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Figure 1: We propose Adaptive Convolutions (AdaConv), an extension of Adaptive Instance Normalization (AdaIN) for
image style transfer, which is able to transfer both statistical and structural style elements. AdaConv can also be applied to
generative models such as StyleGAN for photorealistic image synthesis on a multitude of datasets1.

Abstract

Style transfer between images is an artistic application
of CNNs, where the ‘style’ of one image is transferred onto
another image while preserving the latter’s content. The
state of the art in neural style transfer is based on Adaptive
Instance Normalization (AdaIN), a technique that transfers
the statistical properties of style features to a content im-
age, and can transfer a large number of styles in real time.
However, AdaIN is a global operation; thus local geometric
structures in the style image are often ignored during the
transfer. We propose Adaptive Convolutions (AdaConv), a
generic extension of AdaIN, to allow for the simultaneous
transfer of both statistical and structural styles in real time.
Apart from style transfer, our method can also be readily
extended to style-based image generation, and other tasks
where AdaIN has already been adopted.

1. Introduction
In recent years, convolutional neural networks (CNNs)

have been used to explore and manipulate the style of im-

ages. Image style is often defined by image features such
as overall color and local structure of brush strokes, in the
context of paintings, or the pose and expression of a face
in generative image applications. Style is also defined at
different resolutions, and thus can include both the global
identity of a face as well as the local structure of freckles on
the skin. Research in this area gained a lot of momentum
with the advent of neural style transfer, originally proposed
by Gatys et al. [8], where a CNN is trained to reproduce
the content of one input image, but rendered with the style
of another image. In a similar spirit, generative adversarial
networks (GANs) have been used to produce realistic syn-
thetic images with style defined by a random vector input,
for example in the creation of synthetic face images [18].

The widespread approach for manipulating style is
through adaptive instance normalization (AdaIN), a method
that transforms the mean and variance of image features.
For example, AdaIN is often used to transfer feature statis-
tics of a style image onto a content image. Since its defi-
nition by Huang et al. in 2017 [13], this operation has al-
ready become commonplace in CNN-based image manipu-
lation literature. One major drawback of AdaIN, however,



is that the statistic computation is a global operation; thus
localized spatial structure in the style cannot be effectively
captured and transferred. A concrete example is shown in
Fig. 1 (row 1) where the style image has distinct features
like black and white circles and squares. The AdaIN result
transfers the statistics of that image to the content images,
but the result lacks any structure of the style. A similar phe-
nomenon can be seen in row 2, for a different style image.

In this work we introduce an extension to AdaIN called
Adaptive Convolutions (AdaConv), which allows for the
simultaneous adaptation of both statistical and structural
style. In the context of style transfer, instead of transfer-
ring a simple pair of global statistics (mean and standard
deviation) from each style feature, our approach estimates
full convolution kernels and bias values from the style im-
age, which are then convolved on the features of the con-
tent image. As these kernels better capture localized spatial
structure in the style, AdaConv can more faithfully transfer
structural elements of the style image to the content image,
as illustrated in Fig. 1 (columns 4 and 7).

The concept of predicting convolution kernels for deep
learning tasks has already shown some promise in fields
such as video frame interpolation [26, 27, 28] and denois-
ing [1, 35]. Here we leverage this idea to extend AdaIN for
more general image style manipulation. AdaConv can re-
place AdaIN in virtually every application where the latter
has been adopted, providing a new, generic building block
in CNN-based image generation and style manipulation. To
illustrate the generality of AdaConv, we demonstrate its ap-
plication in both style transfer as well as style-based gener-
ative face modeling (StyleGAN [18]).

2. Related Work
This section reviews prior work in the domains of neural

style transfer, modulation layers in generative models and
kernel prediction that are more closely related to our work.

