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Modeling Electromagnetic Navigation Systems
Samuel L. Charreyron , Quentin Boehler , Byungsoo Kim , Cameron Weibel , Christophe Chautems ,

and Bradley J. Nelson

Abstract—Remote magnetic navigation is used for the manipula-
tion of untethered micro and nanorobots, as well as tethered mag-
netic surgical tools for minimally invasive medicine. Mathematical
modeling of the magnetic fields generated by magnetic navigation
systems is a fundamental task in the control of such tools for
biomedical applications. In this article, we describe and compare
several existing and newly developed methods for representations
of continuous magnetic fields using interpolation in the context of
remote magnetic navigation. Clinical-scale electromagnetic navi-
gation systems feature nonlinear magnetization and magnetization
interactions between electromagnets, which renders accurate mag-
netic field modeling challenging. We first introduce a method that
can adapt existing linear models to correct for nonlinear magne-
tization, with similar performance to the current state-of-the-art
nonlinear model. Furthermore, we present a method based on
convolutional neural networks.

Index Terms—Electromagnetic modeling, magnetic field
measurement, magnetic fields, medical robotics.

ACRONYMS

ANN Artificial Neural Network.
CNN Convolutional Neural Network.
CNN-DF Divergence-free Convolutional Neural Network.
eMNS Electromagnetic Navigation System.
FEM Finite Element Method.
GPU Graphics Processing Unit.
MAE Mean Absolute Error.
MNS Magnetic Navigation System.
MPEM Multipole Electromagnet Model.
N-MAE Normalized Mean Absolute Error.
N-RMSE Normalized Root Mean Square Error.
RBF Radial Basis Function.
RBF-G-3D 3D RBF Interpolation with Gaussian Kernel.
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TRI-3D Tricubic 3D Interpolation.
TRI-LPL Tricubic Laplacian Constrained Scalar Field
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I. INTRODUCTION

R EMOTE magnetic navigation is an actuation technology
for minimally invasive surgery in which magnetic fields

are used to wirelessly navigate devices containing magnetic
material inside the body. Magnetic fields have the advantage
of permeating biological tissue while being virtually harmless.
Magnetic navigation results from generating magnetic torques
and forces on the navigated magnetic agent by modulating the
magnetic fields and the magnetic field gradients, respectively,
which are generated from outside the body of a patient. The
reader is directed to [1] for a recent review of magnetic naviga-
tion.

Magnetic navigation of cardiac catheters is the single ap-
plication that has seen successful clinical adoption with over
100 000 procedures completed [2], and spawning three com-
peting magnetic navigation technologies by Stereotaxis Inc.,
Aeon Scientific AG,1 and Magnetecs Corp. Nevertheless, the
field of magnetically actuated micro and nanorobots has seen
considerable research attention in the past decade [3], with po-
tential applications in targeted drug delivery, minimally invasive
surgery, and diagnostics.

A. Magnetic Navigation Systems

In remote magnetic navigation, magnetic fields are generated
by a magnetic navigation system (MNS) that consists of magnets
located around the body of the patient. These are either strong
permanent magnets, which are rotated or translated in order to
modulate the generated magnetic field, or electromagnets where
the magnetic fields are modulated by the amount of electrical
current that is running through conductive windings. A Magnetic

1Aeon Scientific AG is a former spinoff company of the Multi Scale Robotics
Lab.
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Navigation System. (MNS) using electromagnets is referred to
as an electromagnetic navigation system (eMNS).

There are advantages and disadvantages to both approaches.
Permanent magnet-based systems can be less expensive to
manufacture at smaller-scales, magnetic field modeling is more
straightforward, and patient access may be easier, since field
control can be achieved with fewer magnets. MNS can achieve
larger field strengths, allow for independent control of mag-
netic gradients, and, in contrast to permanent magnets, can be
“switched OFF.”

B. Mathematical Modeling of MNS Field Generation

We define a mathematical model of a Electromagnetic Navi-
gation System. (eMNS) as a mathematical mapping between the
electrical currents i ∈ RNe running through theNe electromag-
nets, and the magnetic field b ∈ R3 that is generated inside the
workspace at a position p ∈ R3.

b(p) = g(p, i). (1)

This publication focuses on forward models that predict the
magnetic fields given the currents in the electromagnets. Con-
versely, backward models are used to determine the currents
that result in a desired magnetic field. Although these will not
be discussed here, strategies for inverting forward models are
given in Appendix A.

Magnetic fields induce magnetic torques on magnetized ma-
terial, which cause locomotion via bending or rotation. Some
untethered magnetic agents are also navigated using magnetic
forces, which depend on the spatial variation or the gradient of
the magnetic field.

A further simplification can be made when electromagnets
have a linear relationship between the electromagnet currents
and the magnetic fields. This occurs when the electromagnets
do not contain ferromagnetic cores, or when the cores do not
exhibit saturation or hysteresis. We refer to this category as a
linear magnetic model. The advantage of such models is that they
obey the principle of superposition, and the combined effect is
simply the linear superposition of the individual electromagnet
contributions, scaled by the current in each electromagnet, as
seen as follows:

b(p) =

Ne∑
k=1

bk(p) ik. (2)

The individual electromagnet contributions can be grouped into
a position-dependent actuation matrix Am ∈ R3×Ne

b(p) = Am(p) i. (3)

C. Motivations

This work is motivated by 1) the need of accurate models of
MNS in several applications of remote magnetic navigation, 2)
the need of better guidelines to compare and choose a model for
a given application. Choosing a method is often delicate due to
the lack of common performance metrics among the community,
and due to the variety of available types of methods.

Besides, accurate model are relevant for several applications,
including for the control of robotic systems involving steerable

medical continuum robots such as catheters [4], endoscopes [5],
needles [6], and untethered micro or nanorobots [3]. The elec-
tromagnet currents or magnet positions of a MNS can be seen as
joint parameters in the framework of robot kinematics, since they
can be mapped to resultant forces and torques on the agent. MNS
modeling is thus part of the development of accurate kinematic
models.

Precise prediction of the magnetic fields is particularly rele-
vant in the context of untethered devices that are controlled using
magnetic field gradients, since these are much more sensitive
to modeling inaccuracies. Most research in the literature has
been limited to benchtop MNS with small workspaces and
relatively homogeneous magnetic fields, but that are too small
for in vivo applications. Gradient control was demonstrated in a
large-scale eMNS in [7], but the magnetic field model had to be
corrected in real time using magnetic hall effect sensors placed
in the workspace. Such solutions are likely to be impractical for
applications featuring human patients, due to the difficulty of
placing sensors in proximity to where the magnetic field is to be
controlled.

