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Figure 1: Comparative results with Deep Image Prior (29) on different image restoration tasks. The first example corresponds

to denoising whereas the second is image inpainting. Our approach is able to remove the degradation and produces visually

more pleasing results in some regions like the text (on the plane) and the mouth.

Abstract

Image restoration has seen great progress in the last years

thanks to the advances in deep neural networks. Most of

these existing techniques are trained using full supervision

with suitable image pairs to tackle a specific degradation.

However, in a generic setting with unknown degradations

this is not possible and a good prior remains crucial. Re-

cently, neural network based approaches have been proposed

to model such priors by leveraging either denoising autoen-

coders or the implicit regularization captured by the neural

network structure itself. In contrast to this, we propose us-

ing normalizing flows to model the distribution of the target

content and to use this as a prior in a maximum a posteriori

(MAP) formulation. By expressing the MAP optimization

process in the latent space through the learned bijective

mapping, we are able to obtain solutions through gradient

descent. To the best of our knowledge, this is the first work

that explores normalizing flows as prior in generic image en-

hancement problems. Furthermore, we present experimental

results for a number of different degradations on data sets

varying in complexity and show competitive results when

comparing with the deep image prior approach.

1. Introduction

In today’s digitized world, there is an increased demand

to process existing older content. Examples are the archival

of photo prints (18) for more reliable long-term data storage,

preparing heritage footage (1) for more engaging documen-
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taries, and making classic films and existing catalog contents

available to large new audiences through streaming services.

This old content is however often in low quality and may

be deteriorated in complex ways, which creates a need for

generic image restoration methods that are able to address

a wide range of possibly combined degradations. Image

restoration can be formulated as solving the following en-

ergy minimization problem:

x
⋆ = argmin

x

[Ldata (x̂, x) + Lreg(x)] , (1)

where x̂ is the observed image and x
⋆ the restored im-

age to be estimated. The first term, Ldata, is a data fi-

delity term which can be problem dependent and ensures

that the solution agrees with the observation; the second

term, Lreg(x), is a regularizer that typically encodes cer-

tain smoothness assumptions on the expected solution and

thus pushes it to lie within a given space. From a Bayesian

viewpoint, the posterior distribution of the restored image

is p(x|x̂) ∝ p(x̂|x)p(x). This allows rewriting the above

restoration problem into the following equivalent maximum

a posteriori (MAP) estimate:

x
⋆ = argmax

x

log(p(x|x̂)) (2)

= argmax
x

log (p (x̂|x))
︸ ︷︷ ︸

data

+ log p(x)
︸ ︷︷ ︸

regularizer

, (3)

which makes it more explicit that the regularizer should

model prior knowledge about the unknown solution. Many

handcrafted priors have been proposed reflecting desired

properties based on total variation (28), gradient sparsity (11)

or the dark pixel prior (13). More recently, learning based

priors have been explored, in particular the usage of denois-

ing autoencoders (DAEs) as regularizers for inverse imaging

problems (21). Building on DAEs, Bigdeli et al. (6) propose

to use a Gaussian smoothed natural image distribution as

prior. In a different direction, Ulyanov et al. (29) showed

that an important part of the image statistics is captured

by the structure of a convolutional image generator even

independent of any learning.

All existing methods proposed alternatives and approxi-

mations to the true image prior p(x) in Equation 2. However,

with deep normalizing flows, we have an approach for a

tractable and exact log-likelihood computation (10). There-

fore, we propose to use normalizing flows for capturing the

distribution of target high quality content to serve as a prior

in the MAP formulation. In addition to this, the inference

of the latent value that corresponds to a data point can be

done exactly without any approximation since our generative

model is invertible. We use this learned bijective mapping

to express the MAP optimization process in the latent space

and are able to obtain solutions through gradient descent.

Concurrent to our work, Asim et al. (4) also explored using

invertible neural networks priors for inverse problems. How-

ever we demonstrate good results on a more diverse set of

images and at arbitrary resolution, while only face images

were used in (4). This is thanks to our proposed additional

losses to improve the data manifold of the base distribution

(latent space) for the MAP optimization. In a number of

experiments, we explore our approach for different degrada-

tions on data sets of varying complexity and we show that

we can achieve competitive results as illustrated in Figure 1.