Neural Style Transfer based on CNNs was initially pro-
posed by Gatys et al. [8]. While their method allowed for
transferring arbitrary style between images, it was based
on an slow optimization procedure. Johnson et al. [17]
addressed this issue with the introduction of perceptual
losses, allowing for a significant speed-up of the optimiza-
tion and achieving real-time results. In parallel, Ulyanov
et al. [33] proposed a style transfer method that speeds up
inference even further, by evaluating a feed-forward neural
network that is style-specific and pre-trained. In a follow up
work [34], they also replaced batch normalization (BN) lay-
ers by instance normalization (IN) to produce higher quality
results without impacting speed. To improve control over
the style transfer result, Gatys et al. [9] subsequently in-
troduced explicit color, scale and spatial control by refor-
mulating the loss function in both optimization-based and
feed-forward methods [9]. Following up on the idea of IN,

Dumoulin et al. [7] proposed conditional instance normal-
ization (CIN) and conditioned the normalization layer on
the style, allowing a single model to perform style trans-
fer from one of 32 pre-defined styles or their interpola-
tion. Ghiasi et al. [11] further extended CIN to allow trans-
fers to arbitrary styles, unseen at training time; this was
achieved using a large corpus of styles to train an encoder
that transforms a style image into the conditioning latent
vector. Cheng et al. [6] proposed patched-based style swap
method for arbitrary style transfer. Concurrently, Huang et
al. [13] proposed a method for arbitrary style transfer, by
effectively making IN adaptive to the mean and standard
deviation of the style features, thus leading to AdaIN. Li
et al. [22] extended this method by whitening and color-
ing the latent features given the style. This idea was fur-
ther extended by Sheng et al. [31] with a style decorator
module and multi-scale style adaptation. Other works also
looked at meta networks for style transfer [30], faster style
transfer using learned linear transformations [21] and style
transfer of stereoscopic images [4]. More recently, Jing
et al. [15] noticed that directly replacing the statistics of
the content features with those of the style features may
be sub-optimal; instead, their dynamic instance normal-
ization (DIN) method trains a style encoder to output the
new statistics for the content features, while also adjusting
the size and sampling locations of subsequent convolutions
layer. Besides instance normalization, adversarial learning
was also explored by Kotovenko et al. [20] to better disen-
tangle style from content. Additional in-depth descriptions
of other Neural Style Transfer methods are presented in the
recent review paper by Jing et al. [16]. The aim of our work
is to further extend AdaIN by predicting entire convolution
kernels and biases according to the style image, to transfer
both the statistics as well as the local structure of the style.

Modulation layers in generative models have also con-
tributed to other breakthroughs beyond style transfer. Most
notably, StyleGAN [18] uses the original version of AdaIN,
but the input style statistics are predicted by an MLP from
a Gaussian noise vector. To mitigate some visible artifacts
caused by AdaIN, StyleGAN2 [19] replaces it with a weight
demodulation layer, which only normalizes and modulates
the standard deviation, without changing the mean. As
AdaIN and its variants only transform global statistics, they
are insensitive to localized, spatial semantics in the style in-
put. To address this limitation, new methods have been pro-
posed to predict spatially-varying normalization parameters
from an input spatial layout image [29, 39, 15]. SPADE
[29] replaces the global affine tranformation of AdaIN with
per-pixel transformations regressed from an input seman-
tic mask. SEAN [39] further extends SPADE by consider-
ing an additional style vector with the input layout mask.
Both SPADE and SEAN preserve the conditioning spatial
layout for the purpose of semantic image generation; they



effectively control how each kernel is emphasized or sup-
pressed at particular image locations. In contrast, our Ada-
Conv method generates completely new kernels at test time.
Also, SPADE and SEAN are not directly suitable for appli-
cation in style transfer, where the spatial layout of the con-
tent image must be preserved.

