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An accurate assessment of physical transport requires high-resolution and high-quality

velocity information. In satellite-based wind retrievals, the accuracy is impaired due

to noise while the maximal observable resolution is bounded by the sensors.

The reconstruction of a continuous velocity field is important to assess transport

characteristics and it is very challenging. A major difficulty is ambiguity, since the

lack of visible clouds results in missing information and multiple velocity fields will

explain the same sparse observations. It is, therefore, necessary to regularize the

reconstruction, which would typically be done by hand-crafting priors on the smoothness

of the signal or on the divergence of the resulting flow. However, the regularizers can

smooth the solution excessively and will not guarantee that possible solutions are truly

physically realizable. In this paper, we demonstrate that data recovery can be learned

by a neural network from numerical simulations of physically realizable fluid flows,

which can be seen as a data-driven regularization. We show that the learning-based

reconstruction is especially powerful in handling large areas of missing or occluded data,

outperforming traditional models for data recovery. We quantitatively evaluate our method

on numerically-simulated flows, and additionally apply it to a Guadalupe Island case

study—a real-world flow data set retrieved from satellite imagery of stratocumulus clouds.

Keywords: deep learning–CNN, Karman vortex street, cloud motion winds, satellite wind data, wind velocity

retrieval

1. INTRODUCTION

The formation of observable mesoscale vortex patterns on satellite imagery is driven by
atmospheric processes. Certain structures, such as Karman vortex streets forming in the
stratocumulus-topped wake of a mountainous islands, bear resemblance to patterns observable in
laboratory flows. Such flow structures have been studied based on satellite measurements since the
1960s (Hubert and Krueger, 1962; Chopra and Hubert, 1965; Young and Zawislak, 2006). Recent
advances in remote sensing (Geerts et al., 2018) enabled the retrieval of high-resolution wind fields
at kilometer-scale (Horváth et al., 2017, 2020), which is a necessary requirement for the analysis
of atmospheric processes in turbulent environments. While operational wind products based
on the Advanced Baseline Imager (ABI) onboard the Geostationary Operational Enrivonmental
Satellite-R (GEOS-R) (Schmit et al., 2017) provide a 7.5 km resolution, Horváth et al. (2020)
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utilized the internal wind vectors at 2.5 km resolution in their
study of vortex patterns in the wake of Guadalupe Island
off Baja California on 9 May 2018, which were combined
with MODIS-GEOS wind products offering stereo cloud-top
heights and semi-independent wind validation data (Carr et al.,
2019). Utilizing such high resolutions is necessary for the
analysis of small-scale structures, but comes at the price of an
increased level of measurement noise, which is accompanied
by general uncertainty in regions without or with only few
clouds. Disambiguation of possible flow configurations based
on imperfect measurement data is thereby challenging. At
present, such spaceborne measurements have been cleaned with
median filters, smoothing, and thresholding of unreasonably
large velocity components (Horváth et al., 2020). Thus, current
approaches to reconstruct missing or uncertain information are
based on assumptions about the signal smoothness, and do
not yet incorporate that the wind fields are the result of fluid
dynamical processes. Such physical regularizations, however, are
more difficult to model.

Data-driven regularization and data recovery with neural
networks offer great potential for data completion tasks. A
main challenge is to include physics knowledge in the network
design, such that the reconstruction follows the solution of the
fluid dynamic equations. Cloud satellite imagery may contain
large areas of missing or uncertain data, and high noise levels.
Further, the fluid dynamics are affected by the topography.
Therefore, the data inference must be powerful enough to
generate accurate results even in such challenging settings.
Neural networks have excellent properties for data completion:
they are universal approximators, and are able to efficiently
combine data-driven and physics-based regularizations. Data
reconstructed with neural networks, however, typically lack
details due to the convolution operations, which manifests as
degraded and smoothed flow details. In this paper, we present
a novel neural network architecture for 2-D velocity fields
extracted from satellite imagery. Our method uses physically-
inspired regularization, leveraging surrogate simulations that are
generated in the full three dimensional space, which enables a
more precise approximation of the transport phenomena. The
inference time of our approach is fast, offering new applications
for predicting large scale flows in meteorological settings.

