
Neural Frame Interpolation for Rendered Content

KARLIS MARTINS BRIEDIS, DisneyResearch|Studios, Switzerland and ETH Zürich, Switzerland

ABDELAZIZ DJELOUAH, DisneyResearch|Studios, Switzerland
MARK MEYER, Pixar Animation Studios, USA

IAN MCGONIGAL, Industrial Light & Magic, United Kingdom

MARKUS GROSS, DisneyResearch|Studios, Switzerland and ETH Zürich, Switzerland

CHRISTOPHER SCHROERS, DisneyResearch|Studios, Switzerland

AlbedoInputs Our InterpolationDepthNormals DAIN

Fig. 1. Our frame interpolation method leverages auxiliary features such as albedo, depth, and normals besides color values (left). This allows us to achieve

production quality results while rendering fewer pixels which is not possible with state-of-the-art frame interpolation methods working on color only (right).

© 2021 Disney

The demand for creating rendered content continues to drastically grow. As

it often is extremely computationally expensive and thus costly to render

high-quality computer-generated images, there is a high incentive to reduce

this computational burden. Recent advances in learning-based frame inter-

polation methods have shown exciting progress but still have not achieved

the production-level quality which would be required to render fewer pixels

and achieve savings in rendering times and costs. Therefore, in this paper

we propose a method specifically targeted to achieve high-quality frame

interpolation for rendered content. In this setting, we assume that we have

full input for every 𝑛-th frame in addition to auxiliary feature buffers that

are cheap to evaluate (e.g. depth, normals, albedo) for every frame. We pro-

pose solutions for leveraging such auxiliary features to obtain better motion

estimates, more accurate occlusion handling, and to correctly reconstruct

non-linear motion between keyframes. With this, our method is able to

significantly push the state-of-the-art in frame interpolation for rendered

content and we are able to obtain production-level quality results.

Authors' addresses: DisneyResearch|Studios, Stampfenbachstrasse 48, Zürich, Switzer-
land; ETH Zürich, Rämistrasse 101, Zürich, Switzerland; Pixar Animation Studios, 1200
Park Ave, Emeryville, CA, USA; Industrial Light & Magic, Lacon House, 84 Theobalds
Road, London, United Kingdom. Corresponding authors: Karlis Martins Briedis,
karlis.briedis@inf.ethz.ch; Christopher Schroers, christopher.schroers@disney.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2021/12-ART239 $15.00
https://doi.org/10.1145/3478513.3480553

CCS Concepts: · Computing methodologies→ Reconstruction; Ren-

dering.

Additional Key Words and Phrases: Frame Interpolation, Motion Estimation,

Deep Learning

ACM Reference Format:

Karlis Martins Briedis, Abdelaziz Djelouah, Mark Meyer, Ian McGonigal,

Markus Gross, and Christopher Schroers. 2021. Neural Frame Interpolation

for Rendered Content. ACM Trans. Graph. 40, 6, Article 239 (December 2021),

13 pages. https://doi.org/10.1145/3478513.3480553

1 INTRODUCTION

Rendering high-quality computer-generated images is often ex-

tremely computationally expensive - many times requiring hun-

dreds of core hours to render a single frame. As the demand for

more content continues to grow, as well as the increase in high

frame rate content in AR/VR applications, theme park rides, video

games and film, addressing these high computational costs is becom-

ing more and more important. Frame interpolation methods, where

a subset of additional, in between frames is quickly computed from

an existing set of frames, can greatly reduce this computational bur-

den. By rendering many fewer frames (and thus many fewer pixels),

rendering times and costs are significantly reduced for path-traced

renderings, and turnaround times are improved, allowing for more

artist iterations and greatly improving the artist experience.

Recent learning-based frame interpolation methods have shown

significant improvement in performance over the last few years

but still have not achieved production-level quality. While most

prior methods have targeted interpolation of color videos and are

ACM Trans. Graph., Vol. 40, No. 6, Article 239. Publication date: December 2021.

239:2 • Karlis Martins Briedis, Abdelaziz Djelouah, Mark Meyer, Ian McGonigal, Markus Gross, and Christopher Schroers

suitable for artistic slow-motion, multi-view interpolation, frame

rate conversion, we propose an interpolation specific to computer-

generated content intended to save costs and decrease rendering

time. By targeting only rendered content, it is possible to leverage

auxiliary renderer feature buffers for guiding the interpolation. Prior

work has shown that significant improvement could be obtained

in other scenarios such as denoising [Bako et al. 2017; Vogels et al.

2018] or supersampling [Xiao et al. 2020].

Thus our goal is to design a frame interpolation method for ren-

dered content that significantly outperforms prior methods operat-

ing on color only content. We achieve this by carefully integrating

the information from auxiliary features in different places of the

interpolation pipeline. More specifically, our contributions are:

• an optical flow method for rendered content that deals with

non-linear motion between keyframes and even outperforms

use of renderer generated motion vectors

• a strategy for dynamically creating a dataset for pre-training

optical flow estimator for rendered content

• improved compositing and occlusion handling by leveraging

auxiliary feature buffers

• obtaining production level quality results for frame interpo-

lation of rendered content

Our method is specifically tailored to require little to no extra

implementation effort when being included into existing production

pipelines. The only adaptation that might be required for most

renderers is the option to obtain auxiliary feature buffers without

rendering the color passes.

Our paper is structured as follows: First, we will review rele-

vant related works. Then we will describe our method and cover

important implementation details. Subsequently, we conduct a com-

prehensive ablation study and show extensive comparisons to other

state-of-the-art methods. Finally, we discuss limitations before con-

cluding.

2 RELATED WORK

Video frame interpolation is an activate field of research with appli-

cations including frame-rate conversion, slow motion effects and

compression, to name a few. In the context of rendering, the ob-

jective is to reduce computations by only rendering a subset of

frames and rely on frame interpolation to estimate the missing im-

ages. Similarly to other works in denoising [Bako et al. 2017; Vogels

et al. 2018], super-resolution [Xiao et al. 2020] and temporal process-

ing [Zimmer et al. 2015], auxiliary feature buffers that are available

in the renderer can be leveraged for improved results. In this section

we review existing works in video frame interpolation and optical

flow.

2.1 Video Frame Interpolation

Video frame interpolation has benefited from the advances in deep

learning, with recent works achieving remarkable interpolation re-

sults. Frame interpolation methods can be split into four categories:

phase-based, flow-based with explicit motion modeling and image

warping, kernel-based with estimation of spatially varying synthe-

sis kernels, and direct prediction employing feed-forward neural

networks.

Phase-Based. [Meyer et al. 2015] model motion in the frequency

domain as a partial phase shift between the inputs and use a heuristic

to correct the phase difference for obtaining actual spatial motion.

Further improvements were made, replacing this heuristic by a

neural network parametrization [Meyer et al. 2018]. Phase based

methods have shown good results for interpolation of volumetric

effects but fall short in sequences with large motion.

Flow-Based. To rely on estimated motion vectors is the most

straightforward approach to frame interpolation [Baker et al. 2011].

Typically the solution consists of 2 stages: motion estimation and

warping/compositing. In this section we focus on the warping and

compositing, as the challenges of optical flow estimation are dis-

cussed in more details later.

The key challenge for flow-based frame interpolation techniques

is to deal with both occlusion/dis-occlusions and errors in flow

estimation. Instead of using heuristics to solve these issues [Baker

et al. 2011], methods such as [Jiang et al. 2018; Xue et al. 2019]

leveraged end-to-end training of both optical flow and compositing

neural network models. Typically flow-based architectures perform

better in samples with large motion where other approaches would

need very deep models to capture such large displacements.

Further improvements in optical flow models [Sun et al. 2018]

and using forward warping [Niklaus and Liu 2018] have pushed

the quality of the results one step further. Recent approaches have

focused on differential forward warping [Niklaus and Liu 2020] and

depth prediction [Bao et al. 2019] to better resolve occlusion bound-

ary issues. To improve over the simple linear motion assumption

made by most approaches, [Chi et al. 2020; Liu et al. 2020; Xu et al.