Kernel prediction has also been explored in previous
work. Note that all of the above methods for feature nor-
malization and modulation follow a similar procedure: they
define scalar affine transformations that are applied on each
feature channel independently. The main differences are
found in: (i) whether or not the transformation parame-
ters are hand-crafted, learned during training, or predicted at
test time; and (ii) whether the per-channel transformations
are global or spatially-varying. Those methods that regress
global transformations can also be understood as predicting
1 × 1 2D kernels at test time. For style transfer, Chen et
al. [3, 5] learn style-specific filter banks that are convolved
on the content image’s features. Their method is limited to
filter banks learned at training time; it cannot generate new
kernels for unseen styles given only at test time. Jing et.
al [15] claim to be able to regress dynamic convolutions
from the input, using their generic DIN blocks; however,
the reported experimental results are limited to 1× 1 trans-
formations. Related work on kernel prediction also goes
beyond style transfer. Jia et al. [14] present dynamic con-
volutions for video and stereo image prediction, in which
test-time features are reshaped into new filters that are ap-
plied either convolutionally or in a location-specific way.
State-of-the-art methods for denoising Monte Carlo render-
ings [1, 35, 10] use neural networks to predict dynamic ker-
nels applied to reconstruct the final denoised frame. Neural
networks were also proposed to predict denoising kernel for
natural images taken in burst mode with a handheld camera
[24, 36]. Niklaus et al. [26] predict frame interpolation ker-
nels for video; they later extended this work to predict sepa-
rable convolution parameters [27, 28]. Xue et al. [37] use a
CNN to predict motion kernels from random Gaussian vari-
ables used to synthetic plausible next frame. Esquivel et
al. [38] predict adaptive kernels which are used to reduce
the number of layers required to accurately classify images
under limited computational resources. In the remainder of
this paper, we explore a similar idea that leverages kernel
prediction at test time to improve style transfer and style-
based modulation in generative models.

3. Feature Modulation with AdaConv
We now describe AdaConv and our kernel predictors,

showing how AdaConv generalizes and extends the typical
1 × 1 affine transformations in style-based feature modu-
lation. We begin by drawing a parallel with AdaIN, in the
context of style transfer, and then show how AdaConv al-
lows for better conditioning on local feature structure, for

better transfer of spatial style, while also being applicable
in high-quality generative models outside style transfer.

3.1. Overview

Consider the usual style representation {a, b} ∈ R2,
where a and b represent the style as scale and bias terms,
respectively (e.g., for style transfer, a and b are the mean
and standard deviation of the style image features). Given
an input feature channel with values x ∈ R and the desired
style, AdaIN applies a style-defined affine transformation to
normalized input features,

AdaIN(x; a, b) = a

(
x− µx

σx

)
+ b , (1)

where µx and σx are the mean and standard deviation over
the feature channel. Thus, AdaIN changes only the global
statistics of each channel based on the conditioning style pa-
rameters {a, b}. Note that the whole channel is modulated
equally, regardless of the spatial distribution (structure) of
the feature values around each sample x.

Our first step towards extending AdaIN is thus to intro-
duce a conditioning 2D style filter f ∈ Rkh×kw , replac-
ing the scale term and yielding extended style parameters
{f , b}. This filter allows for modulating the feature channel
in a spatially-varying way, according to the local structure
in a neighborhood N (x) around sample x,

AdaConvdw(x; f , b) =
∑

xi∈N (x)

fi

(
xi − µx

σx

)
+ b , (2)

=
∑

xi∈N (x)

AdaIN(x; fi, b) .

Note that this depthwise AdaConv variant subsumes AdaIN,
which is a special case with a 1×1 filter f andN (x) = {x}.

Our second and final step towards our full AdaConv
modulation extends this depthwise variant by expanding the
input style parameters to also include a separable, pointwise
convolution tensor p ∈ RC , for an input with C feature
channels. This enables AdaConv to perform modulation
based on a style that captures not only global statistics and
spatial structure but also correlations across features xc in
different input channels c,

AdaConv(x;p, f ,b) =
∑
c

pc AdaConvdw(xc; fc, bc) .

(3)

The input style {p, f , b} for AdaConv effectively includes
a depthwise-separable 3D kernel [12], with depthwise and
pointwise convolution components, and per-channel bi-
ases. The actual number of depthwise and pointwise con-
volutional kernels used to modulate an input is a design
choice and can be arbitrarily large. As we later describe



in Sec. 3.2.2, this can be controlled using the number of
groups ng in a depthwise-separable convolutional layer.

In the following, we propose a kernel prediction frame-
work for AdaConv and show how it can be used as a gen-
eral replacement for AdaIN to achieve more comprehensive
style-based conditioning in style transfer and also in other
high-quality generative models.

