
Eurographics Symposium on Rendering 2021
A. Bousseau and M. McGuire
(Guest Editors)

Volume 40 (2021), Number 4

Deep Compositional Denoising
for High-quality Monte Carlo Rendering

Xianyao Zhang†1,2 , Marco Manzi2, Thijs Vogels3 , Henrik Dahlberg4, Markus Gross1,2 and Marios Papas†2

1ETH Zürich, Switzerland
2DisneyResearch|Studios, Switzerland

3EPFL, Switzerland
4Industrial Light & Magic, United Kingdom

O
ur

s-
C

2

Color

Masks Components Kernels Denoised Comp.

Denoised Color

K
PA

L
-C

Color Kernels Denoised Color ReferenceKPAL-C Ours-C2

Figure 1: (Top) Our proposed approach first predicts from a noisy color image masks that are used to decompose the color image into addi-
tive components. For each component, a denoiser independently predicts per-pixel filter kernels, visualized at each tile’s central pixel. Each
component is separately denoised by its corresponding kernels, and the final denoised image is produced by summing all components. For
clarity, we demonstrate our approach only with a two-way decomposition (“Ours-C2”) and large single-scale kernels. More powerful decom-
position and reconstruction approaches are described in the text. (Bottom) We contrast our approach with the existing KPAL-C [VRM∗18]
that does not decompose the signal before denoising. Without decomposition, the kernels cannot adapt as well to each underlying signal’s
structure, leading to detail loss compared to Ours-C2.

Abstract
We propose a deep-learning method for automatically decomposing noisy Monte Carlo renderings into components that kernel-
predicting denoisers can denoise more effectively. In our model, a neural decomposition module learns to predict noisy com-
ponents and corresponding feature maps, which are consecutively reconstructed by a denoising module. The components are
predicted based on statistics aggregated at the pixel level by the renderer. Denoising these components individually allows
the use of per-component kernels that adapt to each component’s noisy signal characteristics. Experimentally, we show that
the proposed decomposition module consistently improves the denoising quality of current state-of-the-art kernel-predicting
denoisers on large-scale academic and production datasets.

CCS Concepts
• Computing methodologies → Ray tracing; Neural networks;

† xianyao.zhang@inf.ethz.ch, marios.papas@disneyresearch.com

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0002-2823-3485
https://orcid.org/0000-0002-5884-4842

X. Zhang et al. / Deep Compositional Denoising for High-quality Monte Carlo Rendering

1. Introduction

Animated movies and visual effects rely on Monte Carlo render-
ing [Kaj86, PJH16] to simulate light transport [FHF∗17, JWB∗19].
While Monte Carlo algorithms are ubiquitous due to their general-
ity, they typically incur high computational costs. A Monte Carlo
renderer estimates pixel colors using numerical integration over
sampled light paths, and errors manifest as pixel-wise noise in ren-
dered images. Achieving high-quality renderings with low error can
require sampling a computationally prohibitively expensive num-
ber of light paths.

A crucial ingredient in reducing the number of samples and mak-
ing Monte Carlo rendering affordable for movie production is de-
noising [ZJL∗15,JWB∗19]. In this context, denoising is a post pro-
cess that turns noisy images from a renderer into clean images. For
high-quality renderings, which is the focus of this work, the com-
putation overhead of denoising is negligible compared to the com-
putational cost of rendering. Recently, deep neural network have
been adopted for this task and dramatically improved the denois-
ing quality. Our work builds upon such work that predicts per-pixel
filter-kernels to denoise a noisy image [BVM∗17, VRM∗18].

We combine a pixel-based neural decomposition module with
a kernel-predicting denoiser. The decomposition module is a neu-
ral network that decomposes a noisy rendered image into additive
components that are denoised separately. The intuition behind this
approach is to learn to decompose a signal into components that
are simpler to denoise than the full image. Figure 1 illustrates this
in a 2-way decomposition where two orthogonally aligned signals
with different noise characteristics overlap. Separating the two sig-
nals into components and denoising them separately allows the use
of specialized kernels that adapt to the individual sub-signals. This
often leads to better results than when one set of kernels have to
reconstruct the whole input signal.