Deep learning approaches are currently studied with
great interest in climate science in a number of different
topics, including convection (O’Gorman and Dwyer, 2018),
forecasting (Weyn et al., 2019), microphysics (Seifert and Rasp,
2020), empirical-statistical downscaling (Baño-Medina et al.,
2020), and radiative transfer (Min et al., 2020). Estimating
missing flow field data has many similarities with the image
inpainting task commonly studied in computer vision, as it is
essentially a scene completion process using partial observations.
The recent success of learning-based image inpainting algorithms
demonstrates the capability of deep neural networks to complete
large missing regions in natural images in a plausible fashion.
Pathak et al. (2016) used Context Encoders as one of the first
attempts for filling missing image data with a deep convolutional
neural network (CNN). CNN-based methods are attractive
due to their ability to reconstruct complex functions with only

few sparse samples while being highly efficient. The follow-up
work by Iizuka et al. (2017) proposed a fully convolutional
network to complete rectangular missing data regions. The
approach, however, still relied on Poisson image blending as
a post-processing step. Yu et al. (2018) introduced contextual
attention layers to model long-range dependencies in images
and a refinement network for post-processing, enabling end-
to-end training. Zeng et al. (2019) extended previous work
by extracting context attention maps in different layers of
the encoder and skip connect attention maps to the decoder.
These approaches all include adversarial losses computed from
a discriminator (Goodfellow et al., 2014) in order to better
reconstruct visually appealing high frequency details. However,
high frequency details from adversarial losses can result in
mismatches from ground truth data (Huang et al., 2017), which
can potentially predict missing data that diverge from physical
laws. Liu et al. (2018) designed partial convolution operations
for image inpainting, so that the prediction of the missing
pixels is only conditioned on the valid pixels in the original
image. The operation enables high quality inpainting results
without adversarial loss. Inpainting approaches have also been
successfully used for scene completion and view path planning
using data from sparse input views. Song et al. (2017) used an
end-to-end network SSCNet for scene completion and Guo and
Tong (2018) a view-volume CNN that extracts geometric features
from 2D depth images. Zhang and Funkhouser (2018) presented
an end-to-end architecture for depth inpainting, and Han et al.
(2019) used multi-view depth completion to predict point
cloud representations. A 3D recurrent network has been used
to integrate information from only a few input views (Choy
et al., 2016), and Xu et al. (2016) used spatial and temporal
structure of sequential observations to predict a view sequence.
We base our method on previous deep learning architectures
for image inpainting, namely a U-Net (Ronneberger et al., 2015)
with partial convolutions (Liu et al., 2018). Utilizing that we
are dealing with velocity fields instead of images, we further
include a physically-inspired loss function to better regularize
the predicted flow data. Neural networks have also recently been
applied to fluid simulations. Applications include prediction
of the entire dynamics (Wiewel et al., 2019), reconstruction of
simulations from a set of input parameters (Kim et al., 2019b),
interactive shape design (Umetani and Bickel, 2018), inferring
hidden physics quantities (Raissi et al., 2018), and artistic control
for visual effects (Kim et al., 2019a). A comprehensive overview
of machine learning for fluid dynamics can be found in Brunton
et al. (2020).

2. METHOD

In this paper, we demonstrate that the reconstruction
of high-quality wind fields from noisy, uncertain and
incomplete satellite-based wind retrievals based on GEOS-
R measurements (Schmit et al., 2017) can be learned by a
neural network from numerical simulations of realizable
fluid flows. The training and evaluation of such a supervised
approach is, however, challenging due to the lack of ground
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truth data. Thus, in a first step we numerically simulate fluid
flows, which we synthetically modify to account for uncertainty
and lack of measurements. The flow configurations must
thereby be chosen carefully to sample the space of possible fluid
configurations uniformly. Simply using off-the-shelf reanalysis
simulations (Hersbach et al., 2020) would bias the network
to perform best on very common fluid flow configurations,
leading to poor results in the exceptional situations that
are most interesting to study. For this reason, we generate
fluid flow configurations in a controlled manner suitable
for supervised machine learning. Afterwards, we analyze the
performance of our model on satellite wind retrievals in the
wake of Guadalupe island by Horváth et al. (2020) and compare
those with linear reconstructions obtained via least-squares
minimization. Our neural network has similarities with image
inpainting approaches, mainly stemming from both sharing
a scene completion process using partial observations. The
major difference between flow field and image inpainting is
that flow field data inherently follows the solution of the fluid
dynamic equations. Hence, existing image inpainting algorithms
can easily fail in physics-aware completion tasks as they never
aim to capture the underlying physical laws. The presented
flow inpainting method therefore considers the mathematical
equations that model the fluid phenomena in the design of the
network architecture and loss functions. The network is designed
such that large areas of missing data with and without obstacles
can be inferred. In the next sections, we are going to detail how