3.2. Style Transfer with AdaConv

For style transfer, we begin with the original architecture
of Huang et al. [13] and also apply the same content and
style losses during training. However, instead of directly
mapping the global style statistics onto those of the con-
tent features using AdaIN, we use our new kernel predictors
with AdaConv to more comprehensively transfer different
properties of the style. An overview of our style transfer
architecture is given in Fig. 2.

The input style and content images are encoded using a
pre-trained VGG-19 [32] encoder to obtain latent features
of style S and content C. For kernel prediction, the style
features S are encoded further by a style encoder ES to ob-
tain a global style descriptorW . FromW , our kernel pre-
diction networks K = {K1,K2, ..,KN} output depthwise-
separable convolutional kernels [12] with per-channel bi-
ases. These predictions are ingested into all layers of the
decoder D, which outputs the style-transferred result.

Our style transfer architecture employs 4 kernel predic-
tors that operate at 4 different resolutions of the decoded
image, with kernels of different dimensions. Each decoding
layer has an adaptive convolution block (Fig. 3), in which
the predicted depthwise and pointwise convolutions precede
a standard convolution. These standard convolutional lay-
ers are responsible for learning style-independent kernels
that are useful to reconstruct natural images and remain
fixed at test time. The encoder ES , the kernel predictors K
and the decoder D are trained jointly to minimize the same
weighted sum of content and style losses in [13], within the
VGG-19 latent feature space.

3.2.1 Style Encoder

We now turn to the goal of predicting convolutional ker-
nels from the style features S, to be applied to the content
features C at every scale of our image decoder. Here, an
intermediary step is to compute a style representation W
that comprehensively describes the style image at different
scales, while being guided by the style transfer loss. This
design choice is also motivated via analogy with state-of-
the-art generative modeling [18, 19], where the term ’style’
denotes both global and local properties of an image.

The pre-trained VGG-19 network translates the original
input style image with (channels, height, width) dimensions
equal to (3, 256, 256) into a style tensor S with dimensions

style image

…

…

VGG-19

VGG-19

result

Trainable modules
Fixed modules

AdaConv
VGG features
Global style embedding

content image

Figure 2: Network architecture with our new kernel predic-
tors and AdaConv for structure-aware style transfer.

(512, 32, 32) at the VGG-19 relu4 1 layer. Here, the re-
ceptive field does not cover the whole style image. Hence,
we reduce S into our global embedding W by training an
additional encoder component, ES , as shown in Fig. 3.

Our style encoder ES includes 3 initial blocks, each one
with a 3 x 3 convolution, an average pooling operation, and
a leaky ReLU activation. The output is then reshaped and
fed to a final, fully-connected layer that provides the global
style descriptor, which is in turn reshaped back into an out-
put tensor W of size (sd, sh, sw). The dimensions of this
embedding are hyper-parameters and defined as a factor of
the size of the kernel to be predicted.

Due to the use of this fully-connected layer, our network
is limited to work with input style images of fixed dimen-
sions (3, 256, 256). However, the dimensions of the content
image are not restricted, since it flows through a fully con-
volutional component of the network.

3.2.2 Predicting Depthwise-Separable Convolutions

Each one of our kernel predictors K in Fig. 2 is a sim-
ple convolutional network whose input is the style descrip-
tor W , while the output is a depthwise-separable kernel.
The choice of predicting depthwise-separable kernels [12]
is motivated by the desire to keep the kernel predictor sim-
ple and computationally efficient, while also making the
subsequent convolution faster.

A standard convolutional layer takes an input fea-
ture tensor of dimensions (1, cin, h, w) and convolves it
with a kernel tensor of size (cout, cin, kh, kw), where
cin and cout are the number of input and output chan-
nels. A per-channel bias is also added to the output.
Thus, the number of weights required by such layer is
cout × cin × kh × kw + cout. Depthwise-separable convo-
lution reduces this number by collecting the input channels
into ng independent groups and by applying separate spa-
tial and pointwise kernels that learn structural and cross-
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Figure 3: Architectures of the global style encoder ES , kernel predictor Ki, and structural modulation in an AdaConv block
with the resulting depthwise-separable convolutional kernel applied on input content features (top right).

channel correlations respectively. The required number of
weights is reduced to cout × cin

ng
× kh × kw + cout. For a

depthwise convolutional layer with ng = cin, each channel
of the input is convolved with its own set of cout/cin filters.
This is followed by a pointwise convolution with a 1×1 ker-
nel to expands the number of channels in the output, adding
a per-channel bias to the final output.