Accurate models are also required in the context of magnetic
positioning using quasi-static magnetic fields. Magnetically
navigated surgical tools must often be located with respect to
the anatomy in which they operate. In many applications of
minimally invasive surgery, tools are not visible, since they are
located inside the body, and live imaging using medical imaging
modalities is either prohibitive (MRI or CT), of low-quality
(ultrasound imaging), or harmful when (C-arm fluoroscopy).
The use of onboard cameras in endoscopy may be used for
localization, but is not possible for devices with small diameters,
in confined or opaque spaces such as the vascular system, or
inside tissue. There exist a host of electromagnetic trackers
using arrays of coils generating dynamic electromagnetic fields,
which are detected by pickup coils embedded in surgical tools,
but these are prone to interference from metallic objects, and
large ferromagnetic bodies that are contained in eMNS. A
solution would be to use onboard magnetic sensors combined
with magnetic field predictions from a MNS model, in order to
estimate the tool configuration. This concept was demonstrated
in a MNS featuring permanent magnets in [8], and [9], but has
not yet been demonstrated in an eMNS. The accuracy of such
a method is tightly coupled to the accuracy at which magnetic
fields can be measured by the onboard sensors, and predicted
by the model. For a MNS generating gradients on the order
of {300 mT/m, as could be expected in a larger eMNS such
as the Aeon Phocus [7], modeling and sensing errors should
not exceed 300 μT for sub-mm position accuracy. Such values
are only rough estimates and would, of course, depend on the
specifics of the implementation.

D. Contributions

The aim of this article is to compare different methodologies
for obtaining (1). Mathematical models can be distinguished
from electromagnetic simulations in that the former should pro-
vide a simplified relationship between the variable parameters
and the magnetic fields, and should be amenable to real-time
computation, while the latter may provide accurate results at the
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Fig. 1. CardioMag, a large-scale eight-electromagnet eMNS.

expense of intractable computation times associated with solv-
ing the governing electromagnetic boundary-value problems. In
this work, we restrict our study to mathematical models, and
more particularly models, which can be obtained from magnetic
field data rather than from a priori information about a MNS.

We primarily focus our efforts on eMNS with stationary
electromagnets. When appropriate, we use data from the Car-
dioMag [10] shown in Fig. 1, a clinical-size eMNS with eight
electromagnets, because it exhibits most of the properties that
render modeling an eMNS complex, namely a large workspace,
a large number of electromagnets, and nonlinear magnetization.

In this article, we contrast methods that are based on math-
ematical interpolation, and assume that the magnetization is
linearly related to electromagnet currents and that the measure-
ments are error free, described in Section III, from models that
are fit to data using error minimization techniques, described
in Section IV. In addition to a comparative analysis of eMNS
modeling strategies, we introduce several modeling methods not
found in the literature. Most notably, we report the first use of
aconvolutional neural network (CNN) to obtain state-of-the-art
modeling accuracy on data from the CardioMag.

We first discuss prior work in the literature in Section II.
We then outline and compare methods for modeling general
magnetic fields in free-space via interpolation in Section III.
Methods that take into account physical constraints on the
magnetic field are contrasted to fully unconstrained methods,
based on interpolation of synthetic data of an eMNS. We then
consider an eMNS with multiple electromagnets, accounting for
electromagnet interactions in Section IV, and evaluating the dif-
ferent methods on real magnetic field data from the CardioMag.
Finally, Section V concludes this article.

II. RELATED WORK

A. Analytical Models

Early prototypes from Stereotaxis relied on air-core coils,
which were modeled using single current loops [11]. By us-
ing the Bio–Savart law, the expression for the magnetic field
magnitude b(z) can be obtained in (4) for a loop of radius awith
n turns and current i at a distance z of the loop center, and with

μ0 as the vacuum permeability.

b(z) =
μ0

2

na2i

(a2 + z2)
3
2

. (4)

While such a model is accurate for simple current loops, it
does not hold for electromagnets with more complex designs.
For uniform current distributions on simple geometries such as
wires, cylinders, and solenoids, the magnetic vector potential A
can be expressed analytically using elliptical integrals [12]. The
magnetic field vector can then be obtained by taking the curl
of A:

b = ∇×A. (5)

In [13], lookup tables of magnetic fields were calculated at a
number of discrete points by modeling eMNS as cylinders of
uniform charge and calculating the Bio–Savart integrals directly.
In [14], the magnetic fields of coils of uniform charge of an
eMNS were modeled using elliptical integrals.

B. Finite Element Methods

For more complex electromagnet geometries, analytic expres-
sions often do not exist. Additionally, the problem of calculating
magnetic field distributions becomes difficult in the presence of
ferromagnetic materials that are magnetized in ambient fields,
since they have the property of “shaping” magnetic fields.
Nevertheless, ferromagnetic materials are often used in elec-
tromagnets, where current-carrying material is wound around
a ferromagnetic core, because they can increase the magnet
strength by several orders of magnitude. It is possible to calculate
the magnetic field of any arbitrary geometry of current distribu-
tions and ferromagnetic material using finite element method
(FEM). In Finite-element method (FEM), the magnetic vector
potential A, and the magnetic field are solved numerically by
generating boundary-value problems [15]. By definition, FEM
calculates physical quantities at a discrete set of positions on a
mesh, for a given distribution of electrical charge on the mesh.
More accurate and detailed field calculations can be performed
by using a finer mesh, but the computational complexity scales
with O(N3), where N is the number of nodes in the mesh [16].
While FEM is attractive due to its versatility, its computational
requirements are prohibitive for real-time computations on stan-
dard computing hardware.

C. Interpolation of Magnetic Field Data

FEM modeling does not take into account certain effects such
as manufacturing defects, inhomogeneous or mischaracterized
materials, or the presence of unmodeled disturbances. Alterna-
tively, one can directly measure the magnetic fields generated by
a MNS using a magnetometer that is moved through space, or
using several magnetometers simultaneously. The engineering
effort can be higher than relying on simulated data, since the
magnetometer must be reliably placed at a high number of
positions using a robot-arm or other positioner, or alternatively,
a large number of accurately placed magnetometers is required.
Magnetic field data that is available as discrete data points, either
from FEM modeling or from physical measurements, can be
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interpolated in space to obtain a continuous function represen-
tation of the field. In [17]–[19], field data were interpolated with
trilinear interpolation, and with tricubic interpolation in [20].
B-Spline interpolation of the fields was performed in [21]. In [8],
the magnetic field generated by an external permanent magnet
was modeled using modal-basis functions using data from FEM
simulation.