The contribution of this paper is three fold: 1) to the best

of our knowledge, our work is the first using normalizing

flows to learn a prior for generic image restoration; 2) we

take advantage of the bijective mapping learned by our model

to express the MAP problem of image reconstruction in

latent space, where gradient descent can be used to estimate

the solution; 3) we propose using new loss terms during

model training for regularizing the base distribution space

which yields a better behavior during the MAP inference.

Could this be removed: Our paper is organized as follows.

In Section 2, we recap important background regarding nor-

malizing flow before describing our method in Section 3.

Section 4 covers important related work and Section 5 dis-

cusses our experimental results. We give our conclusions in

Section 6.

2. Normalizing Flow

Borrowing the notation from Papamakarios et al. (22),

let’s consider two random variables X and U that are related

through the reversible transformation T : Rd → R
d, x =

T (u). In this case, the distribution of the two variables are

related as follows:

pX(x) = pU (u) |det JT (u)|−1
, (4)

where u = T−1 (x) and JT (u) is the Jacobian of T. Here,

the determinant preserves total probability and can be under-

stood as the amount of squeezing and stretching of the space

induced by the transformer T . The objective of normalizing

flows (26) is to map a base distribution to an arbitrary dis-

tribution through a change of variable. In practice, a series

T1, . . . , TK of such mappings are applied to transform the

base distribution into a more complex multi-modal one

x
T

−1

K←−→ hK−1

T
−1

K−1

←−−→ hK−2 · · ·h1
T

−1

1←−→ u , (5)

pX (x) = pU
(
T−1 (x)

)
K∏

k=1

∣
∣
∣
∣
det

dhk−1

dhk

∣
∣
∣
∣
, (6)

where we define hK , x and h0 , u. It is clear that

computing the determinant of these Jacobian matrices, as

well as the function inverses, must remain easy to allow their

integration as part of a neural network. This is not the case

for arbitrary Jacobians and recent successes in normalizing



Figure 2: Overview of the normalizing flow architecture. The input image x is processed by an L = 3 level network, where

each level consists of a squeeze operation followed by a series of K steps. Each step is a succession of ActNorm, 1 × 1
convolution and an affine layer. The image latent representation is (u0,u1,u2). The number of levels and steps can be

adapted to the complexity of the data.

flow are due to the proposition of invertible transformations

with easy to compute determinants.

Normalizing flows as generative model. Recent works

have shown the great potential of using normalizing flow as

generative model (16; 10) where an image observation x is

generated from a latent representation u

x = Tθ (u) with u ∼ p (u) . (7)

Here x ∈ X is a high-dimensional vector, Tθ denotes a

composition of invertible transformations, and p (u) is the

base distribution e.g. a normal distribution. Considering a

discrete set D of N natural images, the flow based model

learns the parameterized distribution, pθ (x), by minimizing

the following log-likelihood objective:

Lnll (D) =
1

N

N∑

i=1

− log pθ

(

x
(i)
)

. (8)

where x
(i) are the images in the training dataset. In the next

section, we will describe our approach for leveraging flow

based models for various image restoration applications.

3. Generic Restoration with Flow Based Priors

By training a generative flow model as described in the

previous section, we learn a mapping Tθ from a latent space

U , with a known base distribution p(u), to the complex

image space X . In this work, we propose to use the capacity

of normalizing flows to compute the exact likelihood of

images pθ(x), as prior in the image restoration problem

x
⋆ = argmin

x

− log p (x̂|x)
︸ ︷︷ ︸

data

− log pθ (x)
︸ ︷︷ ︸

prior

. (9)

In addition to the prior, we also take advantage of the

bijective mapping in normalizing flows to rewrite the opti-

mization with respect to the latent u

u
⋆ = argmin

u

[− log p (x̂| Tθ (u))
︸ ︷︷ ︸

data

− log pθ (Tθ (u))
︸ ︷︷ ︸

prior

] (10)

since x = Tθ (u). With this new formulation, we are lever-

aging the learned mapping between the complex input space

(the image space X ) and the base space (the latent space U )

that follows a simpler predefined distribution. This new

space has interesting properties where the optimization prob-

lem is easier to solve. In particular in this work we solve

it through an iterative procedure, similar as during training,

where gradient descent is applied on the latents according to

u
t+1 = u

t − η∇u L (u; x̂, θ) . (11)

Here L (u; x̂, θ) abbreviates the objective defined in equa-

tion 10 and η is the weighting applied to the gradient. We

used the Adam optimizer (15) to compute the gradient steps.