Here, it is important to note that the four AdaConv lay-
ers in our decoder have cin equal to 512, 256, 128, and
64, decreasing as the spatial resolution increases. Thus, the
kernel predictor at the lowest spatial resolution would usu-
ally have the highest number of parameters. To uniformly
distribute our network’s capacity over the successive reso-
lution layers, we set a larger ng ∈ {cin, cin2 ,

cin
4 ,

cin
8 } at

lower resolutions and gradually decrease it over successive
layers, leading to better results (a comparison with constant
ng = cin is given in the supplement). ng is set identically
for both the depthwise and pointwise convolutional kernels.

Thus, each kernel predictor K outputs the necessary
weights for the depthwise convolutional AdaConv layer in
that scale of the decoder. These weights include: (i) spatial
kernels of size (cout, cinng

, kh, kw), (ii) pointwise kernels of
size (cout, cout

ng
, 1, 1), and (iii) a bias term b ∈ Rcout .

The input to each kernel predictor K is the global style
descriptorW of size (sd, sh, sw), which is fed through con-
volutional and pooling layers that output spatial kernels of
the target dimension, Fig. 3. These layers may consist of
standard or transposed convolutions, whose parameters are
determined at design time and depend on the size of kernels
to be predicted. To predict pointwise 1× 1 kernels, we pool
W to a size (sd, 1, 1) and then perform a 1D convolution to
predict cout pointwise kernels. We use a separate predictor
for per-channel biases, similar to that for pointwise kernels.
Once the kernels and biases are predicted, they are used to
modulate an input as shown in the right half of Fig. 3.

3.3. Training

To compare against existing techniques in style transfer
(see Fig. 4), we train our method using the COCO dataset
[23] as content images and the WikiArt dataset [25] as style
images. For the remaining comparisons to AdaIN, we used
a custom content dataset of around 4000 human faces cap-
tured in a controlled studio setting as content images and
continued to use the WikiArt dataset as style images. For
the experiments where we use faces as content, we re-train
both AdaIN and AdaConv from scratch for a fair compari-
son. To train our method, we use the Adam optimizer with
a learning rate of 1e-4 and a batch size of 8. For AdaIN we
use the same settings as in [13]. Additional details on our
training are presented in the supplementary material.

4. Results
We now show results of using AdaConv as an extension

of AdaIN for style transfer and generative modeling.

4.1. Style Transfer

Our work is primarily motivated by the application of
image style transfer, much like the original AdaIN [13]. In
this section, all our results are created with a style descriptor
size sd = 512 and a kernel size of 3× 3.

Qualitative Comparisons. We first compare AdaConv
with several style transfer methods, including Huang and
Belongie’s AdaIN [13], Chen and Schmidt [6], Ulyanov et
al. [34], Gatys et al. [8], Jing et al. [15], Li et al. [22], Sheng
et al. [31], and Johnson et al. [17]. Fig. 4 shows that our
approach performs comparably with the current state of the
art, and is notably strong in preserving the structure of the
style image. For instance, the structure of the water in the
sailboat image (first row) resembles the hair strands in the
style image; the structure of the brush strokes in the artistic
paintings are transferred naturally to the content images.



Content ImageStyle Image Huang & Belongie Chen & Schmidt Ulyanov et al. Gatys et al.Ours (AdaConv)

Content ImageStyle Image Ours (AdaConv) Jing et al.
(VGG)

Jing et al.
(MobileNet)

Li et al. Huang & Belongie Sheng et al. Johnson et al.

Figure 4: AdaConv performs comparably with current state-of-the-art methods1,2. Our method is particularly good at trans-
ferring the local structure of the style image to the content image.

