× n. Solving
it for δ = xi+1− xi allows to find xi+1 = xi +δ, update J and r, and
reiterate the process until JTr is very small, i.e., xi ≈ x∗. This is the
Gauss-Newton method (GN), which is known for its fast conver-
gence even though it is sensitive to the starting point x0 [BBC∗94].
The gradient descent method behaves exactly in the opposite way:
it has a relatively slow convergence but it is less sensitive to the
starting point. The core idea of LM is to blend between GN and
gradient descent leveraging the strength of both. In particular, the
normal equations for LM are written as:(

JTJ +λI
)

δ =−JTr, (12)

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.



M. Fratarcangeli, D. Bradley, A. Gruber, G. Zoss & T. Beeler / Fast Nonlinear Least Squares Optimization on the GPU

Algorithm 1 Levenberg-Marquardt algorithm [Lev44, Mar63]

1: Compute f = 1
2 ‖r‖

2

2: λ = 10−3

3: for k = 1, . . . ,m do
4: for i = 1, . . . ,n do
5: Compute jki =

∂rk
∂xi

6: Assemble JTJ and JTr
7: Solve

(
JTJ +λI

)
δ =−JTr . Linear step

8: Update xi+1 = xi +δ

9: Compute fnew = 1
2 ‖r‖

2

10: if fnew > f then . Step rejected
11: λ = 10λ

12: go to 7
13: else . Step accepted
14: xi← xi+1
15: λ = 10−3

16: f = fnew
17: go to 3

where I is the identity matrix and λ is a tunable scalable parame-
ter that initially has a low value (e.g., 10−3) and it may change at
the beginning of the iteration. If the error from one iteration to the
following decreases, λ is kept constant and the convergence speed
is similar to GN. If the error increases, then λ is increased as well,
and the convergence slows down similarly to gradient descent until
the error decreases again.

Overall, the LM algorithm can be summarized in Alg. 1. The
most computationally expensive steps are the nested loop in step
2-5, computing the coefficients JTJ and JTr in step 5, and solving
the linear system in step 6. In the next section, we describe our
main contributions to improve this optimization, a data structure to
store and access ji j (Sec. 4.1), and a parallel linear solver to quickly
solve normal equations without loss of accuracy (Sec. 4.2).

3.3. Dual Numbers

We use automatic forward differentiation to find the coefficients of
the Jacobian matrix (Eq. 9). In particular, we use multi-dimensional
dual numbers [GW08].

A dual number is composed by the sum of a real component
x with the infinitesimal component v, such that v2 = 0. Writing a
residual function r(x) as a function of x+ v leads to a simple way
to compute the exact derivative ∂r/∂x. If r(x) is differentiable, in
fact, then its Taylor expansion in (x+ v) is:

r(x+ v) = r(x)+
∂r
∂x

v+
∂

2r
∂x2

v2

2
+

∂
3r

∂x3
v3

6
+ . . . (13)

= r(x)+
∂r
∂x

v. (14)

So, when r is evaluated in (x+ v), the coefficient of v is ∂r/∂x.
This simple, yet powerful, idea can be extended to a multivariate
function f (z) : Rn → Rm, where zi = xi + vi,∀i = 1, . . . ,n. In this

case, the function can be written as:

f (z1,z2, . . . ,zn) = f (x1,x2, . . . ,xn)+∑
∂ f
∂zi

vi. (15)

By choosing vi as the i-th standard basis vector in Rn, we can
extract the coefficients of the Jacobian matrix from the vector vi.

4. Fast Parallel Linear Solver

The matrix JTJ is symmetric positive definite, and the normal equa-
tions JTJ δ = −JTr form a large sparse linear system. In applica-
tion contexts where an approximate solution is acceptable, iterative
linear solvers are widely used to quickly find an approximate so-
lution in a short amount of time, e.g., in interactive physics based
animation [FTP16,Wan15,WY16]. In our case, however, a high de-
gree of accuracy is required to obtain realistic results. This could be
achieved by increasing the number of iterations but it would lead to
an unacceptable loss of performance. Direct solvers, on the other
hand, can find an accurate solution in one single step, but this is in
general computationally demanding and slow to compute. One of
the main factors affecting the performance of direct solvers is the
size of the matrix.

In this section, we introduce our divide-et-impera technique to
partition the linear system formed by the normal equations (Eq. 11),
and parallelize the solving process. Our technique involves a new
data structure to assemble the normal equations, and builds on top
of the Local Schur Complement, a domain decomposition tech-
nique [Saa03], coupled with the spectral graph partitioning intro-
duced in [NJW01]. The resulting parallel direct solver can han-
dle semi-sparse linear problems efficiently and it maps surprisingly
well onto modern GPUs.