In addition to decomposing noisy color images, our decom-
position module can also be used to further decompose user-
defined components [ZRJ∗15] that are commonly outputted by
renderers instead of the full color to improve denoising qual-
ity [RMZ13,BVM∗17,VRM∗18,XZW∗19]. Further, our decompo-
sition module can either be trained jointly with a kernel-predicting
denoiser or trained separately to work with a pre-trained denoiser.
In all aforementioned cases we observe quality benefits compared
to the corresponding baseline methods that do not use our neural
decomposition module. Our proposed approach comes at the cost
of multiple denoising and decomposition passes, but this added cost
is minuscule compared to the resulting computation savings for
final-quality renderings. It is worth stressing that a benefit of our
approach is that it does not not require any modifications on the data
of existing pixel-based denoising methods [VRM∗18]. This prop-
erty makes our method very practical. It can serve as a drop-in re-
placement for current production denoisers, i.e., without changing
current data generation and data loading pipelines for final-quality
renderings.

In this work, we focus on high-quality single-frame denois-
ing without incorporating temporal information from neighboring
frames. It is important to note that single-frame denoisers are help-
ful in production, especially in scenarios where temporal informa-
tion is unreliable, e.g., in the presence of fast complex motion, or

even unavailable, e.g., during look development or lighting. We
leave promising temporal extensions of our method as future work.

We evaluate our method on large-scale academic and produc-
tion datasets and show consistent improvements over state-of-the-
art neural pixel-based denoising methods, yielding significant sav-
ings in sampling budget required to reach the same quality. Com-
pared to sample-based neural decomposition [MH20] our method
performs similarly for preview-quality denoising and scales better
for high-quality scenarios in terms of performance and accuracy.

2. Related work

Non-neural denoising. Traditional kernel-based denoisers com-
pute a pixel’s color as a weighted average of the noisy pixel es-
timates of the surrounding pixels. Ideal denoising weights (ker-
nels) should yield maximal variance reduction with minimal
bias increase in the final image. Some algorithms produce ker-
nels based on heuristics for pixel similarity [RKZ12, RMZ13,
MJL∗13, BCM05]. Later works start from heuristics-based ker-
nels and fit higher-order regression models on image patches to
increase expressivity [BRM∗16, MCY14]. In both cases, auxil-
iary feature buffers such as surface normals, surface albedo, and
depth [RMZ13] are often used to reveal the relationships between
noisy pixels. We refer the reader to the report by Zwicker et
al. [ZJL∗15] for a comprehensive discussion on non-neural denois-
ing and reconstruction methods.

User-defined decompositions. To improve their performance, de-
noisers may operate on different components of the color image
separately. This can help to retain fine details in the image that
would get lost when operating on the full image directly. Such
components can be directly produced by the renderer. Two of the
most popular choices are to separate according to the first non-
delta interaction into specular and diffuse components, or separat-
ing the direct and indirect illumination parts. Path-space decom-
position [ZRJ∗15] methods aggregate paths with more complex
common user-defined prefixes into separate image components.
Our proposed learned decomposition is not intended to replace any
readily available user-defined decompositions like diffuse–specular
and direct–indirect. Rather, our approach should be used in com-
bination with them by further decomposing these components for
additional quality benefits.

Deep pixel-based denoising. After their success in natural image
denoising [MSY16, ZZC∗17, MBC∗18, LZZ∗18, XPG∗19], deep
learning methods have become a popular choice for Monte Carlo
denoising. Kalantari et al. [KBS15] use a multi-layer perceptron
to learn optimal parameters of traditional denoising methods like
bilateral filtering [TM98] and non-local means [BCM05]. Bako et
al. [BVM∗17] introduce the kernel-predicting convolutional net-
work (KPCN), which employs per-pixel kernels predicted by a
neural network to filter noisy pixel estimates. A later extension to
KPCN [VRM∗18] incorporates temporal information, a more effi-
cient multi-scale architecture, and the asymmetric loss, which al-
lows user control of the denoising strength. The denoiser module
in our work is based on the KPCN architecture [BVM∗17], along
with the multi-scale efficiency optimizations proposed by Vogels et

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

X. Zhang et al. / Deep Compositional Denoising for High-quality Monte Carlo Rendering

al. [VRM∗18], but we do not employ the asymmetric loss in this
work.

Direct-predicting neural denoisers directly output the color val-
ues of each pixel in the resulting image without requiring ker-
nel applications. These denoisers typically run faster than kernel-
predicting methods but are less robust and converge slower during
training [BVM∗17,VRM∗18]. Notably, Chaitanya et al. [CKS∗17]
use a recurrent neural network to denoise low sample-count images
while also leveraging temporal information from previous frames,
and Xu et al. [XZW∗19] use adversarial training [GPAM∗14] for
Monte Carlo denoising.