2019] use quadratic and cubic motion models. Enabling higher order

motion modeling has been achieved by increasing the input context.

However this is sensitive to the temporal gap between the input

frames. Most recent flow based interpolation methods investigate re-

current residual pyramid networks [Zhang et al. 2020] and bilateral

motion estimation [Park et al. 2020].

Kernel-Based. Instead of relying on optical flow, kernel-based

methods combine motion estimation and image synthesis into a

single convolution step [Lee et al. 2020; Niklaus et al. 2017a,b].

These methods already resulted in sharp images and may better

handle challenging situations, such as brightness changes, thanmore

traditional methods. Recently [Niklaus et al. 2021] demonstrated

that improvements in network design and training procedures can

significantly reduce the gap with flow based interpolation methods.

Direct. Initial attempts to predict interpolated frame with a clas-

sical feedforward CNN [Long et al. 2016] were not able to properly

model motion and produced blurry outputs but recent advances

have showed improvements. In particular [Choi et al. 2020; Kalluri

et al. 2021] use attention or gating mechanisms to model motion and

avoid optical flow computation. These approaches can reduce com-

putation time especially in those situations where multiple frames

are interpolated in one shot and are straightforward. However, the

results still under-perform flow based methods.

2.2 Optical Flow Estimation

Motion estimation is a long standing problem in computer vision

and a large body of work exists [Baker et al. 2011]. We focus our

ACM Trans. Graph., Vol. 40, No. 6, Article 239. Publication date: December 2021.

Neural Frame Interpolation for Rendered Content • 239:3

Optical Flow

Estimation

w-map

Estimation

,

Forward warping

Compositing

Forward warping

Feature

Extraction

Feature

Extraction

,

Feature
Extraction

Compositing

Feature
Extraction

Feature
Extraction

Fig. 2. Overview. Both color data 𝐼 as well as auxiliary features 𝐴 of the keyframes and the target frame are used in flow estimation, w-map estimation, and

compositing. Images © 2021 Disney / Pixar

discussion on the most recent deep learning based methods and

detail the important improvements we propose for rendered data.

Initially, deep learning based methods have leveraged UNet like

architectures [Dosovitskiy et al. 2015; Ilg et al. 2017] that demon-

strated promising results despite their simplicity. An important step

was made through the usage of partial cost volumes at multiple

pyramid levels [Sun et al. 2018]. [Hur and Roth 2019] proposed

several improvements that include sharing network weights across

the pyramid levels and the estimation of an explicit occlusion map.

Recently [Teed and Deng 2020] achieved state of the art results on

end point error in optical flow benchmarks. The authors propose

to compute a 4D correlation volume for all pairs of pixels which

allows very accurate but currently only low resolution flow extrac-

tion, i.e. the estimation is performed at 1/8th of the original size.

Because of the iterative strategy with the number of iterations as

hyper-parameter, it is not clear how this can be trained end to end

with a frame interpolation objective.

We would like to draw attention to the complexity of motion

estimation, even in the context of rendered images. The work of

Zimmer et al.[2015] is among the first methods that take interest

in using rendered features for temporal processing. The authors

propose a decomposition of the rendered frame into different com-

ponents each accompanied by matching motion vectors. The key

insight here is that accurate visual motion estimation requires es-

timating motion of various light paths. Such correspondences are

optimized for endpoint error and there is no guarantee that rendered

motion vectors produced in such a way would be the optimal choice

for the task of frame interpolation. Besides, obtaining these vectors

requires non-trivial implementation effort to production renderers.

Similarly, [Zeng et al. 2021] propose a method for estimating motion

vectors that can track shadows and glossy reflections in real-time

but requires significant renderer adaptation.

Our optical flow model follows a design strategy similar to [Hur

and Roth 2019; Sun et al. 2018] with the objective of frame interpo-

lation for rendered data. We take advantage of the auxiliary buffers

that are available for the interpolated frame and use them as part

of the motion estimation. More precisely, each pyramid level in

our optical flow model has an additional cost volume, using only

auxiliary features which allows for a more precise estimation of

motion with respect to the middle frame. Our interpolation results

demonstrate the advantage of this strategy where we avoid the

complex path space estimation [Zimmer et al. 2015] and manage to

handle non-linear motion.

3 FRAME INTERPOLATION FOR RENDERED CONTENT

The currently best-performing methods for frame interpolation of

color-only content are flow-based deep neural networks such as

DAIN [Bao et al. 2019], QVI [Xu et al. 2019] and SoftSplat [Niklaus

and Liu 2020]. These methods roughly adhere to the following strat-

egy to reconstruct an intermediate frame at an arbitrary temporal

position 𝑡 ∈ [0, 1]: They first estimate motion between keyframes

to derive the flow fields to the intermediate frame f0→𝑡 and f1→𝑡 .

Subsequently, they perform a motion compensation by warping to

the intermediate frame. In the last step, this is used as input to a

synthesis network to composite the final result.

We follow the same strategy in our approach for frame inter-

polation of rendered content and show how to refine each of the

aforementioned steps leading to significantly improved reconstruc-

tion quality. We mainly achieve this by consequently incorporating

additional render feature buffers in each processing step. These

buffers - in our setting albedo, surface normal vectors, and depth

- are available not only for keyframes but can also be efficiently

evaluated for the intermediate frames to be interpolated.

Figure 2 gives an overview of our approach. In the following

sections we explain in more detail how we improve the optical

flow based motion estimation, the w-map estimation for occlusion

handling during warping, and the compositing step.

3.1 Estimating Motion for Rendered Images

Even though a renderer has access to all information of a scene,

production renderers are not always able to output correspondence

vectors required to correctly register the keyframe image content on

ACM Trans. Graph., Vol. 40, No. 6, Article 239. Publication date: December 2021.

239:4 • Karlis Martins Briedis, Abdelaziz Djelouah, Mark Meyer, Ian McGonigal, Markus Gross, and Christopher Schroers

Frame 0 (and Frame 1) Frame t

Pyramid Level

Flow Estimation

Pyramid Level

Flow Estimation

Pyramid Level

Flow Estimation

Pyramid Level Flow Update Flow Refinement/

Flow

+ Flow

Update

Flow

Refinement

U
p

d
a
te

 o
r R

e
fin

e
m

e
n
t

Warping
& Correlation /

/

Fig. 3. Overview of the Flow Estimation Method. Flow Update and Flow Refinement steps have similar set of inputs, but different correlation size and

final estimation networks. Images © 2021 Disney / Pixar

the unknown frame to be interpolated. In such cases, a non-trivial

implementation effort would be required to extend the renderer to

allow for this.

However, even when this is done, there are challenging cases

when such motion vectors are not valid. In cases such as semi-

transparent objects, depth of field, and motion blur, motion values

can get aggregated from multiple objects which can often lead to

displacement vectors that are meaningless. Another fundamentally

challenging case is obtaining motion vectors for fluid simulations.

As a result, even in the context of rendered data, optical flow es-

timation remains a crucial element for frame interpolation with

great potential for significant quality improvements when properly

leveraging auxiliary feature buffers.

Leveraging Auxiliary Feature Buffers. Similarly to existing deep

image-based optical flow estimation networks [Hur and Roth 2019;

Sun et al. 2018] we adopt a coarse-to-fine strategy that leverages fea-

ture pyramids and cost-volumes at multiple scales. In such methods,

the flow estimate gets iteratively updated based on a cost volume be-

tween learned feature representations of the inputs, the cost volume

providing information if some other displacement around the cur-

rent estimate is a better match. In contrast to previous approaches,

we compute feature pyramids not only from color but also from

auxiliary feature buffers (albedo and depth) to help the correspon-

dence matching especially in ambiguous situations and to obtain

more refined motion boundaries. We denote 𝐴 the set of available

auxiliary features.

Thus, given two frames 𝐼0 and 𝐼1 corresponding to the instants

𝑡 = 0 and 𝑡 = 1 respectively, the goal is to understand the apparent

motion by estimating the optical flow f0→1 from 𝐼0 to 𝐼1 while

leveraging the auxiliary features 𝐴 alongside the color image data 𝐼 .