4.1. Assembling Normal Equations

Assembling the normal equations (Eq. 12 and step 7 in Alg. 1) re-
quires to compute the coefficients of the Jacobian matrix J ∈Rm×n,
i.e., the partial derivatives of all the m residuals r j w.r.t. each pa-
rameter in x = (x1,x2, . . . ,xn). Just storing these coefficients may
require a significant amount of memory. An instance of the ALM
problem using a medium-resolution mesh with 95K vertices, for ex-
ample, has m≈ 1.5M and n≈ 7K, which would require more than
40GB of memory assuming to use 4 bytes for storing numbers.

Furthermore, once the partial derivatives are available, the ma-
trices JTJ and JTr are needed and computed according to:

JTr =
m

∑
1

∂rk
∂xi

rk, 1≤ i≤ n (16)

JTJ =
m

∑
1

∂rk
∂xi

∂rk
∂x j

, 1≤ i, j ≤ n. (17)

The computation of the i-th element of JTr requires the sum of
coefficient-wise product of all the elements of the i-th column of
the Jacobian with the corresponding residual value rk. Similarly,
the computation of (i, j)-th element of JTJ requires the sum of
the coefficient-wise product of the elements in the i-th and j-th
columns of the Jacobian.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.



M. Fratarcangeli, D. Bradley, A. Gruber, G. Zoss & T. Beeler / Fast Nonlinear Least Squares Optimization on the GPU

The data structure used to store the Jacobian has a twofold pur-
pose: it must store the partial derivatives of the residuals in a com-
pact way, while allowing for the fast computations of both JTJ and
JTr. The main idea behind the design of our data structure is to
represent J as a graph. Each node in the graph gathers a subset of
consecutive parameters x =

(
xi, . . . ,x j

)
. The set of parameters for

one node is disjoint from the set of any other node. Each node has
the same number of parameters P, except the last one. Each node i
stores all the columns from J corresponding to its parameters, form-
ing a sub-matrix Ji. If a row of the matrix Ji is composed entirely
of zeros, then it is discarded and not stored. Two nodes are con-
nected if there is at least one residual using parameters from both
nodes. The indices of the connected nodes are stored in a support
data structure, a matrix M, where M(i, j) stores all the indices of
the rows corresponding to the shared residuals. When all the partial
derivative w.r.t. a given parameter xi are needed, the corresponding
node is found by using bi/Pc, and the index of the column inside
the node is (i mod P). The structure is depicted in Fig. 3.

Figure 3: Graph data structure used to store the Jacobian matrix
and speed up the computation of JTr and JTJ. The partial deriva-
tives are stored in nodes, each node corresponding to a subset of
consecutive columns. Each row corresponds to a residual rk(x) and
two nodes are connected only if they share a residual.

When the i-th coefficient of JTr is computed, it is sufficient to
access the node where the column corresponding to xi is stored,
scan it and accumulate the result. Since just the non-zero rows of
partial derivatives are stored, the number of elements to scan will be
as small as possible. Furthermore, we compute all the coefficients
of JTr in a single parallel sweep because the scan of a column is
independent from all the other columns. Similar considerations can
be made for computing the coefficients of JTJ. If the (i, j)-th ele-
ments belong to the same node, then the columns i and j are swept
and their coefficient-wise product is accumulated. If they belong to
different nodes, then the corresponding columns are accessed but
only the elements belonging to the residuals in common between
the two nodes are considered by accessing the support matrix M.
Again, all the coefficients of JTJ can be computed in one single
parallel step.

Choosing the size of the nodes P, and thus which parameters
to store in each node, depends on the structure of the problem. In
the ALM case, it is natural to map a local patch to each node, that
is the parameters corresponding to the rigid parameters Mi(t) and
the deformation components {α1

i (t), ...,α
K
i (t)}. The main benefit

of this data structure is that it allows to quickly access the non-zero
elements of the Jacobian matrix and compute JTr and JTJ.

Discussion. Recall that, when using dual numbers, all the partial
derivatives for a given residual are computed at the same time. To

compute the (i, j)-th coefficient of JTJ on the fly, all the resid-
uals rk,k ∈ {1, . . . ,m} should be considered. So, for each i, j ∈
{1, . . . ,n}, and for each rk,k ∈ {1, . . . ,m}:

1. compute all the partial derivatives ∂rk
∂xi

using dual numbers;

2. compute the product ∂rk
∂xi

∂rk
∂x j

and discard all ∂rk
∂xl

with l 6= i, j;
3. accumulate and consider the next residual.

Computing all the partial derivatives (step 1), would not be a
big burden for modern GPUs, if the number of parameters for
each residual would be small, e.g., like in [PGB03, SA07] and all
the other problems solved in [DMZ∗17]). If the residual depends
on many parameters, however, and it needs to fetch a significant
amount of data from the video memory, then a matrix-free approach
becomes unsuitable for fast performance.

In semi-sparse problems, however, this is in general not true be-
cause residuals may depend on hundreds of parameters, e.g., the
overlap or anatomical constraints in the ALM model is influenced
by over 2000 parameters. In this case, it is more efficient to pre-
store the partial derivatives and access them on demand when they
are needed, which, in our case, is achieved by employing the just
depicted data structure.