we designed our network architecture, along with challenges
and necessary modifications that were made to support fluid
flow data.

2.1. Network Architecture
Our goal is to train a network that can fill empty regions of
velocity fields. The input scheme is similar to standard image
inpainting tasks. For a given 2D velocity field Euin with missing
fluid regions represented by a binary mask M (0 for empty
and 1 for known regions), the network predicts the inpainted

velocity field Êu. Existing consistency checks, such as wind speeds
not exceeding 8 m/s can be incorporated directly by the mask.
The network for fluid data completion consists of three main
parts: an encoder, dense blocks, and a decoder. The encoder-
decoder pair follows a U-Net structure (Ronneberger et al., 2015)
shown in Figure 1. It first encodes the original velocity field by
reducing the spatial resolution progressively, later decoding it by
increasing the resolution until it matches the original size. This
way, features are extracted on all scales. The U-Net includes skip
connections that forward these scale-dependent features from
the encoding phase to the decoding phase in order retain the
locality of high-frequent information. To improve the quality
of the results obtained by the U-Net further, we add Dense
Blocks (Huang et al., 2017) at the bottleneck to enrich the
feature representation.

Each layer of the network is implemented by replacing
the standard convolution operations with modified partial

FIGURE 1 | Our network architecture uses a U-Net with Dense Blocks to predict velocity fields. A stream function block implemented through another Dense Block

can be added for incompressible flow data. Our synthetic data experiments use the stream function block, while the results of the Guadalupe island do not, since they

are slices of 3-D incompressible flows, and thus, not divergent free.
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convolutions (Liu et al., 2018). The modified partial convolution
at every location is defined as

x′ =

{

CT(X ·M) sum(1)
sum(M) + b, if sum(M) > 1

0, otherwise

m′ =

{

1, if sum(M) > 1

0, otherwise
(1)

where x′ and m′ are the layer output and updated mask,
respectively. C represents the convolution filter weights and b
refers to its corresponding bias. X are the feature values for the
current input window.M is the corresponding binary mask.X·M
is an element-wise multiplication, and 1 has the same shape as
M with all the elements equal to 1. The key difference between
partial convolution and normal convolution is to multiply X

and M element-wisely. In this way, the output only depends on

the unmasked input values. A scaling factor sum(1)
sum(M) adjusts for

varying amount of unmasked input values, leading to sharper
velocity profiles in the reconstructed field. For incompressible
flow fields we can add a stream function block as shown in
Figure 1. The resulting velocity field can then be reconstructed
from the predicted stream function field 9(x, y) by u = ∇ × 9 .
We refer to the Appendix for more detailed information about
the network architecture and the training setup.

2.2. Loss Functions
It is important to define a new set of supervised loss functions to
model physical properties and constraints for fluid flow data. Let
û be the predicted velocities and u be the ground truth velocities.
We keep the L1 reconstruction loss as it can efficiently reconstruct
low-frequency information:

Lvel = ||(û− u) ·M||1 + αvel||(û− u) · (1−M)||1, (2)

where αvel is a scale factor that weights between empty and
known regions. We use αvel > 1 to emphasize better
reconstructions on regions where the flow information is
missing. Inspired by Kim et al. (2019b), we additionally minimize
the difference of the velocity field Jacobian between ground truth
and predicted velocity fields. With a sufficiently smooth flow field
data set, high-frequency features of the CNN are potentially on
the null space of the L1 distance minimization (Kim et al., 2019b).
Thus, matching the Jacobians helps the network to recover
high-frequency spectral information, while it also regularizes the
reconstructed velocity to match ground truth derivatives. The
velocity Jacobian J(u) is defined in 2D as