For this purpose, we propose to encode both 𝐼 and 𝐴 at each time

instant into a feature pyramid, e.g.Φ0 = 𝐸𝐹 (𝐼0, 𝐴0), through a neural

network encoder 𝐸𝐹 . The feature pyramid covers different spatial

resolutions where from one level to the next the resolution is halved.

On each level, a 9 × 9 cost volume 𝐶9 is computed which is used to

extract an incremental flow update through a network 𝑈 . Overall,

taking into account the bilinearly upscaled and accordingly rescaled

version of the flow estimate from the previous level f̃𝑖0→1 =↑2 f
𝑖−1
0→1,

the incremental update on the current level 𝑖 is given by

u = 𝑈
(
Φ0, 𝐶

9 (
Φ0,Wf̃

(Φ1)
)
, f̃

)
. (1)

HereW is the backward warping function and we have used the

shorthand notation f̃ to denote the flow f̃
𝑖
0→1. In addition, we gen-

erally drop the index 𝑖 which determines the current pyramid level

for notational convenience whenever possible. While a new incre-

mental flow update u is computed on each level, the parameters of

the network𝑈 that extracts the update are shared across all levels.

Subsequently, we refine the flow estimate of the current level f̃ +u

following the exact same principle as in the update step. To make

the refinement lightweight but still expressive, we only compute

a 1 × 1 cost volume 𝐶1 feeding into a small refinement network 𝑅

to predict 3 × 3 kernels 𝒌 that can be applied for refining the flow.

Thus we have

𝒌 = 𝑅
(
Φ0, 𝐶

1 (
Φ0,𝑊f̃+u

(Φ1)
)
, f̃ + u

)
(2)

and the final flow estimate at a given level can be obtained by

applying these kernels 𝒌:

f =

(
f̃ + u

)
⊛ 𝒌 . (3)

IRR-PWC [Hur and Roth 2019] also has a similar refinement mod-

ule but the partial feature correlation 𝐶1 is not considered during

refinement.

High Resolution Flow Refinement. Due to computational costs

and small numerical impact on end point error, existing optical

flow methods typically limit themselves to a portion of the original

resolution (e.g. 1/4 for PWC [Sun et al. 2018] and IRR-PWC [Hur and

Roth 2019] or 1/8 for RAFT [Teed and Deng 2020]). To reach the full

resolution they rely on bicubic upscaling, or predicted upsampling

kernels by introducing additional parameters in the RAFT case .

In the setting of frame interpolation it can be beneficial to obtain

accurate warps at high resolution. Therefore, to improve the accu-

racy of flow motion boundaries, we want to estimate motion up to

the full resolution without incurring prohibitive computational cost

and memory requirements. We can achieve this by only running the

flow update step until a quarter resolution while maintaining the

lightweight refinement up to the full resolution. This refinement can

ACM Trans. Graph., Vol. 40, No. 6, Article 239. Publication date: December 2021.

Neural Frame Interpolation for Rendered Content • 239:5

be especially powerful in the presence of auxiliary feature buffers

since they can offer additional guidance. In this case, the refinement

will not operate on f̃ + u as shown in Equation 2 for the lower levels

but on f̃ instead.

Non-Linear Motion. Most frame interpolation approaches that

are based on flow assume linear motion between key-frames. They

estimate the flow to the target frame f0→𝑡 by multiplying the key-

frame flow with the time step of the intermediate frame, i.e.

f0→𝑡 = 𝑡 · f0→1 . (4)

First of all such an approximation can deviate from the original artis-

tic intent and would limit the applicability of frame interpolation on

real productions. Second, this approximation causes misalignment

between intermediate frame feature buffers and the warped key-

frames. This misalignment hinders drawing full benefit from the

additionally available data. During the model training, the misalign-

ment between the model output and the ground truth would lead

to a suboptimal loss and training process. Finally, in case of smaller

artifacts remaining after the interpolation step, partial re-rendering

of specific regions will be difficult due to the mismatch in motion.

Such regions can, most trivially, be selected through an interactive

artist input.

Our objective in this section is to leverage auxiliary features of

the target frame 𝐼𝑡 to address these issues. We modify the optical

flow method to directly predict f0→𝑡 , by additionally considering

intermediate feature buffers. Essentially following the same coarse-

to-fine strategy based on cost volumes but the estimation at each

level 𝑖 becomes

u = 𝑈 (Φ0, 𝐶
9 (Φ0,𝑊f̃/𝑡

(Φ1)), 𝐶
7
𝐴 (Φ̂0,𝑊f̃

(Φ̂𝑡)), f̃) (5)

with the following changes and additions

u = u0→𝑡 , Φ̂0 = 𝐸𝐹 (𝐴0) and Φ̂𝑡 = 𝐸𝐹 (𝐴𝑡). (6)

In analogy to Equations 2 and 3, we run a refinement considering

partial features as in 5. The important difference here is that in this

case we directly predict the optical flow f0→𝑡 . This is reflected in

the prediction of all the pyramid levels 𝑖 . In addition to this we have

partial features Φ̂0 and Φ̂𝑡 . These are called partial to emphasize that

the corresponding encoder 𝐸𝐹 has only access to partial data for

those instants, namely the auxiliary buffers 𝐴0 and 𝐴𝑡 . To leverage

these partial features, an additional 7 × 7 cost volume 𝐶7
𝐴
is used.

It is interesting to note here that we do not only rely on the cost

volume between secondary features (𝐶𝐴) but also retain the cost

volume between key-frames (𝐶). The reason for this is to allow esti-

mation of motion that is only apparent in the full features available

for key-frames. Figure 3 shows an overview of our flow estimation

method.

Training The Optical FlowModel. Typically the training procedure

of optical flow networks is rather involved and uses sequential train-

ings on specifically curated training datasets such as FlyingChairs

[Dosovitskiy et al. 2015], FlyingThings [N.Mayer et al. 2016] and

potentially a final fine tuning step on the Sintel dataset [Butler et al.

2012]. These datasets are not applicable to train our motion esti-

mation network due to lack of the secondary features. The only

exception to this is the Sintel dataset which does contain additional

feature channels. However it is too small for the purpose of neural

network training. Therefore we create our own dataset of rendered

content containing all required buffers. Our main insight is that for

successful flow training, synthetic image objects and their outlines

do not have to align, which gives a lot more flexibility in creating a

dataset. To achieve a similar complexity as FlyingChairs, we use the

silhouettes available in the MSCOCO [Lin et al. 2014] dataset and

textures from our frame interpolation dataset to composite pairs of

frames with known motion.

We follow the training strategy of [Hur and Roth 2019; Sun et al.

2018] and optimize the mean endpoint error loss weighted across

the estimation levels:

L𝑓 𝑙𝑜𝑤 =

𝑛∑︁

𝑖=1

𝑤𝑖 ·
(f𝑖0→𝑡 − f̂

𝑖
0→𝑡

2 +

f𝑖1→𝑡 − f̂
𝑖
1→𝑡

2

)
. (7)

Here 𝑛 is the number of levels, f̂𝑖 is the reference flow downscaled

to the resolution of level 𝑖 and f
𝑖 is the current network estimate

at level 𝑖 . We describe our dataset generation and training in more

detail in Section 4.1.

3.2 Input Preprocessing

Similar as in the flow estimation, where we extract feature pyramids

through an encoder 𝐸𝐹 , we will also be extracting feature pyramids

through another encoder 𝐸𝐶 for the subsequent processing steps

of occlusion handling and compositing. This is motivated by the

fact that feature pyramids have also been shown to be beneficial

for frame interpolation [Niklaus and Liu 2018, 2020] and here we

briefly introduce the encoders that we use.

Full Context Encoder. We do not only extract features from color

values, but also all feature buffers that are available for both keyframes.

In this case we use color, normals, albedo, and depth. We refer to

this as the full context encoder and independently apply it to extract

context representations at 3 levels of scale (1/1, 1/2, and 1/4 of the

original resolution) from both keyframes. This encoder is denoted

𝐸𝐶 .