The model is generic and once trained on target quality

images, different applications can be considered by adapting

the data loss term. In this work we use a generic data fidelity

term between the input image x̂ and the restored result x =
Tθ (u):

Ldata (x̂, u) = − log p (x̂| Tθ (u)) (12)

= m⊙ λ||x̂− Tθ (u) ||
2
2 , (13)

where ⊙ is the Hadamard product. The mask m is a binary

mask that indicates pixel locations with valid color values

and allows to handle the inpainting scenario. The parameter

λ controls the deviation tolerance from the original degraded

input x̂. Next we provide details on the normalizing flow

architecture used, the training losses, and our coarse to fine

optimization procedure.

3.1. Generative Flow Architecture

The proposed generative model is based on the archi-

tecture described by Kingma and Dhariwal (16). We first

present the individual building layers



• Activation normalization. It performs an affine trans-

formation on the activations using a learned scale and

bias parameter per channel (16).

• Invertible 1×1 convolution. The random permutation

of channels are replaced with this convolution (16).

• Affine transformation. This layer is a coupling (9)

that splits the input into two partitions, where one is the

input for the conditioner, a neural network to modify

the channels of the second partition.

• Factor-out layers. Factoring-out parts of the base dis-

tribution (10) allows a coarse to fine modeling.

Using these layers, we propose the model illustrated in

Figure 2. It consists of L levels, each one is a succession of

K steps, where a step is defined as the composition of the

layers: ActNorm, Invertible 1× 1 convolution and Affine. At

the end of each intermediate level l, the transformed values

(latents) are split in two parts hl and ul, with the factor-out

layer. The parameters (µl, σl) of the conditional distribution

p (ul | hl) are predicted by a neural network. In our case,

this is a zero initialized 2D convolution as proposed in (16).

In the experimental part and in supplementary material, we

provide more details about the architecture used for each

dataset.

3.2. Training and Latent Space Regularization

When using normalizing flows to learn a continuous dis-

tribution, the input images have to be dequantized. Follow-

ing common practices in generative flows, we redefine the

negative log-likelihood objective (nll) of equation 8

Lnll (D) =
1

N

N∑

i=1

− log pθ

(

x
(i) + ǫ

)

. (14)

Here ǫ is uniformly sampled from [0, 1]. This model is

sufficient for simple datasets as we show in the experimental

section with the MNIST examples (see Figure 3). However

for more complex data, a regularization of the learned latent

space is needed. The main objective is to structure this space

in a beneficial way for the optimization.

Latent-Noise loss. In order to enforce some regularization

of the latent space, we add uniform noise to the latents

uξ = u + ξ where ξ ∼ U (−0.5, 0.5). The proposed loss

term

Lln = ||Tθ (uξ)− x||22 (15)

penalizes parameters θ that would map back uξ far from

the initial input image x. It is interesting to note that this

loss does not make any assumption regarding the degraded

images, but it still results in a latent space better suited for

our optimization problem.

Auto-Encoder loss. If we consider the model illustrated

in Figure 2, the image x is mapped to its representation

(u0, u1, u2). From only the latent value u0, we compute

x̃ by sampling the most likely intermediate values ũl ∼
p (ul | hl). Since we use a Gaussian distribution, this corre-

sponds to the mean value of the predicted distribution. The

proposed loss

Lae = ||x̃− x||22 (16)

forces the model to store sufficient information in the deepest

level to reconstruct the image. This allows a more robust

coarse-to-fine strategy during the optimization.

Image-Noise loss (optional). The Image-Noise-loss Lin

works similarly to the Latent-Noise-loss Lln. The difference

is that the noise is added to the image x and distortion is

measured on the encoding u = T−1
θ (x).

Lin = ||T−1
θ (x)− T−1

θ (x+ η)||22, (17)

where η ∼ U (−10, 10) . We consider this loss to be

optional as we found that it only made the optimization

slightly faster when the model was trained with this loss and

was only used for tests on the Div2K dataset (3).