J(u) =

(

∂ux
∂x

∂ux
∂y

∂uy
∂x

∂uy
∂y

)

, (3)

and the corresponding loss function is simply given as the
L1 of vectorized Jacobian between predicted and ground
truth velocities:

Ljac = ||(J(û)− J(u)) ·M||1+αjac||(J(û)− J(u)) · (1−M)||1. (4)

Additionally, we compute a loss function that matches the
vorticity of predicted and ground truth velocities. The vorticity
field describes the local spinning motion of the velocity field.
Similarly to the Jacobian loss, our vorticity loss acts as a
directional high-frequency filter that helps to match shearing
derivatives of the original data, enhancing the capability of the
model to properly match the underlying fluid dynamics. The
vorticity loss is defined as:

Lvort = ||(∇×û−∇×u)·M||1+αvort||(∇×û−∇×u)·(1−M)||1.
(5)

Incompressible flows should have zero divergence, but numerical
simulations often produce results that are not strictly divergence-
free due to discretization errors. As we inpaint missing fluid
regions, we aim to minimize the divergence on the predicted
fields by

Ldiv = ||∇ · û||1. (6)

Lastly, all losses modeled by the network are based on the L1
distance function. Distance-based loss functions are known for
undershooting magnitude values, creating results that are visibly
smoother. This is especially visible for the inpainting task when
we substitute original measured values back into the velocity

field Êu reconstructed by the network. Therefore, we employed a
magnitude of the gradient as our last loss function to produce
inpainted results that have less discrepancies when using original
measured values for known regions:

Lmag = ||(∇||û · (1−M)+ u ·M||2) ·Wmag ||1. (7)

The magnitude of the gradient loss needs a special weighting
function Wmag that depends on the mask interface, since if used
indistinguishably it can also quickly degenerate the convergence
of the network. This weighting function is computed based on
the morphological gradient of the mask, which is the difference
between the mask dilation and its erosion, which yields a 1-ring
mask boundary. We expand the mask boundary continuously by
dilation, in order to fill the regions of missing information. As
the mask is expanded internal weights are assigned based on the
iteration of the dilation–initial iterations have higher values that
decay as iterations progress. This is similar to compute a level-set
distance function from a missing region to the mask boundary,
however our implementation is computationally more effective.
The mask is bounded from [1, 3], with higher values closer to the
mask boundary.

Notice that all our loss functions, excluding the divergence-
free one, employ weights to known and unknown regions. This
is a common strategy in inpainting works, and we empirically
found that for our data sets αvel = αjac = αvort = 6 to yield
the best results. Other loss functions, such as perceptual loss
and style loss (Liu et al., 2018) are not suited for completing
flow field data, since they match pre-learned filters from image
classification architectures.

2.3. Encoding Obstacles
The interaction between fluid and solid obstacles is crucial for
fluid dynamics applications, as the interaction creates shear layers

Frontiers in Climate | www.frontiersin.org 4 April 2021 | Volume 3 | Article 656505

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Schweri et al. Neural Satellite Flow Reconstruction

that drive the formation of vortices. To incorporate solid obstacle
information as prior knowledge to the network, we concatenate
a binary mask O indicating whether a solid obstacle occupies
a cell (1) or not (0) as an extra input channel. In order to
properly propagate the obstacle information to all network layers,
O is concatenated to previous layers’ output as input to the
current layer. To account for resolution change between network
layers, we downsample and upsample the obstacle map O using
average pooling.

3. RESULTS

We show that the learning-based reconstruction is especially
powerful in handling large areas of missing or occluded data,
outperforming traditional models for data recovery. We evaluate
our method on numerically-simulated flows, and additionally
apply it to the Guadalupe Island case study.