Partial Context Encoder. To make use of the auxiliary feature

buffers 𝐴 that are available also at the intermediate frame temporal

position, we introduce the partial context encoder, which has an

identical architecture as the full context encoder but is slightly

smaller and has an independent set of weights. Following similar

notation pattern as previously, this partial encoder is denoted 𝐸𝐶 .

3.3 Handling Occlusions in Motion Compensation

In the next processing step, the previously estimated motion is used

to perform motion compensation to align the keyframe content

for the final compositing step. In this process, properly handling

occlusions and disocclusions is one of the most crucial aspects. Both

backward and forward warping have certain advantages and draw-

backs. We opt for forward warping, as, unlike backward warping,

it does not require estimation of flows f𝑡→0, f𝑡→1 that are often

obtained with an approximation [Jiang et al. 2018].

In the forward warping operation, every pixel in the source image

𝐼0 is splatted to the target image 𝐼𝑡 by mapping them with a given

displacement vector f0→𝑡 . After the warping, it is normalized by the

ACM Trans. Graph., Vol. 40, No. 6, Article 239. Publication date: December 2021.

239:6 • Karlis Martins Briedis, Abdelaziz Djelouah, Mark Meyer, Ian McGonigal, Markus Gross, and Christopher Schroers

sum of the weight contributions. For any location 𝒚 on the image

plane Ω, this can be described as

𝐼𝑡 (𝒚) =

(∑︁

𝒙∈Ω

𝐼0 (𝒙) ·𝑊 (𝒙,𝒚)

)
·

(∑︁

𝒙∈Ω

𝑊 (𝒙,𝒚) + 𝜀

)−1
(8)

with a constant 𝜀, the weighting function

𝑊 (𝒙,𝒚) = 𝑤 (𝒙) · 𝑘 ((𝒙 + f (𝒙)) −𝒚) , (9)

and an e.g. bilinear splatting kernel 𝑘 . With forward warping, dis-

occlusions are naturally taken care of resulting in empty regions

that do not receive any information. However, in order to correctly

deal with occlusions, it is important to have an accurate way of

estimating the weighting factor𝑤 (𝒙). This weighting factor effec-

tively determines which pixel has higher importance when multiple

source pixels contribute to the same target pixel due to inaccuracies

in flow or occlusions. A possible weighting factor is inverse depth,

which can either be estimated from inputs [Bao et al. 2019; Niklaus

and Liu 2020] or, in our case, using renderer depth values.

However, depth can suffer from noise and in additionmight not be

the optimal choice, e.g. when foreground objects have a large z-axis

motion and move behind an object that has a higher depth value in

the source frame. Therefore we estimate the weighting map referred

to as w-map using a neural network. An overview of our weight

estimation network is shown in Figure 4. Analogously to our input

preprocessing step and flow pyramids, to estimate weighting for

frame 𝐼0, we first extract the full context representationΨ = 𝐸𝐶 (𝐼 , 𝐴)

from both keyframes 𝐼0 and 𝐼1, partial context Ψ̂ = 𝐸𝐶 (𝐴) from

secondary information of the keyframe 𝐼0 and the intermediate

frame 𝐼𝑡 . Then we backward warp Ψ(𝐼1) and Ψ̂(𝐼𝑡) to the time step

of 𝐼0, and use this as channel-wise concatenated input to a 3-level

UNet [Ronneberger et al. 2015] with skip connections. To avoid

negative contributions, outputs of the UNet need to be mapped

from [−𝑖𝑛𝑓 , 𝑖𝑛𝑓] to [0, 𝑖𝑛𝑓].

Since we have some access to the intermediate frame structure,

the range of weights can be much higher than in prior methods. In

our experiments this introduced numerical stability issues when

using direct exponentiation as proposed in [Niklaus and Liu 2020].

Therefore we opt for

𝑓 (𝑥) = max (0, 𝑥) + min
(
1, 𝑒𝑥

)
= 𝐸𝐿𝑈 (𝑥) + 1 , (10)

which corresponds to a shifted 𝐸𝐿𝑈 [Clevert et al. 2016] activation

function.

The possibility to have a very high or low confidence introduces

an additional problemwhen performing the flow network tuning for

the task of frame interpolation. By fully normalizing the outputs by

the sum of weights as in Equation 8, the only parameter that can be

adjusted to remove all contributions to the target pixel is adjusting

the kernel parameter, i.e. the flow, which introduces suboptimal flow

updates and caused the network to diverge. To allow for reducing

such contributions in the warping step, we use a more generous

padding parameter of 𝜀 = 1 in the denominator of Equation 8.

3.4 Compositing with Features

In the last step required, the individual warped frames need to be

composited to synthesize the desired intermediate frame to be in-

terpolated. Instead of warping the input frames directly, we use a

Backward warping

Backward warping

y = ELU(x) + 1

Mapping

-

- Abs

Abs

w-map Estimator

Fig. 4. Architecture of our forward warp weighting. Both full and

partial contexts are taken into account to estimate the w-map required

for warping frame 𝐼0 to temporal position 𝑡 . The same method is applied

estimate w-map for 𝐼1. Images © 2021 Disney / Pixar

Forward warping Forward warping

GridNet

w w

Fig. 5. Compositing with Features. Partial architecture of our frame

interpolation method for rendered content showing the compositing piece

of the method. Images © 2021 Disney / Pixar

common approach in flow estimation methods and warp the feature

pyramids that provide a better representation of the inputs. Specifi-

cally, for obtaining this feature representation we follow a method

as in [Niklaus and Liu 2020] since it has been shown to contribute

to a better reconstruction.

A graphical representation of our compositing strategy is shown

in Figure 5. This design enables the final frame synthesis step to

compare warped inputs and to reason on their correctness by also

extracting partial feature pyramids through 𝐸𝐶 of the target frame.

In accordance to previous methods that forward warp [Niklaus and

Liu 2018, 2020], we use the GridNet [Fourure et al. 2017] architecture

with three rows, six columns and replace the bilinear upsampling

layers by transposed convolutions .

4 EXPERIMENTAL SETUP

In this section we supply more details on the implementation and

training process. Roughly, the overall procedure is as follows: First

the optical flow network is pre-trained by optimizing the endpoint

error w.r.t. the ground truth flow vectors. In the second step, the

w-map and compositing networks are trained with a reconstruction

error on the target frame while keeping the flow network fixed. In

the third step we jointly fine tune the whole method. We will start

ACM Trans. Graph., Vol. 40, No. 6, Article 239. Publication date: December 2021.

Neural Frame Interpolation for Rendered Content • 239:7

by covering the flow estimation piece and then explain the details

of the remaining frame interpolation pipeline.

4.1 Optical Flow for Rendered Content
Auxiliary Feature Inputs. First, as highlighted in Section 3, we

compute feature pyramids not only from color 𝐼 but also from the

auxiliary feature buffers 𝐴 - depth and albedo. For albedo, just like

color, it is reasonable to assume brightness constancy across corre-

sponding pixels in subsequent frames. From prior works, it is well

known that optical flow networks can learn to account for most

brightness changes occurring in practice. The supervised training

might especially be of further help for the network to establish

invariances without explicitly prescribing them. In contrast to this,

assuming such a constancy assumption is more problematic for

depth as we expect more complex changes in subsequent frames

when the camera and objects move. As a result, we would expect

it to be difficult to obtain optimal results when supplying depth

values directly. However, since depth edges and motion boundaries

often are in alignment, depth is still a valuable feature for motion

estimation. In order to account for these circumstances and to make

this input more easily accessible to the network, we normalize the

depth values by dividing them with the median depth of the frame

sequence and invert them.

Hierarchical Flow Estimation. IRR-PWC [Hur and Roth 2019] per-

forms flow updates on a local scale while refining at full scale, i.e. in

this case themagnitude of the flow corresponds to that of the highest

resolution, instead of the current local scale of the specific pyramid

level. To avoid numerous flow rescalings, we perform all operations

in the local scale and perform instance normalization[Ulyanov et al.

2016] which also harmonizes varying flow magnitudes across levels.