Deep sample-based denoising. With increasing computation
power, deep-learning-based denoising methods that work with
sample-based data have recently surfaced. They operate directly
on the noisy samples instead of statistics (e.g., mean and variance)
aggregated at the pixel level, and are thus only practical in low-
sample-count regimes. Gharbi et al. [GLA∗19] propose a network
that distributes each sample’s radiance over neighboring pixels, im-
proving denoising quality at low sample count (preview quality)
compared to pixel-based methods. Lin et al. [LWY∗21] propose a
method that utilizes information at a sub-sample (i.e., sub-paths of
a light path) level, which is even more costly and is currently out of
reach for final-quality scenarios.

Munkberg and Hasselgren [MH20] propose to learn to partition
each sample into different layers and denoise the resulting layers
instead of the individual samples. This approach mitigates the lin-
ear increase in the number of kernel predictions and applications
introduced by purely sample-based methods [GLA∗19] while pre-
serving their quality. Its resulting learned layers are analogous to
our learned components, but they are created using sample-based
information while our components are predicted from only aver-
aged pixel-based statistics.

Concurrent to our work, Cho et al. [CHY21] use an additional
contrastive loss to weakly supervise path-space features of indi-
vidual samples based on their corresponding pixel colors. This ad-
dresses challenges with information flow between loss on recon-
structed pixel values and high-dimensional sparse features of in-
dividual samples. Further, Işik et al. [IFME21] propose another
method to improve the reconstruction quality from individual sam-
ples by indirectly predicting kernels based on the affinity of learned
features.

3. Methodology

Our work builds on the kernel-predicting denoiser from [VRM∗18]
by additionally learning a decomposition of its input (a noisy color
image) from per-pixel statistics. The resulting components will be
denoised individually in multiple passes. In this section, we for-
mally define the task of kernel prediction denoising and color de-
composition, based on which we describe our proposed method in
detail. We follow the notation of KPCN [BVM∗17, VRM∗18].

3.1. Pixel-based denoising

When operating on noisy rendered pixel color estimates c, the de-
noiser g can take advantage of feature maps f to estimate the refer-

ence image r, i.e., d = g(c, f) ≈ r. The feature maps can be either
byproducts of the rendering or learned from a network. Rendered
features include surface normals and reflectance (albedo) texture
values which often correlate well with the reference image, con-
tain less noise than color estimates and are inexpensive to compute.
Additionally, variance estimates of the pixel color and features can
also be included in the rendered features. For notation simplicity,
we define x = [c, f] as the concatenation of noisy color and feature
maps.

While traditional methods employ hand-crafted denoising func-
tions [BCM05,DFKE06,RMZ13,BRM∗16], we follow recent deep
learning methods [CKS∗17,BVM∗17,VRM∗18]. We parameterize
the denoiser as a convolutional neural network whose parameters θ

are optimized to minimize the average pixel-wise loss over a dataset
of noisy–clean image pairs. As a training loss, we opt for symmet-
ric mean absolute percentage error (SMAPE) [VRM∗18] due to
its stable behavior with high-dynamic-range (HDR) images. For a
pixel p we define our training loss `(·, ·) as:

`(rp,dp) =
|rp−dp|
|rp|+ |dp|+ ε

, ε = 10−2. (1)

In this work, we adopt kernel prediction [BVM∗17, VRM∗18], in
which the denoised color of pixel p is computed as a weighted sum
of its neighbors in an l× l neighborhoodN (p):

dp = gp(x;θ) = ∑
q∈N (p)

wpq(x;θ)cq. (2)

The weights wpq are predicted by a neural network based on the
noisy image and feature maps. They are the output of a softmax
layer applied to the raw network output z:

wpq =
exp(zpq)

∑q′∈N (p) exp(zpq′)
, (3)

which ensures that for each pixel p, the set of weights {wpq} is
convex: they are non-negative and sum to unity.

3.2. Compositional denoising

Instead of denoising the noisy color directly, we can alternatively
decompose the image into components and denoise each compo-
nent separately. In this case, the sum of denoised components con-
stitutes the final denoising result. In the context of kernel-predicting
denoising, such a divide-and-conquer approach can often lead to
significant improvements in quality if the input color image is com-
posed of complex, superimposed signals that can be decomposed
into simpler-to-denoise signals [ZRJ∗15, VRM∗18, BVM∗17].