4.2. Local Schur Complement

Solving the linear system composed by the normal equations
(Eq. 12) is the main bottleneck in each nonlinear iteration of the
LM algorithm (Alg. 1). In this section, we describe the adopted
schema to solve it quickly by employing the Local Schur Comple-
ment method.

The matrix JTJ in the normal equations is a Symmetric Positive
Definite (SPD) matrix by definition. We define the adjacency graph
of JTJ as an undirected graph where each node corresponds to a
row (or a column) of JTJ, and two nodes are connected with each
other if the corresponding entry in the matrix is not zero.

For the sake of simplicity and without loss of generality, let us
consider as an example the adjacency graph of a very simple ma-
trix, shown in Fig. 4a. This graph can be partitioned into three
subgraphs by cutting some of the edges as shown in Fig. 4b. The
resulting subgraphs are composed by internal nodes connected to
only other nodes of the same subgraph, and interface nodes with at
least one neighbour belonging to another subgraph. By relabeling
the internal nodes of each subgraph in incremental order and leav-
ing the interface nodes last, we induce a permutation π of the rows
and columns of the input matrix (Fig. 4c), resulting in the structure
shown in Fig. 5a, where most of the coefficients are now lumped in
diagonal blocks.

The emerging pattern of the coefficients in the permuted matrix,
shown in Fig. 5b, allows to define a heavily parallelized solving
process. Each diagonal block i, corresponding to one of the sub-
graphs can be further decomposed in four sub-blocks:(

Bi Ei

Fi Ci

)
, (18)

where the matrix Bi represents the internal nodes of the subgraph

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.



M. Fratarcangeli, D. Bradley, A. Gruber, G. Zoss & T. Beeler / Fast Nonlinear Least Squares Optimization on the GPU

1

13

2

14

3

15

4

16

5

17

6

18

7

19

8

20

9

21

10

22

11

23

12

24

(a)

1

13

2

14

3

15

4

16

5

17

6

18

7

19

8

20

9

21

10

22

11

23

12

24

(b)

1

4

2

5

3

6

7

8

13

14

9

11

10

12

15

16

23

24

17

20

18

21

19

22

(c)

Figure 4: A simple adjacency graph (a) is partitioned into equal
parts by minimizing the edge cut (b). By relabeling the nodes (c), we
induce a permutation of the graph and the corresponding matrix.

1
1

24
24

(a)

1
1

24
24

B1 E1

C1F1 E12

B2 E2

C2F2E21 E23

B3 E3

E32 F3 C3

(b)

Figure 5: (a) The permuted matrix corresponding to the graph in
Fig. 4c, and its block structure (b). The blocks are either corre-
sponding to internal nodes of the graph (purple), or external nodes
(orange).

i, Ci represents its interface nodes, Ei represents the coupling be-
tween internal and interface nodes, and Fi = Ei

T. The off-diagonal
blocks are composed by mostly zeros, and have the following struc-
ture: (

0 0
0 Eij

)
. (19)

The matrix Eij represents the coupling between the interface nodes
belonging to different subgraphs. If two subdomains i and j are
loosely connected, then Eij has a small size; if they are entirely
disconnected, then the corresponding Eij is also a null matrix.

By applying the permutation π to the unknowns and the constant
terms of the linear system in Eq. 12, the linear equation for each
subgraph i can be written as

Biδai +Eiδbi = fi (20)

Fiδai +Ciδbi+ ∑
j∈Ni

Eijδbi = gi. (21)

where δai is the vector of internal nodes, δbi is the vector of inter-

face nodes, and Ni is the set of subgraphs linked by at least one edge
to subgraph i. The subvectors fi and gi are extracted from−JTr af-
ter permuting it according to π. Note that Eq. 20 corresponds to the
purple blocks in Fig. 5b, while Eq. 21 corresponds to the orange
ones. The vector δai can be expressed as

δai = Bi
−1 (fi−Eiδbi) (22)

and it can be forward substituted into Eq. 21 leading to

Siδbi + ∑
j∈Ni

Eijδbi = gi−FiBi
−1fi = g′i (23)

where Si = Ci−Ei
TBi
−1Ei is the so-called Local Schur Comple-

ment.

For example, writing Eq. 23 for all the subgraphs in Fig. 5 yields
the linear system of equations for the interface nodes δbi S1 E12 E13

E21 S2 E23

E31 E32 S3


δb0

δb1

δb2

=

g′0
g′1
g′2

 . (24)

The off-diagonal elements of the matrix are mostly zero because
the sparse blocks Eij are different from the null matrix only if the
subgraphs i and j are connected. The diagonal blocks Si are in gen-
eral dense and their size is equal to the number of interface nodes
in subgraph i. Eq. 24 is solved using Cholesky factorization and its
solution can be back-substituted into Eq. 22 allowing to recompose
the global solution.

We aim to obtain small linear systems because these can be
solved quickly on consumer-class GPUs using parallel direct meth-
ods. The goal of the partitioning algorithm, thus, is to keep the num-
ber of interface nodes as small as possible, as explained in the next
section.