Dataset. Since existing optical flow training datasets are either not

sufficiently big or lack the auxiliary feature buffers, we implement a

strategy for dynamically generating flow training data based on an

existing set of static rendered frames and silhouettes. In this paper

we use the annotations from the MSCOCO [Lin et al. 2014] dataset

outlining object silhouettes. To build a single training triplet along

with the desired ground truth flows
(
(𝐼0, 𝐴0), (𝐼𝑡 , 𝐴𝑡), (𝐼1, 𝐴1), (f0→𝑡 , f1→𝑡)

)
, (11)

we first sample a random background image including all required

color and auxiliary channels from our frame interpolation train-

ing dataset. We then generate a random smooth flow field f𝑡→1 by

applying small global rotations, translations, and scalings. Addition-

ally, we also create a very small resolution flow field with random

flow vectors which are then upscaled to obtain smooth localised

deformations in high resolution. To obtain the desired flow fields

f0→𝑡 and f1→𝑡 , we apply forward warping and fill holes with an

outside-in strategy similar to the one used in [Bao et al. 2019]. Note

that in this case the smoothness of the flow field is crucial for having

negligible occlusions and obtaining precise flow field outputs. We

then apply the deformations induced by the flow to all channels

to obtain our background plates. In the second step, we randomly

sample a silhouette as well as another image containing all required

color and auxiliary channels. We then use the silhouette to extract

a foreground element from this image. Here our key insight is that

silhouettes and image content do not have to coincide for successful

flow training which greatly facilitates the training process. We then

estimate another smooth flow field with the same strategy as for

the background, apply it to the foreground element, and paste all

channels onto the background plates. For the depth values of the

foreground element, instead of directly using them, we make sure

that they are smaller than the ones in the background by applying a

global shift. Finally, the ground truth flow fields are updated accord-

ingly at the foreground positions. Please refer to our supplementary

document for more details and visual examples of the flow data

generation.

Training Details. We implement our flow model in the PyTorch

framework and train it using the Adam [Kingma and Ba 2014]

optimizer with a learning rate of 10−4 and a weight decay of 4 · 10−4.

We select a batch size of 4 and train for 200k iterations byminimizing

the endpoint error loss as shown in Section 3.1. Training of our final

flow model takes approximately 1.5 days on a single NVIDIA 2080

Ti GPU using 32-bit floating point arithmetic.

4.2 Frame Interpolation
Baseline Implementation. In principle, our proposed components

are applicable for most flow-based frame interpolation methods. The

approach that we follow as a baseline to integrate our contributions

is as described in SoftSplat [Niklaus and Liu 2020]. We opted for

such a baseline due to its strong results and lean design. Given that

the implementation and model weights of SoftSplat are not publicly

available, we re-implement it following the authors description. We

use the simpler of the proposed importance metrics for estimating

a w-map to handle occlusions:

𝑤 = 𝛼 |𝐼0 −Wf0→1
(𝐼1) |1 . (12)

This is because the refined w-map variant, as suggested in SoftSplat,

does not show significant gains. To be able to present a meaningful

ablation study, we train such a baseline on the same dataset and

training schedule as the rest of our models.

Dataset. We gather a training dataset by sampling 291 shots of

7-14 frames from 2 full-length feature animation films (Moana, Ralph

Breaks the Internet), building up to 2138 triplets at 1920 × 804 reso-

lution. Triplets from 13 of these shots are left out for the validation.

Each training sample is generated by randomly sampling a fixed

448 × 256 crop from all frames of the triplet. This data is further

augmented by adjusting the hue and brightness of the color val-

ues, performing random horizontal, vertical, and temporal flips, and

randomly permuting the order of both surface normal and albedo

channels.

The method is quantitatively evaluated on 38 diverse triplets

selected from 4 feature animation films (Incredibles 2, Toy Story 4,

Frozen II, and Raya and the Last Dragon) rendered with two different

production renderers and with rather different visual style than

the training set, further referenced as the Production set. On the

other hand, we evaluate our results on publicly available sequences

rendered with Blender’s Cycles renderer for comparisons with
future methods. All frames are rendered until little noise is left and
the color values are further denoised, auxiliary feature buffers are
obtained with the same sample count.

ACM Trans. Graph., Vol. 40, No. 6, Article 239. Publication date: December 2021.

239:8 • Karlis Martins Briedis, Abdelaziz Djelouah, Mark Meyer, Ian McGonigal, Markus Gross, and Christopher Schroers

Training. We implement our models in the PyTorch framework
and train using the Adamax [Kingma and Ba 2014] optimizer with
a learning rate of 10−3 and a batch size of 4. We employ a two stage
training similar to [Niklaus and Liu 2020] and fix the weights of
flow network during the first stage. In the first stage we optimize
for an averaged L1 loss during 217.5k iterations. In the second stage,
we additionally impose a perceptual loss [Niklaus and Liu 2018]
with weight of 0.4. and enable flow network updates. The second
stage is optimized for an additional 72.5k iterations. Every 14.5k
iterations we reduce the learning rate by a factor of 0.8. Training
of our final model takes approximately 3 days on a single NVIDIA
2080 Ti graphics card using 32-bit floating point arithmetic.

Performance. It takes approximately 0.65𝑠 to run the interpolation
network on 1280 × 780 inputs with the aforementioned graphics
card and unoptimized implementation, making it negligible when
comparing to full renders. Generation of the auxiliary feature buffers
requires only a fraction (2 ś 10x less time) of the hundreds of CPU
core hours that are necessary for computing the full illumination
of production scenes. For a better estimate, we naively extend the
academic Tungsten renderer to record only albedo, depth, and
normal values with the same sample count and obtain the average
CPU core time it takes to render such buffers for simple scenes as
40𝑚 compared to 2ℎ58𝑚 for the full render, i.e. almost 5× speedup.
Note that significant gains could be made by reducing the sample
count as feature buffers typically have noise only around object
boundaries, at specular surfaces, etc. For more details, please refer
to the supplementary document.
Summing up, it is interesting to note that with our new dataset

creation strategy, the flow pre-training is much less of a burden.
This is because both the flow pre-training and the frame interpo-
lation training can be performed on the same images and all that
is additionally required for the flow pre-training is a set of object
silhouettes. Furthermore, our models are trained in the sRGB col-
orspace with the maximum range limited to 1.

5 METHOD ANALYSIS

In this section we analyse in more detail how the individual compo-
nents that we propose contribute to the final result. First, we detail
on the evaluation dataset and error metrics that we use for this
purpose before inspecting the effect of each component one by one.

5.1 Evaluation Dataset and Metrics

Our method is evaluated on two datasets, namely Production and
Blender, as described in Section 4.2.
We measure distortions between the sRGB outputs and the ref-

erence with peak signal to noise ratio (PSNR), structural similarity

index measure (SSIM) and the perceptual LPIPS [Zhang et al. 2018]
metric. Additionally, we report the symmetric mean absolute per-

centage error (SMAPE) [Vogels et al. 2018] computed on linear RGB
outputs and reference (reported as %) and the median VMAF1 score
over the sequences.

1https://github.com/Netflix/vmaf/tree/v2.2.0

Table 1. Analysis for our proposed improvements on the Production evalu-

ation set (see text for details).

PSNR SSIM LPIPS SMAPE VMAF

↑ ↑ ↓ ↓ ↑

Baseline 31.27 0.918 0.0717 4.092 60.58

Fl
ow

Keyframe features 31.58 0.919 0.0707 3.991 63.34

2-frame 35.97 0.952 0.0561 2.742 87.05

2-frame w/o full refine 35.90 0.952 0.0565 2.746 86.79

Ours final 35.52 0.952 0.0545 2.794 85.34

W
ar
p Depth 36.14 0.953 0.0566 2.780 87.55

Feature constancy 36.55 0.956 0.0504 2.710 88.72

Ours final 37.83 0.962 0.0496 2.496 90.51

C
om

p Direct features 38.08 0.966 0.0454 2.414 90.95

Ours final 38.49 0.967 0.0460 2.380 92.24

5.2 Estimating Motion

We demonstrate the effectiveness of our proposed motion estima-
tion network by changing the flow model in incremental steps. We
start from a simple IRR-PWC [Hur and Roth 2019] variant with
adaptations as described in 4.1 (Baseline) until we reach our final
flow method (Flow - Ours final). Results are shown in the second
section of Table 1.