The final training loss for the normalizing flows is

L = Lnll + βlnLln + βaeLae + βinLin
︸ ︷︷ ︸

optional

, (18)

where βln, βae and βin are the weightings for each loss

term. We used βln = 100, βae = 1 and βin = 100. The

weight values are chosen such that all losses have similar

contributions to the final loss. The same values were used

for all the datasets. The ablation study in the experimental

section shows the necessity of training the generative flow

model with the different loss terms.

3.3. CoarseToFine Optimization

The optimization procedure described in Equation 11 is

iterative and we need to set its initial value u0. In order to

choose a good starting point, we leverage the introduced

multi-scale architecture. Our starting point is

u0 = (û0, ũ1, ũ2) with û0 defined by T−1
θ (x̂).

(19)

The values of the other components, ũ1 and ũ2, are sampled

as the mean values of the respective predicted distributions,

namely p (u1 | h1) and p (u2 | h2). As our auto-encoder

loss enforces the possibility to reconstruct the image from

û0 only, this lowest level contains coarse image information

while details are stored in the upper levels. This is advan-

tageous for image restoration tasks where the degradation

often affects the detail of an image.

Given this starting point, the optimization is done in a

coarse-to-fine fashion. First, only the lowest level variables



N(0, 20) N(0, 30) N(0, 50) JPEG 30 JPEG 10 JPEG 5 U(±20) U(±40) Mask(10)
U(±40) ◦
JPEG 10 ◦
Mask(10)

Degraded

Reconstructed

Ground Truth

Figure 3: Results produced by a single-level normalizing flow trained on the MNIST dataset. Each column corresponds to

a different type of degradation. From top to bottom the degraded image, the reconstructed image and the ground truth are

shown. The digits in the first three columns are degraded with random noise N(0, σ). JPEG compression with different quality

settings is used for digits three to five. Additive uniform noise U(±A) was added to digits six and seven. A patch of size

10x10 was masked out of digit eight. Finally, for digit nine, we applied a composition of all.

are optimized while the upper levels are respectively sampled

from the predicted means. These are then progressively

included in the optimization:

u
t+1
0 = u

t
0 − η∇u0

L (u; x̂, θ) ,

(u0,u1)
t+1 = (u0,u1)

t − η∇(u0,u1) L (u; x̂, θ) ,

(u0,u1,u2)
t+1 = (u0,u1,u2)

t − η∇(u0,u1,u2) L (u; x̂, θ) .

(20)

With this coarse-to-fine scheme, we are able to incrementally

refine the reconstructed images by making sure that the lower

level information is correct first.

4. Related Work and Discussion

Despite the success of supervised deep learning ap-

proaches for dedicated image restoration problems such as

super-resolution (30; 33), denoising (31), inpainting (24) or

a combination of them (23), one important drawback is the

need for retraining whenever the specific degradation or its

parameters change. Some recent works (8; 5) have investi-

gated the blind setting for super-resolution. However that

concerns the parameters of the degradation only and such

solutions are not applicable to an unknown degradation.

When addressing generic image restoration problems, the

common approach is to consider the Bayesian perspective

where recovering the original image is expressed as solving

a maximum a posteriori (MAP) problem. The objective func-

tion consists of a fidelity term and a regularization term. The

fidelity term can be problem specific and easier to express

than the prior that is supposed to reflect desired properties

of the reconstructed image. Existing handcrafted priors are

based on total variation (28), gradient sparsity (11) or the

dark pixel prior (13).

Recently, several works have investigated the usage of

CNNs as priors. For example, a deep CNN trained for image

denoising can effectively be used as prior in various image

restoration tasks (27; 32). Additionally, Meinhardt et al. (21)

provide new insights on how the denoising strength of the

neural network relates to the weight on the data fidelity term.

Bigdeli et al. (6) define a utility function that includes the

smoothed natural image distribution and relate this to denois-

ing autoencoders. In a different direction, Ulyanov et al. (29)

showed that an important part of the image statistics is al-

ready captured by the structure of a convolutional image

generator itself, independent of any learning. This work

was further analyzed from a Bayesian perspective (7) and

combined with a denoising autoencoder prior (20). In (12)

the authors propose a method for image segmentation using

multiple deep image priors. and show how various image

restoration tasks e.g. dehazing or watermark removal can be

formulated and solved as such segmentation problems. More

recently, Ren et al. (25) propose a MAP formulation, to learn

the blur kernel and clean image of a blurry picture. They

leverage the insights from (29; 12) to regularize the image

as well as the kernel. Their approach works well in cases

where the degradation can be expressed as a convolution (i.e.

blurring).