4.3. Spectral Partitioning

In this section, we explain how to decompose the adjacency graph
into balanced partitions while keeping the number of interface
nodes as low as possible. Having balanced partitions is useful to
keep the GPU saturated, while having few interface points is im-
portant to keep the size of the matrix S in Eq. 24 small, and to solve
it efficiently with a direct Cholesky factorization. This is equivalent
to finding an optimal cut of the graph, which is a NP-hard partition-
ing problem [Ski08], but there exist many different approaches in
the literature to solve its relaxed version and find semi-optimal cuts
efficiently [SKK03]. We chose to use a method belonging to the
spectral partitioning class of algorithms, which address the prob-
lem from an algebraical point of view. By doing that, the proposed
method becomes entirely independent of the geometrical structure
of the problem, the number of parameters for each residual func-
tion, as well as the number of residual functions, making our solver
more general than many existing solvers which oftentimes rely on
knowledge of the underlying domain, e.g. that they operate on the
regular pixel grid of an image. In particular, we use the normalized
spectral clustering algorithm, which has performed very well on a
number of challenging clustering algorithms [NJW01].

One of the key steps of the algorithm is the computation of the

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.



M. Fratarcangeli, D. Bradley, A. Gruber, G. Zoss & T. Beeler / Fast Nonlinear Least Squares Optimization on the GPU

Algorithm 2 Normalized spectral partitioning [NJW01]

1: Ln = D−1/2LD−1/2

2: Compute the smaller k not null eigenvectors v1, · · · ,vk of Ln
3: V = [v1, · · · ,vk], vi ∈ Rn×1, V ∈ Rn×k

4: for all row vectors (ui)i=1,··· ,n ∈ V do
5: ui← ui/‖ui‖ . Normalize rows
6: Use k++-means to cluster ui into sets C1, · · · ,Ck
7: for all clusters (Ci)i=1,··· ,k do
8: Ai =

{
j|uj ∈Ci

}

eigenvectors and the eigenvalues of the normalized Laplacian ma-
trix Ln, which is defined as follows. We recall the Laplacian matrix
L of an undirected graph defined as

L = D−W. (25)

D is a diagonal matrix with each element di equal to the degree of
the node i of the graph, and W is a matrix with each element wi j = 1
only if nodes i and j are connected by an edge, 0 otherwise. The
normalized Laplacian is defined as:

Ln = D−1/2LD−1/2. (26)

In general, computing the eigenvectors of Ln is the most compu-
tationally expensive step and its cost is proportional to the number
of nodes and edges in the graph. One way to speed it up is to cluster
nodes into super nodes, partition the resulting clustered graph, and
finally expand the obtained partitions back to the original nodes, as
shown in the simple example in Fig. 6. Different criteria may be

1

2

3

4

5

67

(a)

SN1

SN2

(b)

1

2

3

4

5

67

(c)

Figure 6: (a) Nodes in an example graph are clustered together
into super nodes. The resulting graph is partitioned (b), and super
nodes are expanded back to their original configuration leading to
the final partitioning (c).

used to cluster nodes [KK98]. In the context of the ALM model,
parameters influencing the same patch are always used together in
all cost functions considered in this paper. It is thus natural to clus-
ter all the nodes corresponding to the parameters affecting the same
patch.

Once the partitioning is performed according to Alg. 2 [NJW01],
we expand each node in a cluster of subnodes, each one represent-
ing a parameter in the normal equations (Eq. 12). A graphical ex-
ample of the obtained partitioning is depicted in Fig. 7, and an ex-

(a) (b) (c)

Figure 7: A face model is partitioned using Alg. 2. Lighter col-
ors represent internal nodes in the adjacency graph, while darker
colors represent external nodes.

ample of the partitioning obtained with our approach on one of the
test cases is shown in Fig. 8.

In general, the eigendecomposition of the matrix can be onerous
in terms of time. However, it is required just once per nonlinear iter-
ation, and it took merely 40 ms in our test case when using the clus-
tered matrix. For comparison reasons, we applied two other permu-
tation algorithms to the same test case, namely the Approximate
Minimum Degree Ordering [ADD96] and METIS [KK98]. Both
methods are commonly useful to reduce the fill-in in the Cholesky
factorization leading to a faster solution. The resulting reordering is
visualized in Fig. 9, and the corresponding timings for solving one
single linear iteration are reported in Table 1, showing that our ap-
proach is at least 1.7X faster due to how well it maps on the parallel
architecture of the GPU. The performance breakdown considering
the main computational steps in a single nonlinear iteration are de-
picted in Table 2

4.4. Implementation

Computing the inverse matrix in Bi
−1Ei and Bi

−1fi for each sub-
domain i is one of the main performance bottlenecks of the linear
solver. We avoid it by not explicitly computing the inverse matri-
ces. Instead, we solve the linear systems BiE′i = Ei and Bif ′i = fi,
and use E′i and f ′i in Eq. 22 and 23. This approach is more conve-
nient for two reasons. First, the matrices Ei are, in general, sparse
and some of the columns are zeros, and are skipped during the solv-
ing process. Secondly, and more importantly, we solve the systems
by performing a parallel Cholesky decomposition of each matrix
Bi only once, and then solving for all the columns of Ei and fi in
a single parallel step. Additionally, the computation of each sub-
domain is fully decoupled from the others and can be directed to
different streams. Overall, all the linear systems can be computed
in one single parallel step. Besides being fast, avoiding to compute
the inverse matrices is also less sensitive to numerical inaccura-
cies caused by the floating number representation (which we use to
maintain fast performance).