As first step, we incorporate auxiliary feature buffers in the flow
estimation to improve correspondence matching and flow refine-
ment (Keyframe features). This allows us to slightly improve the
accuracy in all metrics and to outperform our baseline and prior
art. However, such an approach does not take into account the
non-linear motion that often occurs between the keyframes. By ac-
counting for non-linear motion and using our proposed flow variant,
we obtain significant improvement in all observed metrics.

An alternative to our 3-frame flow estimation is to solely rely on
auxiliary buffers 𝐴0 and 𝐴𝑡 for the correspondence estimation. In
this case, the estimation of the incremental flow update at given
level is defined as

u = 𝑈 (Φ0, 𝐶
9
𝐴 (Φ̂0,𝑊f̃

(Φ̂𝑡)), f̃) . (13)

We will refer to this version as the 2-frame flow. We show that
this allows to obtain very similar results as the 3-frame model, but
we opt for the 3-frame because it shows on-par or better results
on the structural and perceptual metrics. Additionally, the 2-frame
variant is effectively a part of the 3-frame version while not having
the ability to learn light-dependent motion that is not visible in
auxiliary feature channels.
To show that refinement up to full resolution is beneficial, we

evaluate the same 2-frame variant once with refinement to the full
resolution and once with refinement stopped at a quarter of the
resolution. In this case, we observe a slight decrease in all observed
metrics.

5.3 Handling Occlusions

In the third section of Table 1 we show the improvement achieved by
our warping method, while using our final flow estimation variant.

ACM Trans. Graph., Vol. 40, No. 6, Article 239. Publication date: December 2021.

Neural Frame Interpolation for Rendered Content • 239:9

Table 2. Analysis of using rendered flow vectors on the Blender evaluation

dataset. We show the performance difference on the same model with the

output of our flow estimator replaced by rendered motion vectors.

Rendered flow PSNR SSIM LPIPS
↑ ↑ ↓

Baseline
× 31.27 0.918 0.0717

31.87 0.932 0.0704

Baseline trained w/
rendered flow

31.49 0.931 0.0720

With our Flow
× 34.22 0.962 0.0357

32.56 0.931 0.0667

With our Warp
× 36.08 0.966 0.0292

35.34 0.943 0.0539

With our Comp
× 36.85 0.971 0.0268

36.01 0.95 0.0469

As depth is often seen as a good weighting for forward warping
[Bao et al. 2019; Niklaus and Liu 2020], we evaluate our method by
using normalized inverse depth. We do not use softmax splatting
[Niklaus and Liu 2020] due to the depth range easily reaching 5 ·
105, as then calculating it as 𝑒𝑥𝑝 (−|𝛼 | ∗ 𝑑𝑒𝑝𝑡ℎ) we would get 0
contribution for many pixels of the scene. Additionally, the scale
of depth values are scene-dependent. Such adaptation allows us to
slightly improve over the brightness constancy baseline approach.
As an additional experiment, we extend the idea of brightness

constancy assumption for using a weighted sum for constancy as-
sumption for each channel in color and auxiliary features:

𝑤0 = exp(
∑︁

𝑐∈{𝐼 ,𝐴}

𝛼𝑐 |𝑐−Wf0→1
(𝑐) |+

∑︁

𝑐∈{𝐴}

𝛼𝑐 |𝑐−Wf0→𝑡
(𝑐) |) , (14)

where 𝑐 is the respective channel and 𝛼𝑐 is a channel dependent
learnable weighting factor initialized as −1.

We show that with such weighting we are able to achieve slight
improvement over the depth approach, but it performs significantly
worse than our final w-map estimation module.

5.4 Compositing

In the last section of Table 1 we evaluate the effectiveness of our
final frame compositing approach. We compare it to using auxiliary
features directly, instead of the proposed partial feature pyramids.
Both variants are using our final flow and warping modules.

To do so, we extend the feature pyramid extractor of [Niklaus and
Liu 2020] to process all available keyframe auxiliary features and
match our full context encoder 𝐸𝐶 . Additionally, we concatenate
the warped inputs with the auxiliary features of the intermediate
frame 𝐴𝑡 before the final frame synthesis network. Overall we can
observe a gain in reconstruction quality apart from LPIPS.

5.5 Comparison against Rendered Motion Vectors

As mentioned initially, not all production renderers offer to output
correspondence vectors. However, since some renderers do, we
compare our end-to-end trained motion estimation for the task of
frame interpolation against using motion vectors extracted from
the renderer. In this case we use Blender’s Cycles as a renderer.

Inputs Ours

Rendered MVs Interpolation w/
Rendered MVs

Estimated MVs Interpolation w/
Estimated MVs

Reference

18.30 dB | 0.3271 22.08 dB | 0.1202 PSNR | LPIPS

Fig. 6. Comparison between using rendered and estimated motion vec-

tors (MVs) on a challenging sequence with an almost transparent wind-

shield. © 2021 Disney

In Table 2 we follow the same structure as in Table 1 and show
results after adding in each of our contributions. This time, we
additionally evaluate with the rendered motion vectors by replacing
the outputs of the optical flow estimation network. We observe a
decrease of performance in all of the intermediate steps, except for
the baseline. As the interpolation network might get specialized
for the particular type of flow it was trained with, we also train a
variant for baseline using motion vectors available to the renderer
but observe even worse results than when trained with a neural
flow. Such a decrease might be explained by the fact that rendering
engines are not always able to produce accurate correspondence
vectors in all cases.

A visual example where use of rendered motion vectors yields
much worse quality outputs than our optical flow method is given
in Figure 6.

6 RESULTS

In this section, we evaluate the performance of our method com-
pared to the state-of-the-art frame interpolation methods - DAIN
[Bao et al. 2019], AdaCoF [Lee et al. 2020], CAIN [Choi et al. 2020],
BMBC [Park et al. 2020], and our re-implementation of SoftSplat
[Niklaus and Liu 2020]. In the case of DAIN, as it was not possible to
run it on the Full HD content with our available hardware, we split
the inputs along width axis into two tiles with 320 pixel overlap,
and linearly combine the results. We do not notice any artifacts that
could be caused by such tiling.
For the evaluation, we interpolate the middle frame given two

key-frames and compare against the different interpolation meth-
ods. With camera depth buffers being available, we additionally
test performance of DAIN with output of depth estimator replaced
with such buffer. To match the scale of depth that DAIN was orig-
inally trained with, for each frame we scale the rendered depth

by
𝑚𝑒𝑎𝑛 (DAIN depth)

𝑚𝑒𝑎𝑛 (Rendered depth) to match mean values of both depth maps.

We use similar error measures as in our ablation study. The full
quantitative evaluation is provided in Table 3. By leveraging aux-
iliary features and designing an interpolation method specifically
addressing rendered content, we achieve sufficiently high quality
results to consider this method usable in production.

ACM Trans. Graph., Vol. 40, No. 6, Article 239. Publication date: December 2021.

239:10 • Karlis Martins Briedis, Abdelaziz Djelouah, Mark Meyer, Ian McGonigal, Markus Gross, and Christopher Schroers

Table 3. Quantitative comparisons with prior methods.

Production Blender

PSNR SSIM LPIPS VMAF PSNR SSIM LPIPS VMAF
↑ ↑ ↓ ↑ ↑ ↑ ↓ ↑

BMBC 30.08 0.904 0.107 59.26 26.65 0.872 0.169 65.12
CAIN 30.68 0.909 0.125 60.43 27.25 0.876 0.197 66.37
DAIN 31.21 0.915 0.075 70.28 28.00 0.885 0.112 67.76
DAIN w/
rendered depth

31.28 0.916 0.075 70.31 28.11 0.885 0.111 67.89

AdaCoF 30.75 0.907 0.100 56.38 27.14 0.875 0.158 65.31
SoftSplat* 31.28 0.917 0.065 67.33 28.06 0.886 0.097 68.55
Ours 38.49 0.967 0.046 92.24 36.85 0.971 0.027 87.96

t=0.00 t=0.17 t=0.33 t=0.50 t=0.67 t=0.83 t=1.00

Fig. 7. Interpolation of multiple in-between frames. Our method maintains

high quality interpolation results for all time offsets. © 2021 Disney

0.17 0.33 0.50 0.67 0.83
time step

34

36

38

40

42

PS
NR

DAIN AdaCoF SoftSplat* Ours

Fig. 8. Temporal consistency for 6x interpolation.