The advantage of interpolation is that it is completely inde-
pendent of the MNS if the magnetic data is available. Provided
the magnetic measurements are error-free and of sufficient res-
olution, interpolation can yield an accurate continuous repre-
sentation of the magnetic field with very little effort required to
parametrize the model. For eMNS, the number of dimensions
increases with the number of electromagnets. For systems with
more than one or two electromagnets, and where the individual
effects of the electromagnets cannot be separated due to nonlin-
ear magnetization, these methods become intractable due to the
curse of dimensionality.

D. Reduced Analytical Models

Between magnetic field calculations based on solutions of
Maxwell’s equations, and interpolation of magnetic field data,
there exist a class of models that are based on simplified MNS
models. These are analytical models in that they are expres-
sions of a valid magnetic field, but do not seek to be a true
representation of the magnetic field distribution everywhere
in space. Magnetic fields that are defined in a space without
free-currents can be seen as the gradient of a magnetic scalar
potential ψm. Furthermore, if the space is devoid of magnetic
materials such as in free-space, the scalar potential is a solution
of Laplace’s equation. For a point source located at the origin, the
potential at a given position in free-space, represented in axially
symmetric spherical coordinates by (r, θ), can be expressed
using a multipole expansion, as shown as follows:

ψm(r, θ) =
∞∑
l=1

Bl

rl+1
Pl(cos θ). (6)

Bl is the multipole coefficient of order l, and Pl(x) is the
Legendre polynomial of order l. The orders l = 1, 2, 3 are often
called the dipole, quadrupole, and octopole, respectively. By
using measured or FEM data of the magnetic fields, one can find
the unknown coefficients and positions and orientations of the
point sources by fitting them in a least-squares sense. The higher
order poles have a rapidly decreasing effect on the potential
field as the distance r to the source increases. Therefore, given a
sufficient distance from the source, a lower-order representation
is often sufficient to represent the magnetic field distribution with
a given precision. For example, electromagnets are modeled as
single dipoles in [18] and [22]. This assumption is generally
valid given that the electromagnets are sufficiently far away from
the workspace, such that the dipole terms of the magnetic field
dominate other terms, and far enough from each other such that
they can be considered as independent sources. In [23], an eMNS
was modeled with several sources per electromagnet, and the
magnetic scalar potential from each source was modeled using

a multipole expansion. We refer to this method as the multipole
electromagnet model (MPEM).

The advantage of reduced-analytical models is that they gen-
erate physically consistent vector fields that are divergence-free,
i.e., ∇ · b = 0, which is a property of all magnetic fields, and
curl-free ∇× b = 0, which is a property of magnetic fields
in which there are no free currents, such as in free-space.
Because they are fit to data in a least-squares sense, they show
some robustness to measurement uncertainties, provided that
the underlying assumptions of the model are accurate. The
disadvantage of these models is the need to define the underlying
parametrization. It is not inherently obvious how many sources
and of what order are necessary to obtain accurate results for
any MNS. Furthermore, such models are usually fit to data
using iterative methods such as the Levenberg–Marquardt (LM)
algorithm, which can be sensitive to initial values of the fitted
parameters and only converge towards local minima.

E. Machine Learning

Recently, we investigated using machine learning to model
an eMNS in [24]. The problem was cast as multivariate regres-
sion with the inputs being the electromagnet currents and the
position at which to calculate the field, and the output being a
magnetic field vector. random forests (RFs) and artificial neural
networks (ANN) were both implemented, yielding improved
magnetic field prediction over Multipole Electromagnet Model.
(MPEM), which was used as a baseline. Such methods can
handle the nonlinear relationship between the electromagnet
currents and magnetic fields, which occurs when electromagnets
exhibit saturation. Additionally, as black-box methods, they do
not require knowledge of domain-specific parameters such as the
number, order, position, and strength of the magnetic sources.
A drawback is that they do not yield physically consistent fields
in contrast to reduced-analytical models, since there are no
constraints that restrict the magnetic fields to be curl-free or
divergence-free.

III. MAGNETIC FIELD INTERPOLATION IN FREE SPACE

The following methods, also described in Section II-C, can
be used to obtain a continuous representation of magnetic fields
from discrete data. In addition to predicting field values at
unmeasured locations from measurements on individual electro-
magnets, magnetic field interpolation can also be used to convert
coarse measurements to finer ones, also known as upscaling the
magnetic field data.

A. Structured Grid Methods

Multivariate interpolation methods either work on regular
grids or on unstructured data. In this section, we assume that
magnetic field data are available on a n×m× l regular 3-D
grid.

1) Tricubic 3D Interpolation. (TRI-3D): While some prior
work used trilinear interpolation of magnetic fields [17] [20],
we consider tricubic interpolation, since it not only provides
continuity of the function, but also of the three first derivatives
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of the function. This is of particular importance if one wishes to
have continuous magnetic field gradients. Tricubic interpolation
is a local method, because an interpolated value only depends on
the eight values at the corners of the voxel containing that point.
We interpolate a separate tricubic function for each component
of the magnetic field, resulting in a 3× 64 coefficient matrix c.
The expression of the interpolated magnetic field b at position
(x, y, z) is

b(x, y, z) =
3∑

i,j,k=0

cijk x
i yj zk. (7)

The 64 coefficients of each interpolant are found by solving a
linear system that results from constraining the values of the
field, the first derivatives of the field, and an additional set of
higher order derivatives, as described in [25]. The values of
the magnetic field derivatives are obtained by finite difference
approximations. For the vector-valued magnetic field, each voxel
of the grid is associated with three vectors of 64 coefficients,
which can be precomputed and stored in a lookup-table resulting
in (n− 1)× (m− 1)× (l − 1)× 192 coefficients. Computing
the magnetic field gradient is straightforward and follows from
the gradient of (7).

2) Tricubic Laplacian Constrained Scalar Field Interpola-
tion. (TRI-LPL): We can also use the fact that the magnetic field
should be the gradient of a scalar potential to instead perform a
tricubic interpolation of the scalar potential (TRI-LPL).

ψm(x, y, z) =
3∑

i,j,k=1

aijk x
i yj zk. (8)

The gradient of the scalar potential is constrained to equal the
magnetic field values at the grid points.

b(x, y, z) = −∇ψm. (9)

This results in an interpolant that is naturally curl-free but not
necessarily divergence-free. The gradient of the magnetic field is
obtained by taking the Hessian of the interpolant. It is symmetric
but does not have zero trace.