We define the additive decomposition of a noisy color image c as
a set of non-negative image components {c(k)}K

k=1 that sums up to
c. This decomposition into components can equivalently be defined
by a set of masks {m(k)}K

k=1 such that c(k) = c�m(k) where � is
the per-element multiplication operator. To ensure non-negativity
of the components, the masks also follow the convex constraint for
each pixel p:

K

∑
k=1

m(k)
p = 1 and 0≤m(k)

p ≤ 1, ∀k = 1 . . .K. (4)

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

X. Zhang et al. / Deep Compositional Denoising for High-quality Monte Carlo Rendering

Given a decomposition, we denoise each component as in Equa-
tion (2), and sum the results:

dp = gp(x;θ) =
K

∑
k=1

g(k)p (x(k);θ
(k)), x(k) =

[
c(k), f(k)

]
. (5)

Components can either be denoised with separate denoisers g(k),
or one denoiser can be used for all components. Each component
c(k) can be accompanied by component-specific feature maps f(k),
which can enhance the denoising quality. This is especially useful
when the components are very different, e.g., when one component
contains the reflection and the other refraction from a dielectric sur-
face. Note that the per-component feature maps do not always have
physical meanings like normals or albedo. They can be predicted
by a neural network (as in our case) with the goal of improving
denoising quality.

A consequence of compositional denoising is that the denoiser is
free to predict different kernels for each components. Even if the
component denoisers are the same, they receive different inputs,
and thus they can specialize the predicted kernels. This allows the
denoiser module to adapt the kernels to each component’s noise
and frequency characteristics (recall Figure 1).

3.3. Learned decomposition for kernel prediction

We now describe our proposed method, which learns beneficial
decompositions for compositional denoising from per-pixel infor-
mation only. In the spirit of the modular pipeline described in
[VRM∗18], we extend the kernel-predicting denoiser with a de-
composition module. As the kernel-predicting denoiser is only one
part of our modular architecture, we refer to it as the denoising
module. We will first introduce our pipeline in the simple case of
K = 2 components and then extend the approach to K ≥ 2 compo-
nents via a hierarchical decomposition scheme.

Two-way decomposition. The decomposition module consists of
a trainable decomposition function followed by a mask multiplica-
tion. The decomposition function h is a convolutional neural net-
work with trainable parameters φ and takes as input an image c
and a feature map f. The feature map is the output of our feature
encoder which is applied right before the first decomposition to
encode the features from the renderer. Our decomposition module
outputs a mask m containing values in the range [0,1] and two fea-
ture maps (one for each output component):

h(c, f;φ) = {m, f(0), f(1)} (6)

Note that the mask m has the same number of channels as the input
image c. In other words, both the mask and the input contain RGB
triplets. The number of channels in the feature maps is a hyper-
parameter of our pipeline.

Element-wise multiplication of the mask (and its complement)
with the input image splits the input into two components,

c(0) = m� c

c(1) = (1−m)� c

where by construction c(0)+ c(1) = c. The two component–feature

Feature Encoder Decomposition Module Denoising Module

Hierarchical Decomposition Pipeline
Dataflow

FE Dec.Dec.

Dec.

Dec.

Den.

Den.

Den.

Den.

Rendered
Color

Rendered
Features

Denoised
Output

Resblocks U-Net U-Net

Denoised Comp.
Feature Maps
Noisy Comp./Color

m w

Figure 2: Hierarchical 4-way decomposition. Starting from the left,
the decomposition module receives the noisy color accompanied by
rendered features (e.g., albedo, normal) that are converted by a fea-
ture encoder into learned feature maps. The decomposition module
produces two component–feature pairs. The component colors re-
sult from element-wise multiplication with the predicted mask
m (and its complement), while the component feature maps are di-
rectly predicted by the decomposition module. After two levels of
decomposition, we have four noisy components that are processed
by a denoising module that is trained end-to-end with our decom-
position module. The denoising module predicts per-pixel kernels
w that are convolved with the noisy components. The final image
is the element-wise sum of all denoised component images.

pairs {c(0), f(0)} and {c(1), f(1)} are the output of the decomposition
module.

These pairs are separately passed to the denoising modules for
further processing. In our architecture, the denoising modules used
for both components share the same weights, i.e., θ

(1) = θ
(2).

The final image is produced by adding all denoised components
(see Equation (5)).

The benefit of producing per-component feature maps alongside
the components is twofold. First, it accompanies component colors
with relevant features, which helps with their denoising. Second,
when the decomposition module is trained jointly with the denois-
ing module, the feature maps enable information sharing between
the modules.