The size of Bi is smaller than the size of JTJ divided by the num-
ber of partitions k. Being relatively small, the parallel Cholesky fac-
torization can be executed quickly on modern GPUs. The number
of partitions, however is limited by the structure of the graph; to
maintain a low number of interface nodes while having balanced

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.



M. Fratarcangeli, D. Bradley, A. Gruber, G. Zoss & T. Beeler / Fast Nonlinear Least Squares Optimization on the GPU

(a) (b) (c)

Figure 8: (a) Input matrix JTJ from one of the test scenes. (b) The permuted matrix according to Alg. 2. (c) Visualization with the same
colour scheme used in Fig. 5b

(a) (b)

Figure 9: Permutations of the matrix in Fig. 8a according to Ap-
proximate Minimum Degree Ordering [ADD96] (left), and METIS
[KK98] (right). The performance comparison in Table 1 shows that
our method using spectral partitioning is faster.

partitions it is convenient to choose k to be the number of eigenval-
ues of JTJ that are strictly positive and smaller than one [HL95].

To implement the GPU direct solver, we used the Cholesky
implementation available in cuSolver (cusolverDnSpotrf),
which is part of the Cuda toolkit 10.1.

We compared the performance of our solver with the Jacobi-
Preconditioned Conjugate Gradient (PCG), as well implemented
on the GPU. For each nonlinear iteration of the LM algorithm, we
compared the overall time for solving the normal equations. Results
are reported in Fig. 10 and show that our linear solver is up to four
times faster than PCG.

5. Results

In this section, we present several numerical test cases to prove
the effectiveness and scalability of our minimizer. We demonstrate
that we are able to qualitatively reproduce the numerical results of

Solve Time (ms) Speed up
Single linear step

Our solver 27 -
Symamd 46 1.7X
Metis 52 1.9X
None 57 2.1X

Table 1: Performance comparison to solve a single linear iteration
with other common approaches to speed up Cholesky factorization:
symamd [ADD96] and metis [KK98].

Figure 10: Comparison of the Jacobi-Preconditioned Conjugate
Gradient (PCG) with our linear solver based on the local Schur
complement. For each nonlinear iteration of the LM algorithm, The
plot shows the time to solve the normal equations and reach con-
vergence.

Ceres [AMO], a nonlinear minimizer running on the multi-threaded
CPU widely used both in the industry and in the academia.

We implemented our solver on the GPU using Cuda, and per-
formed the comparisons by running Ceres on an Intel i7-7700K
CPU, quad-core processor with 8 hyperthreads, and our solver on
the Nvidia GeForce GTX 1080 Ti with 28 Multi-Processors. In the
domain of model-based facial capture using the ALM model, we
reconstructed animation sequences from four different actors. In

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.



M. Fratarcangeli, D. Bradley, A. Gruber, G. Zoss & T. Beeler / Fast Nonlinear Least Squares Optimization on the GPU

Stage Our Solver Ceres - 1 Ceres - 4

Residual Eval. Only [ms] 8.373 33.48 13.17
Jacobian Evaluation [ms] 122.193 4249.98 1124.11

Linear Solve [ms] 26.723 2555.49 2277.72

Table 2: Performance comparison between Ceres running on 1
thread, on 4 threads and our solver for a single nonlinear itera-
tion. Note that our system has 4 cores.

all the test cases, the time to reach the solution by our solver was
one order of magnitude smaller than the time used by Ceres.

Fig. 11 illustrates the performance comparison for a single run
of the model parameter optimization. Note that solving for 1 frame
of an animation often requires up to 10 optimization solves with
updated constraints each iteration, but this figure isolates just a
single iteration for comparison purposes. For all four actors we
illustrate both the number of nonlinear iterations as well as the
total time in seconds. Our method terminates in a similar con-
vergence pattern as Ceres (left plot), but each iteration is much
faster, leading to an order of magnitude speedup (right plot, in log
time). For each frame, we set a small error threshold (10−5) for
both solvers and let them run to convergence. Ceres’ configuration
was: Minimizer: TRUST_REGION; Trust region strategy: LEV-
ENBERG_MARQUARDT, Linear solver: SPARSE_SCHUR. Quali-
tatively, we show that the accuracy of our solver is also very sim-
ilar to the accuracy achieved by Ceres, by reconstructing the full
sequence for each actor and visualizing the difference color coded
on the meshes. Fig. 12 illustrates 3 frames from each sequence, and
we refer to the accompanying video for the entire performances.
Our solver produced visually indistinguishable results to Ceres in
the frontal face region where most constraints are located, with only
minor differences (< 0.2mm) in other parts of the head such as the
back or the neck where there are fewer constraints to guide the op-
timization.