The Laplacian of the interpolated potential ∇2ψm is con-
strained to be zero at the grid points and, we also constrain the
second derivatives of the interpolated potential ∂Bx

∂y , ∂Bx

∂z , ∂By

∂z ,
∂2Bx

∂yz , which are obtained using finite difference approxima-
tions. The number of coefficients is (n− 1)× (m− 1)× (l −
1)× 632.

3) B-Spline 3D Interpolation. (SPL-3D): Similar to poly-
nomial interpolation, B-splines generate continuous function
representations of discrete data through piecewise polynomial
functions [26]. In contrast to tricubic interpolation, which only
considers the values of the function on the corners of the voxel
surrounding the interpolation position, B-splines have higher
support, in that the adjacent voxels also contribute to the inter-
polation value. This increases the interpolation accuracy at an
increased computational cost.

2The constant parameter a000 of the tricubic interpolant can be set to any
value, since it is not be affected by the derivatives.

A B-spline function f : R → R of degree d is uniquely
defined by a sequence of knots {t1, . . . , tq}, and coefficients
{c1, . . . , cq}. The basis functions can be calculated using the
recursive Cox-de Boor formula.

Ni,1(x) =

{
1 if ti ≤ x < ti+1

0 otherwise
(10)

Ni,d(x) =
x− ti
ti+d − ti

Ni,d−1(x) +
ti+d+1 − x

ti+d+1 − ti+1
Ni+1,d−1(x).

(11)

The interpolant is a weighted linear combination of the basis
functions

f(x) =

q∑
i=1

ciNi(x). (12)

For multivariate functions, one can use the tensor product of
B-splines. For a function of three variables, we define the
sets {Ni(x)}q1, {Mj(y)}r1, {Pk(z)}s1 as basis functions with
respective knot sequences {ki}q1, {kj}r1, and {kk}s1. Similarly to
TRI-3D, vector-valued functions are represented using vectors
of coefficients for each basis function. In the SPL-3D method,
we represent b : R3 → R3 with

b(x, y, z) =

q,r,s∑
i,j,k=1

cijkNi(x)Mj(y)Pk(z). (13)

The coefficients {cijk}q,r,si,j,k=1 can be obtained by solving a
linear system. We stack the field values at the grid points in a
matrixDb ∈ Rnmp×3. We also stack the basis-function values in
Nb ∈ Rn×q,Mb ∈ Rm×r, andPb ∈ Rp×s. We obtain the tensor
product of the basis-function values in matrix Zb ∈ Rnmp×qrs.

Zb = (Nb ⊗Mb)⊗Pb. (14)

We then solve the following linear system with Cb ∈ Rqrs×3 as
the stacked coefficients

Db = Zb Cb. (15)

4) Laplacian Constrained 3D B-Spline Interpolation. (SPL-
LPL): In [21], a constrained version of SPL-3D was introduced,
such that the divergence and curl of the interpolated magnetic
field was zero at points on a separate e× f × g grid. We call
this method SPL-LPL. The system (15) is modified, such that it
becomes a linearly constrained quadratic program

min
Cb

||Db − Zb Cb||2
s.t. ∇ · b(xi, yj , zk) = 0

∇× b(xi, yj , zk) = 0
∀i ∈ 1 · · · e, ∀j ∈ 1 · · · f, ∀k ∈ 1 · · · g .

(16)

The e× f × g grid of constraints can be chosen to be arbitrarily
fine at the expense of the accuracy of the interpolation of field
values. In this work, we use the same grid for both the field
measurements and for the constraints.

For both SPL-3D and SPL-LPL, we found that using d =
min{n,m, l} provided the best results. Knots were placed using
the MATLAB curve fitting toolbox’s aptknt acceptable knot
sequence function.
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B. Unstructured Methods

The magnetic field data can be specified at arbitrary positions
and does not need to be on a regular grid. This is particularly
useful when one cannot specify, where the data are obtained, for
example, when a dataset has already been collected, if it contains
“holes” in the measurements, or when the data are not located
on a grid.

1) Scalar Radial Basis Functions: radial basis functions
(RBFs) are linear combinations of smooth basis functions that
are centered at N control points {ri}N1 . The 3-D multivariate
vector-valued Radial Basis Function. (RBF) b : R3 → R3 can
be expressed as

b(p) =
N∑
i=1

φ(||p− ri||) ci (17)

where ci ∈ R3 are the weights associated with each basis func-
tion. φ : R → R is called a kernel and several options can be
found in the literature [27]. In this work, we limit ourselves to
two of the most popular, the Gaussian and multiquadric kernels.
The Gaussian kernel is defined as

φg(x) = e−ε|x|2 (18)

while the multiquadric kernel has the following expression:

φmq(x) =
√

1 + ε |x|2. (19)

Both kernels are infinitely differentiable with C∞ continuity,
and have global support, since they are always nonzero. A shape
parameter ε controls the amount of “spread” between the control
points. If ε is small, the basis functions are flatter and spread to
neighboring control points. We call 3-D RBF interpolation with a
Gaussian and multiquadric kernel RBF-G-3D and RBF-MQ-3D,
respectively.

The measurement values are grouped into a matrix Dr ∈
RN×3, and the kernels are evaluated at all the measurement
positions to form an interpolation matrix Ar ∈ RN×N . The
coefficients Cr ∈ RN×3 can be found by solving the following
linear system:

Dr = Ar Cr. (20)

2) Divergence-Free Radial Basis Functions: Matrix-valued
RBF can be used to represent vector fields with physical prop-
erties such as zero divergence or curl [28]. NB. There is no
known matrix-valued kernel that has both properties, so we focus
on divergence-free kernels, since it is a property of all mag-
netic fields. A divergence-free matrix-valued RBFΦ(x) ∈ R3×3

can be obtained from a scalar kernel by using the following
operation:

Φ(x) = (−∇2 I3 +∇∇T )φ(x). (21)

The expression of the interpolant is similar to the scalar case

b(p) =
N∑
i=1

Φ(||p− ri||) ci. (22)

The coefficients are also found by solving a linear system (20).
In this case, Ar ∈ RN×3×3×N is a tensor with four dimensions
and is contracted with Cr ∈ RN×3 over the third and fourth

dimensions to obtain Dr ∈ RN×3. We refer to the two matrix-
valued methods as Divergence-free RBF with Gaussian Ker-
nel. (RBF-G-DF) and Divergence-free RBF with Multiquadric
Kernel. (RBF-MQ-DF).