K-way decomposition. To decompose the color into more than
two components, we exploit our pipeline’s modular architecture by
concatenating decomposition modules hierarchically as illustrated
in Figure 2. To achieve this, we make sure all the inputs and out-
puts of the decomposition modules are in a common representation
space. The feature encoder projects the raw feature maps from the
renderer into this representation space. This gives the network the
flexibility to choose an appropriate feature representation for the
communication between its trainable modules instead of being re-
stricted to the format and dimensionality of features produced by
the renderer.

We can produce an arbitrary number of components (K ≥ 2) by

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

X. Zhang et al. / Deep Compositional Denoising for High-quality Monte Carlo Rendering

Input (32spp) Denoised Reference |Noise| LoG (Ref.)

Im
ag

e
C

om
p.

1
C

om
p.

2
C

om
p.

3
C

om
p.

4

Figure 3: Our predicted components on a rendered painting.
The first row corresponds to the full image, while the rows be-
low correspond to components generated by our decomposition
module. In this case, the decomposition module creates compo-
nents with either high noise (4th column, bright is large), or much
high-frequency detail (5th column, reference image filtered with
Laplacian of Gaussian). This allows the kernel-predicting denois-
ing module to use large kernels in noisy components without losing
much detail, and to use fine-grained kernels in other components
to preserve fine detail.

allowing decomposition modules in the hierarchy to be followed by
modules with different types (e.g., a denoising and a decomposition
module). Even though we do not exercise this option, we provide
a formal definition of the decomposition strategy that allows for
an arbitrary number of components in Supplemental Material. In
our experiments, the number of components and the resulting ar-
chitecture are pre-defined before training. Note that the final result
is independent of the denoising order of these K components since
we apply the same denoising module on each one.

4. Decomposition analysis

Starting our analysis from our 4-way decomposition, we visualize
the high-frequency content of the components reference signal and
the noise magnitude in the components in Figure 3. To approxi-
mate the component reference signal, we render the same noisy
image 256 times with different seeds, process these images with
the same decomposition module, and average the resulting compo-
nent inputs. We can then measure each component’s noise magni-
tude by taking the absolute difference between the noisy input and
the corresponding component reference. The high-frequency spa-
tial content of the component reference signal is extracted with a
Laplacian of Gaussian (LoG) filter.

We observe that components with higher noise magnitude (1 and
3) have less high-frequency content in their reference signal, and
components with sharper details (2 and 4) are less noisy. Addi-
tionally, when comparing components 2 and 4, we observe that the
sharp details in one component are not necessarily sharper in the
other. We believe this suggests that our decomposition module can

G
la

ss
Te

ap
ot

Fr
on

tP
or

ch

Input

Input

Decomposition Denoising

Output

Output

Figure 4: Two decomposition examples using a 4-way hierarchical
decomposition. From left to right: The color image is first decom-
posed into two components, which are then further decomposed,
yielding a total of 4 components. Every component is denoised sep-
arately and finally summed to produce the output. Note that the
same decomposition module is used for all three decomposition op-
erations in the hierarchy.

separate overlapping noisy signals to some degree, based on their
inferred spatial frequency content and noise characteristics.

We demonstrate another example of the separation of different
signals from our learned decomposition module in Figure 1, where
the inset region contains overlapping noisy signals. In this example,
reflected motion-blurred highlights are superimposed over a high-
frequency background texture. Our decomposition module can pro-
duce components that resemble a separation of the signals. This
separation allows the denoising pass over each component to uti-
lize kernels that adapt to each component’s content.

In Figure 4, we provide two more examples for a hierarchical 4-
way decomposition that exemplify how our neural decomposition
can disentangle complex overlapping signals. The Glass Teapot in-
set contains various high-frequency reflections that overlap with a
textured floor. The first step of the decomposition mainly separates
signals according to their hue. This leads to a clear separation of the
different reflections. The second step of the decomposition appears
to be separating some of the reflections from the floor.

The Front Porch inset contains overlapping signals due to depth
of field. The lattice in the foreground leads to a vertically aligned
out-of-focus structure that overlaps with the in-focus wooden fa-
cade that mainly contains horizontal structures. The first decom-
position step separates again according to the color hue, but more
interestingly also separates foreground and background, as most
of the in-focus background ends up in the blue component. The
second decomposition step further separates background and fore-
ground and pushes noise into the darker component.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

X. Zhang et al. / Deep Compositional Denoising for High-quality Monte Carlo Rendering

Method Description

Ours Proposed method, using learned decomposition from
pixel-based statistics and a kernel-predicting denoiser