The idea presented in our work stems from recent devel-

opments in normalizing flows (9; 10; 16) and their promis-

ing capacity of learning a bijective mapping from a space

with a prescribed distribution to the complex space of im-

ages, additionally providing exact log-likelihood tractability.

Some recent works already explore their usage for image

restoration and enhancement problems. For example, Ab-

delhamed et al. (2) use normalizing flows to estimate the

distribution of real noise, which can be leveraged to generate

training data for denoising. In the case of super-resolution,

Lugmayr et al. (19) introduce a flow based method for image

super resolution, conditioned on the low resolution images.

The authors also show how the method can be applied to

other types of degradation but our experiments demonstrate



Degraded Lnll Lnll + Lln Lnll + Lae L (Eq. 18) Ground Truth

Figure 4: Restoration of degraded Sprites: (top) denoising of Gaussian noise N(0, 5); (middle) inpainting and (bottom)

combines denoising; inpainting and JPEG artifact removal. The columns correspond to different normalizing flow models,

each one trained with the indicated loss term. Results show the importance of using all the proposed loss terms.

that our approach produces better results.

Using a learned prior that only depends on properties

of high quality images is an exciting direction, as this re-

moves the need to rely on other assumptions that are either

explicit, in the case of handcrafted solutions, or implicit in

the case of denoising autoencoders. Concurrent to our work,

Asim et al. (4) also explored using invertible neural networks

as signal priors for inverse problems such as denoising, com-

pressive sensing, and inpainting. Our solution however goes

beyond as we are able to demonstrate good results on a more

diverse set of images and at arbitrary resolution. even out-

performing DIP (29) in some cases, while only face images

were used in (4). This is thanks to our proposed additional

losses to improve the image enhancement capabilities.

5. Experiments

In this section we explore the usage of our proposed

solution for generic image restoration tasks. We show results

on two synthetic datasets, the MNIST and the self generated

Sprites, and on real images. We also include comparisons

with Deep Image Prior (DIP) (29), Double-DIP (12) and

SRFlow (19).

Since we do not focus on a specific degradation during

training, our proposed approach can be applied on various

types of restoration problems. In this work we present results

on three different types of image degradation: noise (uniform

and normal), JPEG compression artifacts, and missing re-

gions. We also include the composition of multiple of these

degradations. The noisy images are generated by adding i.i.d.

samples of noise to the pixel values, with noise distributed

according to U (min,max) orN (0, σ) . The varying degrees

of JPEG artifacts are generated by using different levels (10

to 70) for the JPEG compression. For the inpainting task, we

masked multiple regions of size 10×10 pixels. An overview

of the used degradations is visualized in Figure 3.

Proof of concept using the MNIST. As a first step we

tested our flow based image prior on the well studied MNIST

dataset (17). Given the simplicity of this dataset, the model

used for this experiment consists of a single-level L = 1 with

K = 16 steps. We choose the base distribution p (u) to be a

Gaussian with unit variance and a trainable mean. Further,

a ResNet (14) with 2 blocks and C = 128 intermediate

channels, was used to learn the parameters for the affine

transformations. More details about the architecture are

provided in supplementary material.

Given a degraded image x̂ the goal is to find the most

likely image x
⋆ by solving the optimization problem of

Equation 10. Given the simplicity of the data set, we use

the mean of the base distribution p (u) as starting point u0.

It can be seen in Figure 3 that this is sufficient to enhance

the binary digits for any degradation. A related experiment

was conducted by Dinh et al. (9), where the degraded digits

are enhanced by maximizing the probability of the image

trough back propagation to the pixel values. This related

experiment is equivalent to only considering the prior term

in our Equation 10.

Ablation study using the Sprites dataset. Each image

in the Sprites dataset consists of a figure performing some

pose in front of a random background. Figures are centered

in the image and have varying color for hair and clothing.