C. Results on Synthetic Data

To evaluate and compare the different proposed magnetic
field interpolation methods, we used synthetic data that was
obtained from an existing eMNS model. We did so because
it allowed us to easily generate large quantities of physically
consistent magnetic field and gradient data from an eMNS
without resorting to simulations or measured data, and because
we were concerned with the interpolation of general free-space
magnetic fields rather than accurately modeling the magnetic
field generation of a particular eMNS.

1) Dataset: The data were generated using a MPEM
model [23] of the CardioMag using a set of 100 randomly
generated electromagnet current vectors on regular position
grids of varying size. The workspace consisted of a cube of
size 20 cm. For sake of brevity, we denote a grid of size Ng as
a grid of size Ng ×Ng ×Ng . For evaluation, we used data on
a grid of size Ng = 16.

2) Performance Metrics: The following metrics were used
for evaluating magnetic field prediction accuracy. We denote
a dataset of size M with scalar prediction x ∈ RM and cor-
responding observations y ∈ RM . For vector data such as 3-D
fields, scalar metrics are evaluated component-wise unless spec-
ified otherwise. The root mean square error (RMSE) is

(RMSE)(x,y) =

√√√√ 1

M

M∑
i=1

(xi − yi)2. (23)

We also include a normalized root mean square error, (N-RMSE)
where the RMSE is normalized by the range of the observations.
This is useful for making comparisons between datasets, where
the range of the data is different

(N-RMSE)(x,y)

= RMSE(x,y)/
(
max

i
y −min

i
y
)
. (24)

The Mean Absolute Error (MAE) is

MAE(x,y) =
1

M

M∑
i=1

|xi − yi| (25)

and corresponding Normalized Mean Absolute Error (N-MAE)
is

N-MAE(x,y) = MAE(x,y)/
(
max

i
y −min

i
y
)
. (26)

The RMSE is easily affected by variability in the data, with larger
errors contributing more to the combined error than small errors.
It is therefore more sensitive to outliers and is always higher than
the MAE [29]. The MAE in contrast gives less weight to outliers
and is our preferred metric.
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TABLE I
FIELD AND GRADIENT INTERPOLATION PERFORMANCE RESULTS WITH Ng = 5

Fig. 2. Left: Illustration of the uncertainty relation between the shape pa-
rameter and the interpolation performance for 3D RBF Interpolation with
Multiquadric Kernel. (RBF-MQ-3D) with Ng = 5. The condition number is
also shown as the red line. Right: Comparison of optimal shape parameters for
different grid sizes for the different RBF kernels. Note that for both plots, the
position values were normalized using min–max scaling to lie between 0 and 1.

We also sometimes report the coefficient of determination
(R2)

R2(x,y) = 1−
∑M

i=1(xi − yi)
2∑M

i=1(yi − ȳ)2
(27)

where ȳ is the mean of all observations. The R2 describes
the “goodness of fit,” and how well a model’s predictions ap-
proximate the real data. Values closer to 1 indicate a strong
performance while low values indicate a poor performance.

3) Choosing RBF Shape Parameters: The performance of an
RBF interpolant depends on the value of its shape parameter ε.
Due to the well-known “uncertainty relation,” there is a tradeoff
between the numerical stability of (20) and the interpolation
performance [30]. The optimal value of the shape parameter
depends on the set of interpolation points and the interpolant
kernel. We evaluated the effect of the shape parameter on the
mean N-RMSE across all components and data points using the
previously described dataset. We also recorded the condition
number λc = cond(Ar). An example is shown in Fig. 2. Ac-
cording to the literature, the optimal shape parameter often lies
close to the limits of machine precision [30]. An option is to
use a safe value of ε at the cost of a loss in performance. For
regular grids and positions normalized to vary between 0 and
1, our results on the CardioMag suggest using values on the
order of ε = 1 for the RBF-MQ kernels, ε = 2.5 for 3D RBF

Interpolation with Gaussian Kernel. (RBF-G-3D) and ε = 4 for
RBF-G-DF for grid sizes below Ng = 8. A better option is to
perform leave-one-out cross validation in order to estimate the
optimal shape parameter [31] for a given dataset.

4) Comparison of Field Interpolation Performance: We di-
rectly compared all methods. For the RBF methods, we used
optimized shape parameters for the dataset positions. We per-
formed the measurements with increasing grid sizes between 3
and 6. The average N-MAE results are shown in Fig. 3. The
scalar metrics reported were averaged over all components and
all positions in the dataset. The numeric values for grid size
Ng = 5 are reported in Table I.

For all methods, there is a natural increase in performance
with an increase in the grid size. Our results suggest that using
grid sizes of at least Ng = 4 are preferable in the defined
workspace of the CardioMag, since they resulted in interpolation
errors of below 1% in the N-MAE for all methods. Overall
the best performing methods were RBF-G-3D and SPL-3D,
both exceeding all other methods on almost all of the field and
gradient metrics shown in Fig. 3 and Table I. Both methods are
unconstrained and have nonlocal support. We also found that the
divergence-free versions of the RBF methods always performed
worse than their scalar-valued counterparts, owing possibly to
a worse numerical conditioning in solving (20). Amongst the
different RBF kernels, the Gaussian kernel performed better for
scalar valued kernels, while the multiquadric kernel performed
better in the divergence-free matrix valued kernel.

While for RBF, physically constrained methods performed
worse, that was not the case with the tricubic methods. TRI-LPL
consistently outperformed TRI-3D, showing that the constraints
imposed by the curl-free expression, and constraints on the
Laplacian at the voxel corners, both served to improve the inter-
polation performance. Overall, we found that increased support
did not necessarily lead to better performance, particularly at
lower Ng values. This is particularly the case at Ng = 3, where
TRI-3D and TRI-LPL fared well compared to RBF-G-3D and
SPL-3D. At all grid values, the local TRI-LPL method outper-
formed the nonlocal SPL-LPL, RBF-G-DF, and RBF-MQ-DF
methods.

5) Computing Magnetic Field Gradients: Magnetic gradient
information is necessary for estimating the magnetic forces that
act on magnetic agents in magnetic navigation. Due to the diffi-
culty in accurately measuring magnetic field gradients, gradients
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Fig. 3. Interpolation field performance comparison for all methods at increasing grid sizes.