3.1. Inpainting of Synthetic Data
Due to the lack of publicly available flow data sets captured
from real-world experiments, we trained our model on synthetic
data. We generated fluid velocity fields with a numerical
incompressible flow solver [Mantaflow (Thuerey and Pfaff,
2018)] and used the stream function block in the training. Each
data sample consists of a 2-dimensional ground truth vector field
Eu, as well as the empty regions and obstacles masksM and O. To
use the data sample in both training and testing, we apply empty
regions mask M on both velocity component through element-
wise multiplication to obtain the input velocity to the model
Euin = Eu · M. The model concatenates the input velocity Euin,
empty regionsmaskM and obstacle maskO as input, and outputs

the predicted velocity field Êu. Our synthetic flow data set for this
task completion is computed on a grid resolution of 128 × 96.
The wind tunnel data set implements a scene with transient
turbulent flow around obstacles. We define inflow velocities at
bottom and top regions of the domain, while the remaining
two sides (left and right) are set as free flow (open) boundary

conditions. The inflow speed is set to random values, and 12
obstacles varying between spheres, rectangles and ellipses are
randomly positioned, yielding a total of 25,500 unique simulation
frames. Examples of velocity fields generated by this simulation
setup can be seen in Figure 2. We split the whole data set into
training (78%), validation (10%), and test (12%) data sets. Each
split of the data set comes from a different set of simulation
runs. Models are trained on the training set and are compared
on the validation set. Later, we report visual results on the
test set.

During training, different types of empty region masks are
generated on the fly with empty to filled area region ratios that
vary randomly between 10 and 99%. The gradient magnitude
mask Wmag is also automatically generated for all masks used in
the training phase. We model three different types of masks for
this task: uniform random noise masks mimic possible sampling
noise from real-world velocity measurements; scan path masks
simulate paths of a velocity probing; and large region masks
model large occluded areas that are not reachable by probes or
measurement devices. Illustrations of these types of masks can be
seen in Figures 3, 4.

Results of our approach can be seen in Figures 3, 4 bottom.
The results are generated by taking simulations from the test
data set, applying an input mask and feeding as the input of
the network, along with the obstacle boundary mask. Our results
demonstrate that our deep learning approach is able to plausibly
reconstruct flows even in regions with large occlusions. In our
evaluations we found that the use of the Dense Block and the
combination of the proposed losses yield best results in terms of
Mean Absolute Error. The effect of the magnitude of the gradient
loss (Equation 7) is particularly interesting as it enforces smooth
magnitude transitions in the output and hence reduces artifacts.
This is demonstrated visually in Figure 4, where the top and
bottom rows were computed without and with magnitude of
the gradient loss, respectively. Without using this loss, there are
noticeable differences in the magnitude of the recovered values,
and the masks can be seen in the final reconstruction.

FIGURE 2 | Several simulation examples for generating the wind tunnel data set. The images above show the line integral convolution (LIC) plots, while images below

show HSV color coded velocity fields.
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FIGURE 3 | Examples of predictions using the wind tunnel data set. From left to right of each example: masked velocity input, output of our network, ground truth

velocity.

FIGURE 4 | Results without (top) and with (bottom) the magnitude of the gradient loss (Equation 7). The latter removes visible artifacts at mask boundaries.

3.2. Inpainting of Velocity Measurements
Obtained by Optical Flow
We further evaluate the model on a real-world data set consisting
of reconstructed velocity fields from satellite imagery of the
atmospheric vortex street behind Guadalupe Island (Horváth
et al., 2020). Figure 5 shows the satellite imagery on 9 May 2018
with the vortex generating structure behind the island. Based
on 2.5 km GEOS-R observations, patches of 5 × 5 were tracked

over time to reconstruct temporal correspondences, resulting in
a sequence of 96 time steps with spatial resolution of 6.3 km
and 5 min. The reconstructed velocity fields are noisy and lack

information outside of the satellite’s field of view as well as in
areas where the cloud tracking algorithm fails to produce valid
results. We show that our model is capable of reconstructing
and preserving the vortex generating structure behindGuadalupe
Island, whereas conventional methods fail to reconstruct these
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FIGURE 5 | Radiance map of Guadalupe island on 9 May 2018 at 14:37 UTC.

structures at such detail. The noise of the real-world data set is
successfully removed by the network, generating smooth flow
predictions. We demonstrate that physical quantities, such as the
vorticity is more accurately captured by our model, especially
directly in the wake of the island.