Each image is of size 64 × 64 (the dataset will be made

available upon acceptance). As the images become more

complex, it is necessary to use a multi-level architecture

and train the normalizing flow model using the loss terms

described in Section 3. We increased the capacity of our flow

based prior and use L = 3 levels, with K = 8 steps each.

Additional details about the architecture can be found in the

supplementary material.

In the optimization, the learning rate η and the data

weighting term λ are set to 1 and 99, respectively. The



Figure 5: Results on DIV2K dataset. The proposed prior is used to restore images of arbitrary size. Degradations include:

(top) JPEG compression artifacts; (middle) denoising; (bottom) and a combination of masked regions, noise and compression

artifacts .

gradient descent is done in a coarse to fine way (see sec-

tion 3.3), each time with 50 update steps per level before

including the next one. When all latent levels are included,

an additional 150 optimization steps are performed. Using

a modern GPU (GeForce GTX 1080 Ti) this amounts to

approximately 50s processing time per image.

Figure 4 shows image restoration results on this dataset:

The first row corresponds to a denoising task, the second

is image inpainting and the last combines both in addition

to compression artifact removal. Note that these images

were not observed during training. Our proposed algorithm

(last column) is able to successfully predict missing parts

alongside denoising and compression artifact removal.

In addition to our proposed model, we trained variants

with different loss combinations to demonstrate the impor-

tance of the regularization losses proposed in Section 3.2.

Using the negative-log-likelihood loss (Lnll) is clearly not

sufficient, and a prior trained only with this term is not suited

for the latent space optimization.

The most important improvement comes from using the

latent-noise loss (Lln). This regularization enforces neigh-

boring elements in latent space to be mapped back to similar

images. This is highly beneficial to the gradient descent

procedure in latent space and a prior trained with this loss

already leads to some good restoration results. The moti-

vation behind this loss term comes for the observation that

the image optimization had a tendency to diverge suddenly

and irrecoverably. This could be explained by ill behaved

regions in the latent space where gradients explode. To al-

leviate this problem we want to ensure that similar latent

space representations correspond to similar images. The

idea here being that two similar images probably also have

similar likelihoods which would results in small gradients.

The Latent-Noise loss encourages this, as it penalizes simi-

lar latent space representations resulting in vastly different

images.

Our coarse-to-fine optimization strategy (last column)

produces best results, but it requires using the auto-encoder

loss. If this loss is absent, there is no constraint on stor-

ing as much information in the coarsest level. As a result,

our initialization strategy for multi-level flows (resampling

higher levels) does not work well. This alone is however not

sufficient as illustrated in the column (Lnll+Lae) where the

generative model is trained without the latent-noise loss.

With these experiments it becomes clear that a normaliz-

ing flow prior, trained only with the negative log-likelihood

loss as suggest in (4) is not sufficient to handle restoration

tasks when the images become more complex and of higher

resolution.

Generic image restoration. We show that the proposed

model is applicable to the restoration of generic images.

In order to do so, the model must learn the distribution of

patches of high resolution good quality images. For this we

use the DIV2K dataset (3) that serves as training and test

set for many image quality enhancement works. We use

the same train/test split with 800 images in the training set

and 100 in the test set. Training is done on random image

patches of size 64× 64. The normalizing flow architecture

used here is very similar to the one described for the Sprites.

The number of levels in the architecture is set to L = 3 with

K = 4 steps per level. The main difference is the increased

number of intermediate channels in the coupling transforms,

from 128 to 256, and the context encoder architecture that

is deeper than in the sprites case, with 5 convolutional layer



DIP Double-DIP SRFlow 4x SRFlow 8x Ours

J
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E
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PSNR↑ 28.16 - 27.75 25.27 30.29

SSIM↑ 0.85 - 0.80 0.71 0.86

MSSSIM↑ 0.97 - 0.95 0.91 0.96

LPIPS↓ 0.17 - 0.25 0.31 0.23

N
o
is

e

PSNR↑ 30.22 - 27.32 24.73 28.99

SSIM↑ 0.92 - 0.81 0.69 0.87

MSSSIM↑ 0.98 - 0.96 0.92 0.96

LPIPS↓ 0.07 - 0.23 0.34 0.21

M
u

lt
i

D
eg

r. PSNR↑ 26.41 27.62 27.57 25.21 29.87

SSIM↑ 0.78 0.80 0.78 0.69 0.85

MSSSIM↑ 0.92 0.94 0.94 0.91 0.96

LPIPS↓ 0.26 0.27 0.26 0.34 0.23

Table 1: Quantitative evaluation on DIV2K.

instead of 1. See the supplementary material for a more

detailed description. The normalizing flow model is trained

with all the losses indicated in Equation 18.