Fig. 4. Mean divergence and curl magnitude for all methods at increasing grid sizes. Methods that are curl or divergence-free are omitted from the bar plot.

are often estimated from interpolated field values rather than
direct interpolation of measured or simulated gradient values.
The gradient is usually represented by the 3× 3 gradient matrix
∇b.

∇b(x, y, z) =
[
∂b
∂x

∂b
∂y

∂b
∂z

]
. (28)

Note that because ∇ · b = 0, the gradient has eight independent
parameters, since tr(∇b) = 0. In free-space, where ∇× b =
0, the gradient matrix is symmetric and the gradient has five
independent parameters. In that case one can replace (28) with
the following vector:

G5 =
[
∂bx

∂x
∂bx

∂y
bx

∂z
∂by

∂y
∂by

∂z

]T
. (29)

Gaussian and multiquadric RBF kernels both have the advantage
of beingC∞ smooth, and therefore all derivatives of interpolants
are continuous. In contrast, polynomial interpolants includ-
ing tricubic and B-spline interpolation have limited continuity.
Tricubic interpolation hasC1 continuity [25] and therefore TRI-
3D has continuous gradients, while TRI-LPL does not, since the
interpolant must be differentiated twice to obtain magnetic field
gradients. B-spline interpolants of order d have at best Cd−1

continuity, and the continuity at a given knot is Cd−k, where k
is the multiplicity of that knot.

We measured the gradient interpolation performance as in
Section III-C4 and report the results in Fig. 3 and Table I. Note

that the performance metrics were averaged across all evalua-
tion positions and the nine components of the gradient matrix.
Similarly to the field results, the best performing interpolants
were again RBF-G-3D and SPL-3D.

6) Physical Considerations: We computed the divergence
and curl on the evaluation grid, and compared the values pre-
dicted by the interpolants. The mean of the absolute value of
divergence over all evaluation positions, and the mean of the curl
magnitude at all positions is shown in Fig. 4 and Table I. For
methods that are naturally divergence-free, namely RBF-G-DF
and RBF-MQ-DF, or curl-free namely TRI-LPL, the quantities
are naturally zero. The divergence and curl for SPL-LPL are also
negligible, showing that the constraints in (16) are successful
at minimizing the curl and divergence throughout the entire
workspace. This is, however, at a cost in interpolation accuracy
of the gradients, as can be seen by comparing the N-MAE of
SPL-LPL and SPL-3D in Table I. When physical properties are
not enforced, unsurprisingly the best performing methods RBF-
G-3D, RBF-MQ-3D, and SPL-3D also yield lower average field
divergences and curls, since they are better able to approximate
magnetic field gradients.

7) Computational Complexity: While methods with global
support such as RBF benefit from generally better interpolation
performance, they are associated with a higher computational
cost. One can distinguish the cost of setting up the interpolation
and computing coefficients from the cost of computing the
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interpolant. In the former case, computational complexity is
less of an issue in real-time control applications, since it can
generally be done offline. It can be a bottleneck, nonetheless, if
interpolation is used to upsample a magnetic field that may come
from real-time measurements, or from the output of a model
yielding predictions at discrete locations. For N data locations,
the setup cost of 3D RBF methods is O(N3) and for large
N , there can be numerical issues associated with calculating
the coefficients. The interpolation cost is then O(N). B-spline
methods generally afford from more favorable complexity over
RBF because they have more compact support and therefore
sparsities in the linear algebra computations in both the set-up
and interpolation. For B-spline methods of order d, the setup
complexity is O(d3N3), where N is the total number of points
in the grid. The interpolation cost is O(d2N) [32]. For tricubic
methods, the setup cost is O(N) and the interpolation cost is
a constant, since each voxel can be considered independently
from its neighbors.

The accuracy of interpolation methods can be greatly im-
proved by increasing the grid size. Nevertheless, we have found
that relatively small grid sizes Ng < 8 are needed to interpolate
magnetic fields with high accuracy in the CardioMag, and all
methods can be computed fast on modern computing hardware.
In that light, we recommend using the best performing method
available while disregarding computational cost. Nevertheless,
in applications with finer grids, where the interpolation coeffi-
cients can not be precomputed, when upsampling a magnetic
field in real-time, for example, computationally favorable meth-
ods like TRI-LPL may be preferred.

IV. MODELING ELECTROMAGNET DRIVEN MAGNETIC FIELDS

We now consider the more general nonlinear magnetic model
in (1). For systems that exhibit a linear relationship between
electromagnet currents and core magnetization, a simple matrix
relation (2) can be used to combine the effects of multiple
electromagnets. In certain systems, particularly those with large
ferromagnetic cores and high current densities, as is the case for
clinical scale systems such as the CardioMag, the magnetization
response to electromagnet current is far from linear, since the
ferromagnetic material comprising the electromagnets exhibits
magnetic saturation.

A. Dataset Description

We measured magnetic field data using a 3-D array of 119
Hall-effect magnetic sensors placed in the workspace of the
CardioMag. The dataset contains 3590 distinct vectors of elec-
tromagnet currents and magnetic field readings from all sensors.
More information on the dataset can be found in our previous
work [24]. We randomly split the data into training and testing
datasets with a 9:1 ratio. The dataset contains current levels of
varying intensity. In Fig. 5, we show the distribution of maximum
absolute values in each vector of electromagnet current.

B. Methods

1) MPEM: We trained a MPEM model of order 2 (dipole)
on a subset of the previously mentioned training dataset, as it is

Fig. 5. Histogram of current vectors ordered by the maximum absolute value
of the current in all electromagnets.

usually considered of sufficient order to capture the fields in the
workspace of an eMNS [1]. Data were discarded if the maximum
electromagnet current exceeded 5 A, in order to ensure that the
electromagnets did not exhibit saturation and that the linearity
assumption was ensured.

2) Saturated Multipole Electromagnet Model. (S-MPEM):
A natural extension to linear magnetic models is to include a
correction for the saturating electromagnets. For electromagnet
number k, a saturation function hk : R → R applies a correc-
tion based on the core saturation, and produces the saturated
current iks = hk(ik). (2) was modified with the following scalar
saturation correction:

bs(p) =

Ne∑
k=1

bk(p) i
k
s . (30)

The saturation is minimal at low currents, so the following
parametrization was used. The slope at zero current was assumed
to correspond to the linear coefficients of the magnetic field at a
given position p

bk(p) =
∂bs

∂ik

∣∣∣∣
ik=0

. (31)

The saturation function of individual magnets was determined
as follows. A magnetometer was placed inside the workspace
of the CardioMag. The magnetometer measured the magnitude
bs of the magnetic field bs at a location p. The currents on
a given electromagnet k were ramped in steps of 0.5 A, while
maintaining zero current on the other electromagnets. This was
performed for each of the eight electromagnets. We tested differ-
ent sigmoid functions using least-squares fitting to model bs(ik),
the relationship between the magnetic field magnitude, and the
current ik on a single electromagnet.