Visual comparison with prior methods is provided in Figures 9, 10,
and 11. Interpolation of more challenging cases is shown in Fig-
ures 12, 13, 14, and 15. We can observe the high quality interpo-
lation results on a large variety of scenes, with different types of
content, different amounts of motion and using different renderers.
In addition to this, we provide a supplementary video with results
on longer video sequences.

To further analyze the temporal stability of our method, we evalu-
ate interpolation of multiple intermediate frames on a subset of our
Production evaluation set where features for 5 intermediate frames
are available. In the case of AdaCoF [Lee et al. 2020], interpolation
is applied recursively to obtain all the frames. The results of this
6x interpolation evaluation are shown in Figures 7 and 8. Similarly
to other methods, we show stable interpolation performance for
non-middle frame interpolation but we note the important gain in
quality.

7 LIMITATIONS AND DISCUSSION

Although we propose a robust method significantly outperforming
prior state-of-the-art, there are still a few limitations and open areas
which are beyond the scope of this paper. In this section we briefly
touch upon them.
As our method relies on the use of auxiliary feature buffers, it

can lead to sub-optimal results in sequences where such buffers do
not provide a proper representation of the color outputs. This is the
case for scenes containing volumes for example. A visualization of
this scenario is shown in Figure 12. In such situations, one remedy
could be to discard or zero out unhelpful auxiliary features. More
principled solutions, that consider these problematic aspects during
the training stage for example, would be an interesting direction for
further explorations.
Even though our 3-frame optical flow estimation network in

theory is capable of estimating light-dependent motion that is not
visible in any of the auxiliary buffers, in practice there can be cases
that are not correctly resolved. In these relatively rare situations
that are hard to resolve, estimating a single flow vector per pixel is
not sufficient due to various lighting effects [Zimmer et al. 2015],
and a possible improvement could be an independent interpolation
of separate passes, such as direct/indirect illumination. One such
example is given in Figure 15 where due to the texture having
different movement than one of the shadows, it cannot be handled
correctly with the current approach. But even then, in most cases our
method fails gracefully by linearly blending the inputs, as can also
be seen when interpolating vanishing specular highlights (Figure
14).

In Figure 13 it is shown that even sequences with severe motion
blur can be resolved well by producing output with similar levels of
blur to the reference.

While we have shown that using renderer motion vectors directly
can lead to worse quality than using our optical flow estimation
method, often they can provide beneficial information and incorpo-
rating them would make for interesting future work.

8 CONCLUSION

In this paper we have proposed a method specifically targeted to
achieve high quality frame interpolation for rendered content. Our
method leverages auxiliary feature buffers from the renderer to
estimate non-linear motion between keyframes that is even prefer-
able over using rendered motion vectors in cases where those are
available. Through further improvements of occlusion handling and
compositing, we are able to obtain production quality results on a
wide range of different scenes. This is an important step towards
rendering fewer pixels to save costs and increase iteration times
during the production of high quality animated content. We were
able to show examples of successfully interpolating challenging
sequences where only every 8th frame was given. Since we closely
follow the correct non-linear motion between keyframes, there is
a possibility of re-rendering small regions in case of imperfect re-
constructions. Our method is designed to be easy to implement
in production pipelines and it is also convenient to train due to
our flow pre-training strategy that largely can operate on the same
data as the frame interpolation training itself. While our method is

ACM Trans. Graph., Vol. 40, No. 6, Article 239. Publication date: December 2021.

Neural Frame Interpolation for Rendered Content • 239:11

Inputs Ours

Inputs DAIN AdaCoF SoftSplat* Ours Reference
PSNR | SSIM | LPIPS 30.43 dB | 0.978 | 0.0193 30.44 dB | 0.978 | 0.0210 30.45 dB | 0.978 | 0.0193 42.04 dB | 0.991 | 0.0056

Fig. 9. Visual results on a production sequence. © 2021 Disney / Pixar

Inputs Ours

Inputs DAIN AdaCoF SoftSplat* Ours Reference
PSNR | SSIM | LPIPS 24.95 dB | 0.934 | 0.1402 25.15 dB | 0.937 | 0.1412 25.49 dB | 0.945 | 0.1124 34.50 dB | 0.982 | 0.0286

Fig. 10. Visual results on a production sequence. © 2021 Disney

ACM Trans. Graph., Vol. 40, No. 6, Article 239. Publication date: December 2021.

239:12 • Karlis Martins Briedis, Abdelaziz Djelouah, Mark Meyer, Ian McGonigal, Markus Gross, and Christopher Schroers

Inputs Ours

Inputs DAIN AdaCoF SoftSplat* Ours Reference
PSNR | SSIM | LPIPS 21.80 dB | 0.908 | 0.0850 20.64 dB | 0.903 | 0.0995 21.81 dB | 0.907 | 0.0752 36.09 dB | 0.984 | 0.0161

Fig. 11. Visual results on a production sequence. © 2021 Disney

Inputs Ours

Ours Reference

Fig. 12. Interpolation of a challenging sequence where the fog does not have

meaningful auxiliary features. © 2021 Disney

Inputs Ours

Ours Reference

Fig. 13. Interpolation of a sequence with severe motion blur. © 2021 Disney

Inputs Ours

Ours Reference

Fig. 14. Interpolation of a sequence with specular highlights. © 2021 Dis-

ney / Pixar

Inputs Ours

Ours Reference

Fig. 15. Interpolation of hard shadows. When the auxiliary features do

not contradict with the color, the method is capable of color-only motion

compensation (middle row), otherwise a simple linear blend is used (bottom

row). © 2021 Disney / Pixar

ACM Trans. Graph., Vol. 40, No. 6, Article 239. Publication date: December 2021.

Neural Frame Interpolation for Rendered Content • 239:13

shown to perform very well on a wide variety of challenging shots,
there is interesting potential for future improvements to optimize
results in case of specific complex phenomena such as volumetric
effects.

ACKNOWLEDGMENTS

The authors would like to thank Gerard Bahi, Markus Plack, Marios
Papas, Gerhard Röthlin, Henrik Dahlberg, Simone Schaub-Meyer,
and David Adler for their involvement in the project. Our method
was trained and tested on production imagery but the results were
not part of the released productions.

REFERENCES
Simon Baker, Daniel Scharstein, JP Lewis, Stefan Roth, Michael J Black, and Richard

Szeliski. 2011. A database and evaluation methodology for optical flow. International
journal of computer vision 92, 1 (2011), 1ś31.

Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer, Jan Novák, Alex Harvill,
Pradeep Sen, Tony DeRose, and Fabrice Rousselle. 2017. Kernel-Predicting Convo-
lutional Networks for Denoising Monte Carlo Renderings. ACM Transactions on
Graphics (Proceedings of SIGGRAPH 2017) 36, 4, Article 97 (2017), 97:1ś97:14 pages.
https://doi.org/10.1145/3072959.3073708

Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan
Yang. 2019. Depth-Aware Video Frame Interpolation. In IEEE Conference on Computer
Vision and Pattern Recognition.

D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. 2012. A naturalistic open source
movie for optical flow evaluation. In European Conf. on Computer Vision (ECCV)
(Part IV, LNCS 7577), A. Fitzgibbon et al. (Eds.) (Ed.). Springer-Verlag, 611ś625.

Zhixiang Chi, Rasoul Mohammadi Nasiri, Zheng Liu, Juwei Lu, Jin Tang, and Konstanti-
nos N. Plataniotis. 2020. All at Once: Temporally Adaptive Multi-frame Interpolation
with Advanced Motion Modeling. In Computer Vision ś ECCV 2020, Andrea Vedaldi,
Horst Bischof, Thomas Brox, and Jan-Michael Frahm (Eds.). Springer International
Publishing, Cham, 107ś123.