Finally, we compare the time to solve the ALM model optimiza-
tion as a function of the size of the ALM model, specifically the
dimensionality of the individual patch subspaces, which directly
correlates with the number of variables. Table 3 illustrates that the
solve is supralinear in the number of parameters.

Model Size Solve Time
(in ALM subspace dimensions) (in seconds)

4 0.35
8 0.58
15 0.98
20 1.1

Table 3: Solve time is supralinear in the dimensionality of the ALM
subspace.

Ours
Ceres

Ours
Ceres

Ours

Nonlinear Iterations Log Time [s]

Nonlinear Iterations Log Time [s]

Nonlinear Iterations Log Time [s]

Nonlinear Iterations Log Time [s]

Ceres
Ours

Ceres
Ours

Ceres

Ours
Ceres

Ours
Ceres

Ours
Ceres

Ours
Ceres

Re
si

du
al

 C
os

t (
x1

00
0)

Re
si

du
al

 C
os

t (
x1

00
0)

Re
si

du
al

 C
os

t (
x1

00
0)

Re
si

du
al

 C
os

t (
x1

00
0)

Re
si

du
al

 C
os

t (
x1

00
0)

Re
si

du
al

 C
os

t (
x1

00
0)

Re
si

du
al

 C
os

t (
x1

00
0)

Re
si

du
al

 C
os

t (
x1

00
0)

Figure 11: The performance of our method compared with the
Ceres solver [AMO], when solving different animation sequences.
Our method has a nearly identical convergence speed (left), but the
solution is achieved one order of magnitude faster (right).

6. Conclusions

The fields of computer graphics, vision, robotics and interaction
contain a very common element - at the heart of many challenges
lies a nonlinear optimization problem, which often forms the bottle-
neck of computation. For some problems, for example those with
a small number of variables or a sparse relationship between the
variables and residuals, fast solutions have been proposed. How-
ever, in the case of large-scale and semi-sparse problems, the only
current solution is slow iterative solvers such as Ceres. To the best
of our knowledge, we propose the first GPU-based fast solver for
semi-sparse problems. A main novelty of our method lies in a new
graph-based data structure for storing and accessing elements of
the Jacobian matrix, coupled with a parallel linear solver that uses
the local Schur complement, and the application of spectral space
partitioning to decompose the adjacency graph into balanced par-
titions. The result is a highly scalable, parallel solver that can be
mapped onto graphics hardware.

To demonstrate our solver, we applied it to the optimization
problem of model-based facial capture using a recently-proposed
anatomical local face model (ALM), which is a large nonlinear op-
timization problem with many parameters contributing to the cost
functions. We demonstrate robustness to various instantiations of
the problem, namely different actors and model sizes, and also

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.



M. Fratarcangeli, D. Bradley, A. Gruber, G. Zoss & T. Beeler / Fast Nonlinear Least Squares Optimization on the GPU

Reference Ceres Ours Di�erence Reference Ceres Ours Di�erence

Figure 12: We demonstrate the accuracy of our fast nonlinear solver with the application of facial capture using an anatomical local model
(ALM), and compare to the same result solved using the Ceres solver [AMO]. Here we show 3 frames from sequences of 4 different actors.
The reconstruction results differ only very little, as illustrated in the heatmap (from blue=0mm to red=0.2mm), and the majority of the
difference is in the back of the head and shoulders where there is no data to constrain the optimization. Despite nearly identical results, our
method ran 10 times faster per face solve, and each frame contained 8 iteration of solving, yielding a significant speedup.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.



M. Fratarcangeli, D. Bradley, A. Gruber, G. Zoss & T. Beeler / Fast Nonlinear Least Squares Optimization on the GPU

compared accuracy and run time to a CPU-based Ceres solve of
the same problem. In all cases, our new solver vastly outperforms
the alternative while remaining extremely accurate.

Future research. Even though we demonstrate our results solely
in the context of the ALM, most of the presented concepts are suf-
ficiently generic to be applied to any semi-sparse problem. The
partitioning, for example, abstracts entirely from the geometry of
the problem by considering the algebraic structure of the matrix.
In fact, the only component specific to the ALM is the clustering
phase. As a future research, and in order to make the algorithm
completely generic, this step could be realized by greedily detect-
ing and clustering cliques in the adjacency graph of the Laplacian.
This is the so-called clique cover problem, which can be reduced
to a graph coloring of the Laplacian’s complement graph [Kar72].
This latter is the graph on the same vertex set that has edges be-
tween non-adjacent vertices of the Laplacian. Finding independent
sets in the complement graph using a fast, approximated coloring
algorithm (for example, one of the parallel approaches in [FTP16]),
corresponds to finding cliques in the Laplacian graph. Such cliques
can be clustered together to form super nodes, reducing the size of
the Laplacian and allowing a fast eigendecomposition for the spec-
tral partitioning described in Sec. 4.3.