As AdaConv extends AdaIN, we perform a more thor-
ough comparison in Fig. 5. In all cases, AdaConv renders
a content image that is more faithful to the structure (local
spatial distribution) of the style image, while also transfer-
ring the global statistics of the style. AdaIN cannot transfer
the style structure, only the global statistics of the style.

1Portions of this figure are © 2017 IEEE. Reprinted, with permission, from
Huang and Belongie [13].

2Portions of this figure from Jing et al. [15] are © 2020, Association for the
Advancement of Artificial Intelligence. All rights reserved. Permission to reuse the
figure for other purposes (or granting it to others) is NOT allowed.

Style Rotations. We further highlight the benefit of Ada-
Conv in preserving style image structure by applying the
same style image under various degrees of rotation. Ar-
guably, a rotated style image is in fact a different style.
However, this notion is largely lost when transferring the
style using AdaIN, since global feature statistics remain
mostly the same under rotation. We illustrate this effect
in Fig. 6, where we transfer a style image under four dif-
ferent rotations to the same content image (taken from the
last row of Fig. 5). As we can see, AdaConv successfully



Content ImageStyle Image AdaIN AdaConv (Ours)

Figure 5: Compared to AdaIN [13], our AdaConv exten-
sion is better at maintaining the structure of the style image
thanks to our kernel prediction approach.

preserves the spatial orientation of the style image in the
transferred result, whereas the AdaIN results look mostly
the same independent of rotation. We encourage the reader
to view more rotation results in the supplemental video.

Style Interpolation. As with AdaIN, we can also interpo-
late in style space to generate results that mix multiple input
styles. In the case of AdaConv, we interpolate the output of
the style feature encoder, before the kernel predictor. The
interpolated style descriptor then produces kernels that alter
the structure of the decoded result. As a result, structural
elements of the style images are smoothly interpolated spa-
tially. This can be observed in Fig. 7, where we interpolate
between two style images that have very different structure,
and apply the result to a content image of a face. As com-
pared to AdaIN, AdaConv generates in-between results that
have structure which is also in-between the structure of the
two style images. For example, one can easily see structural
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Figure 6: When rotating the style image, the style orienta-
tion is transferred well to the content image using AdaConv,
while AdaIN results are mostly rotation-invariant, since the
global statistics do not vary much under rotation.
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Figure 7: As we interpolate between two style images, the
AdaConv results are smoother than AdaIN, and we can fol-
low individual structures as they deform spatially from one
result to the other with the AdaConv method.

elements like thick lines actually deforming and warping
from one result to the other using AdaConv.

User Study. We also ran a user study to compare results
of AdaConv and AdaIN. Participants evaluated a total of 10
side-by-side style transfer results obtained by AdaIN and
AdaConv, with the two results displayed in a randomized
order. The participants were asked to choose a result based
on the following 3 questions: (1) Which style transfer result
preserves the content image better? (2) Which style transfer result
preserves the style structure from the style image better? (3) Which
style transfer result is overall doing a better job at transferring the



style to the content image? A total of 185 participants from
multiple countries, age groups and backgrounds took part in
our online survey. As expected, 93.9% of the participants
felt that AdaIN is better at content preservation, while 92%
felt that AdaConv was capturing the style structure better.
Overall, a strong majority of the participants, 71.8%, said
that AdaConv did a better style transfer job.

Video Style Transfer. Finally, as seen on the supplemen-
tal video, AdaConv performs style transfer on video se-
quences with good temporal stability even when naı̈vely
applying transfer to each frame independently. Improved
temporal stability could be achieved by extending AdaConv
with an optical flow technique for video style transfer [2].

4.2. Extensions to Generative Models

Though originally proposed for style transfer, AdaIN has
found its way into a multitude of applications including gen-
erative models like StyleGAN [18] and StyleGAN2 [19],
where it has been used to inject ‘style’ into a generator net-
work that is trained in an adversarial fashion. As AdaConv
is an extension of AdaIN, we demonstrate its suitability for
generative networks by incorporating it, together with our
kernel predictors, into a StyleGAN2-like network.