Myungsub Choi, Heewon Kim, Bohyung Han, Ning Xu, and Kyoung Mu Lee. 2020.
Channel Attention Is All You Need for Video Frame Interpolation. In AAAI.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. 2016. Fast and Accurate
Deep Network Learning by Exponential Linear Units (ELUs). In 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http:
//arxiv.org/abs/1511.07289

Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Häusser, Caner Hazirbas, Vladimir
Golkov, Patrick van der Smagt, Daniel Cremers, and Thomas Brox. 2015. FlowNet:
Learning Optical Flow with Convolutional Networks. In 2015 IEEE International
Conference on Computer Vision (ICCV). 2758ś2766. https://doi.org/10.1109/ICCV.
2015.316

D. Fourure, R. Emonet, E. Fromont, D. Muselet, A. Tremeau, and C. Wolf. 2017.
Residual conv-deconv grid network for semantic segmentation. arXiv preprint
arXiv:1707.07958 (2017).

Junhwa Hur and Stefan Roth. 2019. Iterative Residual Refinement for Joint Optical
Flow and Occlusion Estimation. In CVPR.

Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and
Thomas Brox. 2017. Flownet 2.0: Evolution of optical flow estimation with deep
networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 2462ś2470.

Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan Yang, Erik Learned-Miller, and
Jan Kautz. 2018. Super slomo: High quality estimation of multiple intermediate
frames for video interpolation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 9000ś9008.

Tarun Kalluri, Deepak Pathak, Manmohan Chandraker, and Du Tran. 2021. FLAVR:
Flow-Agnostic Video Representations for Fast Frame Interpolation. (2021).

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

Hyeongmin Lee, Taeoh Kim, Tae young Chung, Daehyun Pak, Yuseok Ban, and Sangy-
oun Lee. 2020. AdaCoF: Adaptive Collaboration of Flows for Video Frame Interpo-
lation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C. Lawrence Zitnick. 2014. Microsoft COCO: Common Objects in
Context. In Computer Vision ś ECCV 2014, David Fleet, Tomas Pajdla, Bernt Schiele,
and Tinne Tuytelaars (Eds.). Springer International Publishing, Cham, 740ś755.

Yihao Liu, Liangbin Xie, Li Siyao, Wenxiu Sun, Yu Qiao, and Chao Dong. 2020. En-
hanced quadratic video interpolation. In European Conference on Computer Vision

Workshops.
Gucan Long, Laurent Kneip, JoseMAlvarez, Hongdong Li, Xiaohu Zhang, andQifeng Yu.

2016. Learning image matching by simply watching video. In European Conference
on Computer Vision. Springer, 434ś450.

Simone Meyer, Abdelaziz Djelouah, Brian McWilliams, Alexander Sorkine-Hornung,
Markus Gross, and Christopher Schroers. 2018. PhaseNet for Video Frame Inter-
polation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Simone Meyer, Oliver Wang, Henning Zimmer, Max Grosse, and Alexander Sorkine-
Hornung. 2015. Phase-Based Frame Interpolation for Video. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1410ś1418.
https://doi.org/10.1109/CVPR.2015.7298747

Simon Niklaus and Feng Liu. 2018. Context-Aware Synthesis for Video Frame In-
terpolation. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Simon Niklaus and Feng Liu. 2020. Softmax Splatting for Video Frame Interpolation. In
IEEE Conference on Computer Vision and Pattern Recognition.

Simon Niklaus, Long Mai, and Feng Liu. 2017a. Video Frame Interpolation via Adaptive
Convolution. In IEEE Conference on Computer Vision and Pattern Recognition.

Simon Niklaus, Long Mai, and Feng Liu. 2017b. Video Frame Interpolation via Adaptive
Separable Convolution. In IEEE International Conference on Computer Vision.

Simon Niklaus, Long Mai, and Oliver Wang. 2021. Revisiting Adaptive Convolutions
for Video Frame Interpolation. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV). 1099ś1109.

N.Mayer, E.Ilg, P.Häusser, P.Fischer, D.Cremers, A.Dosovitskiy, and T.Brox. 2016. A
Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and
Scene Flow Estimation. In IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR). http://lmb.informatik.uni-freiburg.de/Publications/
2016/MIFDB16 arXiv:1512.02134.

Junheum Park, Keunsoo Ko, Chul Lee, and Chang-Su Kim. 2020. BMBC: Bilateral
Motion Estimation with Bilateral Cost Volume for Video Interpolation. In Computer
Vision ś ECCV 2020, Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael
Frahm (Eds.). Springer International Publishing, Cham, 109ś125.

O. Ronneberger, P. Fischer, and T. Brox. 2015. U-Net: Convolutional Networks for
Biomedical Image Segmentation. InMedical Image Computing and Computer-Assisted
Intervention (MICCAI) (LNCS, Vol. 9351). Springer, 234ś241. http://lmb.informatik.
uni-freiburg.de/Publications/2015/RFB15a (available on arXiv:1505.04597 [cs.CV]).

Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. 2018. Pwc-net: Cnns for
optical flow using pyramid, warping, and cost volume. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 8934ś8943.

Zachary Teed and Jia Deng. 2020. RAFT: Recurrent All-Pairs Field Transforms for
Optical Flow. In Computer Vision - ECCV 2020 - 16th European Conference (Lecture
Notes in Computer Science, Vol. 12347). Springer, 402ś419. https://doi.org/10.1007/978-
3-030-58536-5_24

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. 2016. Instance normalization:
The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016).

Thijs Vogels, Fabrice Rousselle, Brian McWilliams, Gerhard Röthlin, Alex Harvill,
David Adler, Mark Meyer, and Jan Novák. 2018. Denoising with Kernel Prediction
and Asymmetric Loss Functions. ACM Transactions on Graphics (Proceedings of
SIGGRAPH 2018) 37, 4, Article 124 (2018), 124:1ś124:15 pages. https://doi.org/10.
1145/3197517.3201388

Lei Xiao, Salah Nouri, Matt Chapman, Alexander Fix, Douglas Lanman, and Anton
Kaplanyan. 2020. Neural Supersampling for Real-Time Rendering. ACMTrans. Graph.
39, 4, Article 142 (July 2020), 12 pages. https://doi.org/10.1145/3386569.3392376

Xiangyu Xu, Li Siyao, Wenxiu Sun, Qian Yin, and Ming-Hsuan Yang. 2019. Quadratic
Video Interpolation. In Advances in Neural Information Processing Systems, H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. dÀlché-Buc, E. Fox, and R. Garnett (Eds.),
Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/file/
d045c59a90d7587d8d671b5f5aec4e7c-Paper.pdf

Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William T Freeman. 2019. Video
enhancement with task-oriented flow. International Journal of Computer Vision 127,
8 (2019), 1106ś1125.

Zheng Zeng, Shiqiu Liu, Jinglei Yang, Lu Wang, and Ling-Qi Yan. 2021. Temporally
Reliable Motion Vectors for Real-time Ray Tracing. Computer Graphics Forum 40, 2
(2021), 79ś90. https://doi.org/10.1111/cgf.142616

Haoxian Zhang, Yang Zhao, and Ronggang Wang. 2020. A Flexible Recurrent Residual
Pyramid Network for Video Frame Interpolation. In Computer Vision ś ECCV 2020,
Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (Eds.). Springer
International Publishing, Cham, 474ś491.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. 2018.
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In CVPR.

Henning Zimmer, Fabrice Rousselle, Wenzel Jakob, Oliver Wang, David Adler, Wojciech
Jarosz, Olga Sorkine-Hornung, and Alexander Sorkine-Hornung. 2015. Path-space
Motion Estimation and Decomposition for Robust Animation Filtering. Computer
Graphics Forum (Proceedings of EGSR) 34, 4 (June 2015). https://doi.org/10/f7mb34

ACM Trans. Graph., Vol. 40, No. 6, Article 239. Publication date: December 2021.