We selected hs(ik) =
√
π

2βk
erf(βkik) as our preferred repre-

sentation of saturation, where βk is a fitting parameter con-
trolling the degree of saturation, since it obtained good results
with a minimal number of parameters, resulting in the following
expression of the saturation corrected magnetic field

bs(p) =

Ne∑
k=1

bk(p)

√
π

2βk
erf(βkik)︸ ︷︷ ︸
hk(ik)

. (32)

An example of fitting the current saturation function on the
current ramp of an electromagnet is shown in Fig. 6, showing
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Fig. 6. Magnetic field data from ramping a single electromagnet k. The
measurements using a magnetometer placed in the CardioMag are shown as
the blue points. The saturation function bs(ik) = ak erf(βkik) is shown as
the solid line, where βk is the saturation parameter, ik the current, and ak the
initial slope of the magnetization curve of that electromagnet. A straight line of
equation bl = ak ik showing the linearity at low currents is shown for reference,
where bl would be the magnetic field magnitude with no saturation.

Fig. 7. Block diagram of the generative Convolutional Neural Network.
(CNN) used for magnetic field prediction.

close agreement between the measurements and the saturation
function that was estimated.

3) Artificial Neural Network. (ANN): The modeling of an
eMNS can be cast as a multivariate regression problem, which
can be solved using nonlinear black-box models. In our previous
work [24], we used an ANN to represent (1). The ANN consisted
of three hidden layers of 100, 50, and 25 neurons with hyperbolic
tangent activation functions at each hidden layer.

4) Convolutional Neural Network (CNN): Accurate simula-
tion of 3-D fluid flows using deep fluids, a generative CNN
was shown in [33]. By modeling a vector potential, it was also
shown that divergence-free fields could be obtained. We used a
modified version of the deep fluids architecture, shown in Fig. 7.
The network takes as input the vector of electromagnet currents
and outputs y = G(i), a discretized vector field on a regular
3-D grid of sizeNg . We usedNg = 16, since the network works
with powers of two, and that level of discretization sufficiently
captures the positional variations of the magnetic field over the
entire workspace, as evidenced in Section III. We used both a
regular parametrization that predicted the magnetic field directly
(CNN), and a divergence-free version (CNN-DF). For CNN, the
output is the predicted magnetic field y = b, while for CNN-DF
it represents the magnetic vector potential y = A. In that case,
the magnetic field is then obtained by taking the numerical curl
of the vector potential.

The input layer is a linear fully connected layer that projects
the 8× 1 input vector i to a 4× 4× 4× 64 tensor m. Next, a
convolutional layer with kernel size 3 and stride 1 (3k1s) was ap-
plied with 64 filters, followed by the LReLu activation function,

which adds nonlinearity to the network. Skip residual networks
were also used to increase training robustness by reducing the
effect of “vanishing gradients.” These three elements constitute
a small block, which is repeated four times. The output is then
upsampled by a degree of two, using nearest-neighbor interpo-
lation. This constitutes a big block, which is repeated twice to
upsample the input tensor to size 8× 8× 8× 64, followed by
16× 16× 16× 64. Finally an output convolutional layer 3k1s
produces the output tensor y of size 16× 16× 16× 3.

We upsampled the CardioMag dataset to a Ng = 16 grid,
using 3-D RBF interpolation. The data were normalized using
min–max normalization, such that all features varied in the
range [−1, 1]. The same 9:1 training test split was used as in the
regression models, with the same training examples being used
in all methods. The only difference was the upsampling of the
data to the Ng = 16 grid.

Deep fluids was implemented in Google’s TensorFlow library
version 1.8.0 [34]. The loss function for a single training example
is

L(y) = λb‖bm − bp‖1 + λg‖∇bm −∇bp‖1 (33)

where ‖ · ‖1 represents the L1 norm, bm is a measurement
point, and bp is the magnetic field prediction output by the
network, both representing magnetic fields on a Ng = 16 grid.
λb and λg are scalar parameters that tradeoff the accuracy of the
magnetic field and the accuracy of the magnetic field gradient.
The gradient term in the loss function serves to reduce overfitting
of the network to the magnetic field values, and allows for a
smoother output over space. The gradient values were approx-
imated using numerical differentiation. Since the training data
were prenormalized, we used λb = λg = 1, as was done in the
original deep fluids implementation.

The networks were trained for 350 epochs, using the Adam
optimizer [35] with β1 = 0.5 and β2 = 0.99. We performed
all computations on a computer with a NVidia Titan Xp GPU
running Ubuntu 16.04. Training took approximately 1 h for both
CNN and CNN-DF.

Since the performance of machine learning based methods can
depend on the quantity of data that is available, we evaluated the
effect of the training set size on performance. Smaller sets of
the training data were obtained by randomly selecting a subset
between 10% and 90% of the training data, while evaluating
the trained model on the same separate test set. The results are
shown in Fig. 8. There is a monotonic increase in performance as
more data are available for training, attested by decreasing MAE
values. With up to 30% of the training data, corresponding to
roughly 1000 current samples, there is a noticeable increase in
performance, with the MAE being halved for both CNN and
Divergence-free Convolutional Neural Network. (CNN-DF).
The remaining 70% of training data further reduced the MAE by
a factor of two, showing the diminishing returns of using more
training data.

C. Field Prediction Performance

We compared magnetic field predictions to the measured
magnetic fields in the test dataset. We used the same metrics as in
Section III-C2. The metrics were averaged across all positions
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Fig. 8. Performance of the CNN-based methods depending on the training set
size. The models were trained on increasingly large subsets of the initial training
set. The MAE scores were averaged across all currents and positions.

TABLE II
FIELD PREDICTION PERFORMANCE COMPARISON ACROSS ALL METHODS

Fig. 9. MAE depending on the maximum absolute current across all electro-
magnets.

and field components. For CNN and CNN-DF, the data were
upsampled to a grid of size Ng = 16 in order to match the
prediction output. The results are reported in Table II.