References
[ADD96] AMESTOY P. R., DAVIS T. A., DUFF I. S.: An approximate

minimum degree ordering algorithm. SIAM J. Matrix Anal. Appl. 17, 4
(Oct. 1996), 886–905. 8, 9

[AMO] AGARWAL S., MIERLE K., OTHERS: Ceres solver. http://
ceres-solver.org. 2, 9, 10, 11

[BBC∗94] BARRETT R., BERRY M., CHAN T. F., DEMMEL J., DO-
NATO J., DONGARRA J., EIJKHOUT V., POZO R., ROMINE C., DER
VORST H. V.: Templates for the Solution of Linear Systems: Build-
ing Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA,
1994. 2, 4

[BV04] BOYD S., VANDENBERGHE L.: Convex Optimization. Cam-
bridge University Press, New York, NY, USA, 2004. 2

[CZY17] CHU J., ZAFAR N. B., YANG X.: A schur complement precon-
ditioner for scalable parallel fluid simulation. ACM Trans. Graph. 36, 4
(July 2017). 3

[DMZ∗17] DEVITO Z., MARA M., ZOLLHÖFER M., BERNSTEIN G.,
RAGAN-KELLEY J., THEOBALT C., HANRAHAN P., FISHER M.,
NIESSNER M.: Opt: A domain specific language for non-linear least
squares optimization in graphics and imaging. ACM Trans. Graph. 36, 5
(Oct. 2017), 171:1–171:27. 3, 6

[DNZ∗17] DAI A., NIESSNER M., ZOLLÖFER M., IZADI S.,
THEOBALT C.: Bundlefusion: Real-time globally consistent 3d recon-
struction using on-the-fly surface re-integration. ACM Trans. Graph.
(TOG) (2017). 3

[ELaC19] EISENBERGER M., L ÄHNER Z., CREMERS D.: Divergence-
free shape correspondence by deformation. Computer Graphics Forum
38, 5 (2019), 1–12. 2

[FBT∗18] FANG X., BAO H., TONG Y., DESBRUN M., HUANG J.:
Quadrangulation through morse-parameterization hybridization. ACM
Trans. Graph. 37, 4 (July 2018), 92:1–92:15. 2

[FTP16] FRATARCANGELI M., TIBALDO V., PELLACINI F.: Vivace: A
practical gauss-seidel method for stable soft body dynamics. ACM Trans.
Graph. 35, 6 (Nov. 2016), 214:1–214:9. 3, 5, 12

[GW08] GRIEWANK A., WALTHER A.: Evaluating Derivatives: Princi-
ples and Techniques of Algorithmic Differentiation, second ed. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008. 5

[HL95] HENDRICKSON B., LELAND R.: An improved spectral graph
partitioning algorithm for mapping parallel computations. SIAM Journal
on Scientific Computing 16, 2 (3 1995). 9

[HLSO12] HECHT F., LEE Y. J., SHEWCHUK J. R., O’BRIEN J. F.:
Updated sparse cholesky factors for corotational elastodynamics. ACM
Trans. Graph. 31, 5 (Sept. 2012), 123:1–123:13. 2, 3

[Kar72] KARP R.: Reducibility among combinatorial problems. In Com-
plexity of Computer Computations, Miller R., Thatcher J., (Eds.). Plenum
Press, 1972, pp. 85–103. 12

[KK98] KARYPIS G., KUMAR V.: A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20, 1
(Dec. 1998), 359–392. 8, 9

[LAR∗14] LEWIS J. P., ANJYO K., RHEE T., ZHANG M., PIGHIN F.,
DENG Z.: Practice and theory of blendshape facial models. In Euro-
graphics 2014 - State of the Art Reports (2014), Lefebvre S., Spagnuolo
M., (Eds.), The Eurographics Association, pp. 199–218. 3

[Lev44] LEVENBERG K.: A method for the solution of certain non-linear
problems in least squares. Quart. Appl. Math., 2 (1944), 164–168. 2, 5

[LGL∗19] LI M., GAO M., LANGLOIS T., JIANG C., KAUFMAN D. M.:
Decomposed optimization time integrator for large-step elastodynamics.
ACM Trans. Graph. 38, 4 (July 2019), 70:1–70:10. 2, 3

[LMAS16] LIU H., MITCHELL N., AANJANEYA M., SIFAKIS E.: A
scalable schur-complement fluids solver for heterogeneous compute plat-
forms. ACM Trans. Graph. 35, 6 (Nov. 2016), 201:1–201:12. 3

[Mar63] MARQUARDT D. W.: An algorithm for least-squares estimation
of nonlinear parameters. SIAM J. Appl. Math. 11, 2 (1963), 431–441. 2,
5