For this task, we generated a three dimensional flow with
a voxelized representation of the Guadalupe island geometry
immersed in the domain. This setup allows a more realistic
flow over the Guadalupe island boundaries, in which the flow
can go above and around the island. Since the velocity fields
reconstructed from satellite observations are 2-D, we only use
the velocity components u and v from the simulated data set
at about 800 m above sea level. We also omitted the stream
function block of the network and the divergence loss term, since
we are evaluating 2-D slices of a 3-D velocity field, which are
not guaranteed to be incompressible on the sliced plane. For
the scene boundaries, we set the left and bottom with inflow
velocities, right and top with outflow conditions. The other
two boundaries (above and below) are modeled with free-slip
boundary conditions.

The masks used for completing this data set are obtained from
evaluating noise patterns that emerge in cloud remote sensing. In
Figure 6, left, we show how those patterns appear due to errors in
the cloud tracking algorithm. We extract many of these samples

to generate masks that are similar to the ones that are going to be
used to complete the velocity field. This is done by two filtering
steps for removing velocities exceeding 8m/s and noise (Figure 6,
center and right).

A real-world sample reconstructed with our method is shown
in Figure 7. The reconstructed vector field is smooth and
completes the real-world sample plausibly. We compare our
model with a least-squares approximation, minimizing:

E =

∫

M

||û− u||2 dx+ λ

∫

D

||û′||2 dx → min, (8)

where u is the noisy incomplete data, û is the least-square result,

and û′ is the gradient of the result. λ = 0.2 is an empirically
chosen weighting term. The first term enforces the preservation
of the known data, where the data mask is 1 (M), while the
second term enforces a spatially and temporally smooth solution
everywhere in the domain (D). Note that u and û are 3D data
with x, y, and time axes, therefore the least squares method can
utilize the temporal dependency between the samples, while our
model cannot.

Figure 8 shows the result of our model (center) and the result
of the least squares (right) for the same example in Figure 7.
The curvy pattern of the vortex street is visible in both results,
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FIGURE 6 | A real-world data sample: Original data (A), filtered data to remove velocities exceeding 8 m/s (B), and removal of local noise (C).

FIGURE 7 | Reconstructed real-world sample. The red arrows indicate the known data points, the blue arrows show the reconstructed data points, and the

brightness of the arrows encodes the magnitudes.
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FIGURE 8 | LIC and HSV visualization of the results obtained by reconstructing a real-world data sample (A) with our model (B) and with a least squares method (C).

FIGURE 9 | Vorticity visualization of the smoothed real-world data sample (A), the reconstruction with our neural method (B), and the least squares method (C).

but unlike the least squares method, our model is also capable
of reconstructing the turbulent vortex-generating structure in
close vicinity to the island. To evaluate whether the vortices
are preserved by our model and the least squares method, we

examine the vorticity of the results in Figure 9, while showing
satellite observations of the clouds in the background to provide
context. While there is, unfortunately, no ground truth velocity
field available for such observational data, an agreement of vortex
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FIGURE 10 | Magnitude visualization of the smoothed real-world data sample (A), our reconstruction (B), and the least squares solution (C).

structures with the underlying cloud patterns gives a strong
indication for correctness, since the reconstructed flow is able to
explain the fluid dynamical processes leading to the observable
patterns (Horváth et al., 2020). From left to right we show the
vorticity of the original data, our reconstruction with the neural
network, and the least squares result. It can be seen that our
model gives superior results, preserving the position and size of
the different vortices. The visualization of the flow magnitudes
in Figure 10 underlines this, showing that our model (center)
results in amore reliable reconstruction of the flow structure than
the least squares solution (right).

4. CONCLUSIONS

Satellite-based wind retrieval enables a high-resolution view onto
atmospheric air flows. This data, however, is intrinsically noisy,
which is usually addressed through median filters or spatial
smoothing. In this paper, we regularized the reconstruction
from partial and noisy data in a data-driven approach using
a U-Net based convolutional neural network. Based on model
simulations, we generated training data to teach a neural
network to disambiguate the partial observations based on
physically-realizable flow configurations that have been observed
during training. Our results on the synthetic flow data sets
demonstrate that the use of neural networks can be successfully
applied to flow data recovery tasks. Our case study on the
Guadalupe Island data set demonstrates the practical impact
of this physics-aware neural network on data post-processing,
evaluation, and prediction in atmospheric modeling. The
proposed neural-based method is especially powerful in high-
occlusion applications, where the least squares method fails
to provide reliable results. We further found that dilated
convolution increases the number of data points used by the
model to predict larger areas of missing data. This leads to
better high-resolution results and prevents poor predictions –
it can even be helpful in medium-resolution data sets without
obstacles.