We additionally split the training set by current in order to
visualize each method’s ability to handle electromagnet sat-
uration. Data were put into a bin if the maximum absolute
value of the current across all electromagnets did not exceed a
threshold. We selected thresholds of 5, 10, 15, 20, 25, and 30 A.
We evaluated the MAE separately for each bin and report the
results in Fig. 9. The performance of the linear MPEM decreased
significantly with increasing current, since it did not take into
account electromagnet saturation. The ANN showed inferior
performance to the S-MPEM at lower currents, possibly due to
a bias toward higher current values in the dataset, as can be seen
in Fig. 5. The CNN and CNN-DF showed superior performance
to all methods across all current values.

The worst performing method was unsurprisingly MPEM,
since it does not take into account the saturation of the elec-
tromagnets, which is significant in the case of the CardioMag.

Introducing a simple saturation model in the S-MPEM signif-
icantly improved the prediction performance. One should note
that the saturation model of the S-MPEM does not take into
account the interactions between the electromagnets, since it is
a scalar function of the electromagnet current. Nevertheless, the
performance gain is significant compared to the MPEM and is
close to that of the previously published ANN. The performance
even exceeds the ANN at lower current values, while it is slightly
worse at higher current ranges, where the interactions between
electromagnets are most significant.

The ANN already improved the prediction performance by a
factor of 3.3x over the linear MPEM when comparing the aver-
age MAE. In comparison, the newly introduced CNN perform
significantly better than the current state-of-the-art, with factor
of improvement up to 5.4x over the ANN. This is testament to
the power of the large neural architectures of “deep learning”
for modeling complex physical phenomena, including magnetic
fields. NB. CNN-DF performed slightly worse than CNN, again
suggesting that physical constraints do not improve prediction
performance, given uncertainty in the dataset, due to variations
between magnetic sensors, measurement noise, positional er-
rors, or time-dependent variations. Nevertheless, it remains a
method that combines performance nearly matching the CNN,
with the guarantee that predicted fields are divergence-free.

D. Computing Gradients

Gradients in the MPEM and S-MPEM have analytical ex-
pressions. For the ANN, gradients can be computed using
automatic differentiation, which is available in most neural-
network programming frameworks, since it is inherent to the
backpropagation algorithm, which optimizes the parameters of
the network. For the CNN, positions do not appear as quantities
in the regression problem, and gradients can not be obtained
directly. One can however resort to an interpolation method such
as RBF-G-3D to convert the discretized field to a continuous
function of position, and compute the gradients as discussed in
Section III-C5. In contrast to Section III-C5, proper evaluation
of gradient predictions is not possible since local gradient mea-
surements were not available, and estimations using numeric
differentiation of adjacent magnetic field measurements would
be too inaccurate.

E. Prediction Speed

It is difficult to perform a rigorous and fair benchmarking of
the CNN, ANN, and MPEM models, since they use different
computational paradigms and run on different hardware. The
CNN models used in this article contain 1.36 million floating
point parameters, which is significantly higher than the number
of parameters in MPEM, where the number is in the hundreds.
Nevertheless CNN can be trained and queried rapidly on GPU
hardware. Our tests showed that an entire Ng = 16 field map
could be computed in 4.37 ms on average. For comparison,
a single computation of the MPEM at a single position took
6.85 ms on average, and 665 ms for the ANN method. For
applications, where having the whole magnetic field map is
useful, the computational benefit of CNN is clear. Moreover,
for applications where the field must be computed at a single
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position, there does not appear to be a significant performance
penalty.

V. CONCLUSION

Accurate modeling of the magnetic fields generated by MNS
was a fundamental task for magnetic navigation in robotics. We
estimate that a field prediction accuracy on the order of 0.3 mT
would be required for mm position tracking of devices inside a
clinical-scale system like the CardioMag. Several methods were
compared for generating continuous expressions of magnetic
fields from measurements using interpolation. For eMNS with
several large electromagnets, as can be expected in clinical
applications, the nonlinear magnetization of the electromagnets
and interactions between electromagnets render the magnetic
field prediction task challenging. In our previous attempts [24],
we introduced the use of ANN for nonlinear prediction of the
magnetic fields generated by a large-scale eMNS. In this article,
we introduced two new methods for predicting these magnetic
fields. The S-MPEM was a simple addition to current linear
models while exhibiting similar performance to the ANN. We
reported the first use of deep-learning methods for modeling
eMNS with significant improvement in accuracy over the ANN.
Using a CNN, we achieved a MAE of 0.5 mT, which was on the
order of the aforementioned 0.3 mT requirement for position
tracking.

APPENDIX A
INVERTING EMNS MODELS

Backward models relate a desired magnetic field, magnetic
field gradient, or combination thereof to a controlled parameter,
and are therefore crucial in robotics applications. In the case of a
linear magnetic model, there exists is a closed form inverse map
to (3). If there are more than three electromagnets and (3) is
underdetermined, one may express the solution that minimizes
the power consumption of the eMNS by solving

min
i

iT i

s.t. Am i = bd

(34)

where bd ∈ R3 is a desired magnetic field value at position p
and i ∈ RNe is the vector electromagnet currents. The solution
id is

id = A†
m bd (35)

where A†
m denotes the Moore–Penrose pseudoinverse of Am.

For the saturated linear models such as the S-MPEM introduced
in Section IV-B2, the backward map is straightforward, provided
that an inverse saturation function h−1

k (y) exists, as is the case
for most sigmoid functions. The inverse of (30) is

ĩ = A†
m bd (36)

id =
[
h−1
1 (̃i1) · · · hNe

−1(̃iNe
)
]T
. (37)

Such expressions are convenient, since they can be computed in
closed-form independent of the type of linear model. Note that if
the electromagnets all have the same electrical resistance and the

same saturation, this also minimizes the power consumption of
the eMNS. For the more general nonlinear magnetic model and
for other types of constraints, the backward model generally does
not have a closed-form expression. In such cases, one may pose
the inversion problem as a constrained nonlinear optimization

min
i

‖g(p, i)− bd‖2
s.t. h(i) = 0

f(i) ≤ 0

(38)

whereh(i) and f(i) represent equality and inequality constraints
on the current, respectively. Since the generative CNN predict
a discretized map of the magnetic field (see Section IV-B4), an
additional interpolation step may be required to invert desired
fields at arbitrary positions, but the inversion problem can also
be solved using iterative optimization.

Solving for a set of currents that achieves a desired mag-
netic field while minimizing the power consumption of the
eMNS. This can be performed with an unconstrained nonlinear
solver such as Ceres [36] using the following L2 regularized
minimization

min
i

‖g(p, i)− bd‖2 + λ iT i (39)

where λ ∈ R is a small number.
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