[MEM∗19] MACKLIN M., ERLEBEN K., MÜLLER M., CHENTANEZ
N., JESCHKE S., MAKOVIYCHUK V.: Non-smooth newton methods
for deformable multi-body dynamics. CoRR abs/1907.04587 (2019). 3

[MFZ∗17] MEKA A., FOX G., ZOLLHÖFER M., RICHARDT C.,
THEOBALT C.: Live user-guided intrinsic video for static scene. IEEE
Transactions on Visualization and Computer Graphics 23, 11 (NOVEM-
BER 2017). 3

[MHR∗16] MUSIALSKI P., HAFNER C., RIST F., BIRSAK M., WIM-
MER M., KOBBELT L.: Non-linear shape optimization using local sub-
space projections. ACM Trans. Graph. 35, 4 (July 2016), 87:1–87:13.
2

[NJW01] NG A. Y., JORDAN M. I., WEISS Y.: On spectral cluster-
ing: Analysis and an algorithm. In Neural Information Processing Sys-
tems: Natural and Synthetic (Cambridge, MA, USA, 2001), NIPS’01,
MIT Press, pp. 849–856. 5, 7, 8

[PGB03] PÉREZ P., GANGNET M., BLAKE A.: Poisson image editing.
ACM Trans. Graph. 22, 3 (July 2003), 313–318. 6

[SA07] SORKINE O., ALEXA M.: As-rigid-as-possible surface model-
ing. In Proceedings of the Fifth Eurographics Symposium on Geome-
try Processing (Aire-la-Ville, Switzerland, Switzerland, 2007), SGP ’07,
Eurographics Association, pp. 109–116. 6

[Saa03] SAAD Y.: Iterative Methods for Sparse Linear Systems, 2nd ed.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2003. 3, 5

[Ski08] SKIENA S. S.: The Algorithm Design Manual, 2nd ed. Springer
Publishing Company, Incorporated, 2008. 7

[SKK03] SCHLOEGEL K., KARYPIS G., KUMAR V.: Sourcebook of par-
allel computing. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2003, ch. Graph Partitioning for High-performance Scientific Sim-
ulations, pp. 491–541. 7

[SPSH∗17] SHTENGEL A., PORANNE R., SORKINE-HORNUNG O.,
KOVALSKY S. Z., LIPMAN Y.: Geometric optimization via composite
majorization. ACM Trans. Graph. 36, 4 (July 2017), 38:1–38:11. 2

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

http://ceres-solver.org
http://ceres-solver.org


M. Fratarcangeli, D. Bradley, A. Gruber, G. Zoss & T. Beeler / Fast Nonlinear Least Squares Optimization on the GPU

[Sug11] SUGIHARA T.: Solvability-unconcerned inverse kinematics by
the levenberg-marquardt method. IEEE Transactions on Robotics 27, 5
(Oct 2011), 984–991. 2

[TMHF00] TRIGGS B., MCLAUCHLAN P. F., HARTLEY R. I.,
FITZGIBBON A. W.: Bundle adjustment - a modern synthesis. In
Proceedings of the International Workshop on Vision Algorithms: The-
ory and Practice (London, UK, UK, 2000), ICCV ’99, Springer-Verlag,
pp. 298–372. 2

[TZS∗16] THIES J., ZOLLHÖFER M., STAMMINGER M., THEOBALT
C., NIESSNER M.: Face2face: Real-time face capture and reenactment
of rgb videos. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (June 2016), pp. 2387–2395. 2, 3

[Wan15] WANG H.: A chebyshev semi-iterative approach for accelerat-
ing projective and position-based dynamics. ACM Trans. Graph. 34, 6
(Oct. 2015), 246:1–246:9. 3, 5

[WBGB16] WU C., BRADLEY D., GROSS M., BEELER T.: An
anatomically-constrained local deformation model for monocular face
capture. ACM Trans. Graph. 35, 4 (July 2016), 115:1–115:12. 2, 3, 4

[WTYH18] WU K., TRUONG N., YUKSEL C., HOETZLEIN R.: Fast
fluid simulations with sparse volumes on the gpu. Computer Graphics
Forum (Proceedings of EUROGRAPHICS 2018) 37, 2 (2018), 157–167.
3

[WY16] WANG H., YANG Y.: Descent methods for elastic body simula-
tion on the gpu. ACM Trans. Graph. 35, 6 (Nov. 2016), 212:1–212:10.
3, 5

[WZN∗14] WU C., ZOLLHÖFER M., NIESSNER M., STAMMINGER M.,
IZADI S., THEOBALT C.: Real-time shading-based refinement for con-
sumer depth cameras. ACM Trans. Graph. 33, 6 (Nov. 2014), 200:1–
200:10. 3

[ZNI∗14] ZOLLHÖFER M., NIESSNER M., IZADI S., REHMANN C.,
ZACH C., FISHER M., WU C., FITZGIBBON A., LOOP C., THEOBALT
C., STAMMINGER M.: Real-time non-rigid reconstruction using an rgb-
d camera. ACM Trans. Graph. 33, 4 (July 2014), 156:1–156:12. 2, 3

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.