A neural network can only handle what it has seen during
training. For extreme events, such as storms or floods, our
currently trained model is likely to fail. The next step would
be to study from observational or long-term reanalysis data
the different boundary conditions that would occur in extreme
events, and to then sample those conditions to initialize our
ground truth simulations. It will then be important to create
a training data set that is evenly balanced in its different flow
configurations, such that extreme events are not too rare in the
training data.

For the Guadalupe flow, unfortunately, no ground truth
vector field is available, since this is a measured vector field.
Instead, plausibility is usually tested by considering the spatial
coherence of wind vectors (cf. Horváth et al., 2020). Additionally,
Horváth et al. (2020) derived vortex measures assuming that a
good agreement of vortex locations and visible cloud patterns is
an indicator for a reasonable wind vector field that can explain the
fluid dynamical processes that are visible in observations, which
is also the approach we took in this manuscript. Determining
additional validation heuristics is an interesting avenue in itself,
which is beyond the scope of this paper.

Considering subsequent data points in time could
potentially improve our model and allow for spatio-temporal
reconstructions of flow structures. We found that when
reconstructing each frame of the Guadalupe island sequence
individually, the neural network prediction is smooth in most
areas except the one in close vicinity to the island. This is
because turbulent flow structures emerge in those regions,
which cannot be captured coherently in time by a single-frame
reconstruction technique.

Our model could also be used to determine the data points
that give our model the least information (the best data
points to mask) by calculating the gradient for the mask and
not for the input. It could further inspire new techniques
for compressing meteorological data and hence reducing data
storage. Beyond meteorological applications, the method could
impact related fields as well, such as finding optimal guiding
procedures for human-based flow scanning systems, or improved
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workflows for digital prototyping where quick flow previews are
particularly useful.

When surface altimetry data is available, for example from
SWOT (surface water and ocean topography) missions, it could
be added as additional channel to the network, allowing the
network to pick up information that helps to disambiguate the
partial observations further. Studying its effect would be another
interesting avenue for future research.
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APPENDIX

Network Architectures
We specify the network architectures in Tables A1–A4. All layers
in the encoder, dense block and decoder are Partial Convolution
layers described in Equation (1). The layers in the stream function
branch are normal convolutional layers. Batch normalization is
used for all layers except the output layer and layers in the stream
function branch. We use ReLU activation functions for layers in
the encoder and dense block, LeakyReLU activation function for
layers in the decoder and Swish activation function for the stream
function branch. The output of the stream function branch is

used to compute the velocity field: Êuψ = ( ∂ψ
∂y ,−

∂ψ
∂x ). Then, Êuψ

is concatenated with the output from the velocity branch and
goes through a normal convolutional layer to produce the final

velocity prediction Êu.

Training Details
All models were trained with Adam optimizer with β1 = 0.9 and
β2 = 0.999, and the learning rate was set to 10−5. We used a
batch size of 8 and train all models for 50 epochs.

TABLE A1 | Network layer configurations of the encoder part.

Layer E1 E2 E3 E4 E5 E6 E7

In channels 2 64 192 144 432 324 972

Out channels 64 192 144 432 324 972 729

Kernel Size 7 × 7 5 × 5 5 × 5 3 × 3 3 × 3 3 × 3 3 × 3

TABLE A2 | Network layer configurations of the DenseBlock part.

Layer Dense1 Dense2 Dense3 Dense4 Dense5 Dense6 Dense7 Dense8

In

channels

1,701 1,733 1,765 1,797 1,829 1,861 1,893 1,925

Out

channels

32 32 32 32 32 32 32 32

Kernel

size

3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3

TABLE A3 | Network layer configurations of the decoder part.

Layer D1 D2 D3 D4 D5 D6

In channels 356 756 576 336 256 66

Out channels 324 432 144 192 64 2

Kernel size 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3

TABLE A4 | Network layer configurations of the stream function branch.

Layer S1 S2 S3 S4 S5

In channels 67 131 163 195 227

Out channels 64 32 32 32 1

Kernel size 7 × 7 5 × 5 5 × 5 5 × 5 1 × 1
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