The restoration of full images of arbitrary size can be

done by reconstructing each patch individually. A margin

is used to avoid boundary artifacts between patches. More

specifically for patches of 64 × 64 pixels we use a margin

M = 4 pixels. Neighboring patches overlap in a region

of width 2M (see supplementary material for illustration).

This overlap between adjacent patches yields more consistent

results in boundary regions. Restoration results are presented

in Figure 5 for different image degradations.

Comparison with Deep Image Prior (DIP) (29). We

first compare the two methods on the images presented in

the original DIP paper (29). We use our same model trained

on the DIV2K dataset. We show competitive restoration

results (Figure 1), producing even visually more pleasing

reconstruction than DIP on some regions (such as the text

and the mouth). The main limit in our case is the patch size

used during training. Because of this, it is not possible to

inpaint large masked regions. Interestingly however, in this

case background regions are better denoised.

We also conduct a quantitative evaluation with results

presented in Table 1. Using the test set from DIV2K, we

try to restore different degradations: JPEG artifacts, Noise

(N (0, 5)) and a combination of artifact removal, denoising

and inpainting. For this comparison it is unclear how to best

set the number of iterations for the DIP. To handle this, we

started from the observation that our method converges to

the result in approximately 1 hour of computation. Using

the DIP online implementation, this corresponds to around

10k optimization steps on the denoising task. We used this

maximum number of steps as the threshold for all images

and degradations of the test set. The evaluation demonstrates

that our approach is able to achieve competitive results and

even outperform DIP on some of the restoration tasks.

Besides achieving competitive results with respect to

DIP (29), a key advantage of our approach is that it requires

less manual tuning: the DIP requires careful setting of the

number of optimization steps to restore a high quality image,

and utilizes a specially designed network for each restoration

problem. Contrary to our solution that uses the same normal-

izing flow model across all restoration tasks. Moreover we

did not note any convergence issue with between the data

term and the prior is set manually, we found that in practice

the method is not overly sensitive to changes of this factor

(e.g. λ = 50 was used for all DIV2K examples).

Comparison with Double-DIP As our method signifi-

cantly outperforms DIP (29) on images with multiple degra-

dations, we additionally compare our method against the

more recent Double-DIP (12) by reformulating inpainting as

a watermark removal task. Table 1 shows that our method

also performs better than Double-DIP (12) in the multi degra-

dation setting.

Comparison with SRFlow We compare our method

against SRFlow (19) on the DIV2K dataset. For this compar-

ison we use the SRFlow’s 4x and the 8x pretrained models

provided by the authors. The restoration is performed as de-

scribed in (19), Section 4.5, with temperature τ = 0.9. Since

SRFlow also operates on fixed-sized patches, we apply the

same tiling procedure as for our model. Figure 5 shows that

the 8x model produces noticeably more blurry images but

does a better job of inpainting the missing regions. Table 1

shows that both models perform significantly worse than our

model on all the examples we tested. It is important to note

however the runtime difference as their results are obtained

with two passes through the network while ours require a

costly optimization for each patch.

6. Conclusion

In this paper, we explored using normalizing flows for

capturing the distribution of target high quality content to

serve as a prior in generic image restoration. This is differ-

ent from existing learning based priors such as denoising

autoencoders or the regularizing properties of convolutional

image generator. To the best of our knowledge, this is the

first time normalizing flows are successfully used as prior

for generic high resolution image restoration tasks. One

advantage of this formulation is the learned bijective map-

ping from image to latent space that we use to express the

MAP problem of image reconstruction in latent space. We

propose a set of training losses that help structure the base

distribution space for our optimization problem, and their im-

portance is demonstrated through the ablation study. Finally,

we present experimental results illustrating the capacity of

the proposed solution to handle different degradations on

data sets of varying complexity. We believe this is an excit-

ing new direction with a lot of potential for future works that

would extend to other types of image enhancement problems

such as deblurring, super-resolution, dehazing, etc.
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