At each scale of the StyleGAN2 generator, the per-
channel mean and standard deviation (A) predicted by an
MLP are used to modulate the convolutional layer’s weights
using AdaIN (Fig. 8, left). Note, however, that the kernel
weights are learned during training and only their scaling
is adapted at test time. In contrast, our AdaConv blocks
predict full depthwise-convolutional kernels from the input
style parameters at test time. Thus, we replace each weight
demodulation block in StyleGAN2 with an AdaConv block
that performs ‘style-based’ depthwise-separable convolu-
tion on the up-sampled input from the previous layer (Fig. 8,
right). A noise vector is also transformed through an MLP
into an input ‘style’W for the kernel predictor in each Ada-
Conv block. Since depthwise convolutions have fewer pa-
rameters than standard convolutions, we follow the adap-
tive convolution with a standard 2D convolution in the same
block. Then per-channel biases and Gaussian noise are
added and the output is fed into the next AdaConv block.

We trained this modified StyleGAN2 generator on the
FFHQ, CelebHQ, AFHQ-wild and AFHQ-dog datasets at a
resolutions of (256 × 256). Our modified generator and the
discriminator from StyleGAN2 are trained with the same
hyperparameters and loss functions as [19]. We trained our
generative network on a single Nvidia2080Ti GPU for 300K
iterations (∼1.2m real images) at a batch size of 4. We
show some examples of synthetic faces and wild animals in
Fig. 9. These results were generated with a style descriptor
size sd = 128 and a kernel size of 3× 3. Additional results
of using AdaConv in a generative setting are provided in our
supplementary material.

Figure 8: Demodulation blocks in StyleGAN2 [19] and our
alternative network with AdaConv blocks.

Figure 9: AdaConv can also be applied to generative archi-
tectures like StyleGAN2 [19] for realistic image synthesis.

5. Conclusion

In this work we propose Adaptive Convolutions (Ada-
Conv) for structure-aware style manipulation. As an exten-
sion to adaptive instance normalization (AdaIN), AdaConv
predicts convolution kernels and biases from a given style
embedding, which can be woven into the layers of an image
decoder to better adjust its behavior at test time. In the con-
text of neural style transfer, AdaConv can transfer not only
global statistics but also the spatial structure of a style image
onto a content image. In addition, AdaConv is also appli-
cable in style-based image generation (e.g. StyleGAN), as
we have demonstrated, and virtually everywhere AdaIN has
been employed. It provides a new, generic building block
for ingesting conditioning input data into CNN-based im-
age generation and style manipulation.

Acknowledgements. We would like to thank Maurizio
Nitti for creating our style images.
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Jan NováK, Alex Harvill, Pradeep Sen, Tony Derose, and
Fabrice Rousselle. Kernel-predicting convolutional networks
for denoising monte carlo renderings. volume 36, New York,
NY, USA, July 2017. Association for Computing Machinery.
2, 3

[2] Dongdong Chen, Jing Liao, Lu Yuan, Nenghai Yu, and Gang
Hua. Coherent online video style transfer. In 2017 IEEE
International Conference on Computer Vision (ICCV), pages
1114–1123, 2017. 8

[3] Dongdong Chen, L. Yuan, Jing Liao, Nenghai Yu, and G.
Hua. Stylebank: An explicit representation for neural image
style transfer. 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2770–2779, 2017. 3

[4] Dongdong Chen, Lu Yuan, Jing Liao, Nenghai Yu, and Gang
Hua. Stereoscopic neural style transfer. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2018. 2

[5] Dongdong Chen, Lu Yuan, Jing Liao, Nenghai Yu, and G.
Hua. Explicit filterbank learning for neural image style trans-
fer and image processing. IEEE transactions on pattern
analysis and machine intelligence, 2020. 3

[6] Tian Qi Chen and Mark Schmidt. Fast patch-based style
transfer of arbitrary style. arXiv preprint arXiv:1612.04337,
2016. 2, 5

[7] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur.
A learned representation for artistic style. 2017. 2

[8] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.
Image style transfer using convolutional neural networks. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2016. 1, 2, 5

[9] Leon A. Gatys, Alexander S. Ecker, Matthias Bethge, Aaron
Hertzmann, and Eli Shechtman. Controlling perceptual fac-
tors in neural style transfer. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017. 2
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