Ours-C4 Ours decomposing noisy color into 4 components

Ours-D4S4 Ours decomposing noisy diffuse and specular compo-
nents into 4 learned sub-components each

Ours-d4i4 Ours decomposing noisy direct and indirect (illumina-
tion) components into 4 learned sub-components each

KPAL Kernel-predicting denoiser (using the single-frame 3-
scale variant) [VRM∗18] on pixel-based data

KPAL-C KPAL processing noisy color

KPAL-DS KPAL processing noisy diffuse and specular compo-
nents

KPAL-di KPAL processing noisy direct and indirect (illumina-
tion) components

DnGAN Direct-predicting denoising method with adversarial
training [XZW∗19] on pixel-based data

S-LD Learned decomposition from sample-based data [MH20]

S-LD-C4 S-LD creating 4 learned components from input color

Table 1: Method name abbreviations used in the results. Note that
this list is not comprehensive, but other shorthands such as Ours-
C2 and S-LD-C2 can be interpreted similarly.

5. Experimental setup

5.1. Data

Datasets. Most of our experiments are conducted on academic
datasets, which are generated from our own dataset generator from
publicly available scene assets [Bit16,MKD∗16,KMA∗15,KHL19]
with the Mitsuba renderer [Jak10]. We also present results from
datasets rendered with the Hyperion renderer [BAC∗18] to illus-
trate the usefulness of our method in a production environment.
A summary of our training, validation and testing datasets can be
found in Table 8.

Network input. As input features from the renderer, we use the
normal vector, texture albedo and depth values collected from the
first non-delta interaction point of the sample paths. We apply a
log-like transform, η(c) = log(1+ c), on the noisy color images
to prevent excessive input values due to the high dynamic range
[BVM∗17]. The predicted kernels are still applied on the linear
RGB values instead of log-transformed ones. For pixel-based meth-
ods, we also compute single-channel per-pixel variance estimates
for each color and feature buffer. To avoid excessive variance val-
ues, we use the relative variance of the noisy color values and ren-
dered features [VRM∗18].

In total, we use 14 floats per pixel (3 for color, 3 for normal, 3
for albedo, 1 for depth and 4 for variance estimates) as the input to
pixel-based methods. Accordingly, we provide 10 floats per sample
for sample-based methods which do not take variance estimates as
input.

5.2. Implementation

We compare our methods with two main baselines, namely
KPAL [VRM∗18] among the pixel-based methods and the sample-
based decomposition method (S-LD) of Munkberg and Hassel-
gren [MH20]. See Table 1 for description of the shorthands. To
ensure fairness of comparison, we implement our proposed method
differently when comparing with these two baselines, whose U-Net
backbones and kernel reconstruction schemes are different, as de-
scribed below.

5.2.1. Comparing with KPAL

Our single-frame KPAL implementation uses a 3-scale U-Net and
multi-scale reconstruction with 3 scales and 5× 5 kernels at each
scale, following the suggestions of the KPAL work [VRM∗18].
Two residual blocks each with two convolution layers, two ReLU
activations and a residual connection [HZRS16] are used on each
scale of the U-Net.

In the implementation of our method for comparing with KPAL,
we use a U-Net with half the number of trainable parameters for
both decomposition and denoising modules. Parameter sharing be-
tween the same type of modules ensures that our models have a
similar number of trainable parameters as KPAL, regardless of the
number of learned components.

Both KPAL and our models include the feature encoder, com-
posed of two residual blocks, to process the rendered input features.

5.2.2. Comparing with S-LD

We closely follow the open-source implementation of S-LD
[MH20] which utilizes a 5-scale U-Net and single-scale reconstruc-
tion with kernels of size 17×17.

The original method from Munkberg and Hasselgren [MH20]
uses a large U-Net for sample partitioning (decomposition mod-
ule) but only a few convolution layers for kernel prediction (denois-
ing module). This architecture can be seen as potentially optimized
for speed because the denoising module needs to be used for each
component. Through experiments we discovered that the denois-
ing quality of this method can be improved significantly by using
a larger denoising module and shrinking the size of the decompo-
sition module (see Supplemental Material for details). We thus use
this improved architecture of the S-LD method in our comparisons,
which results in two equally sized U-Nets that sum up to the num-
ber of parameters as in the original method.

When comparing our method and KPAL against S-LD, we use
a similar 5-scale U-Net architecture with comparable total number
of trainable parameters.

5.3. Training

We use the Adam [KB14] optimizer to train all models to minimize
SMAPE loss (Equation (1)). Particularly, our models are trained
end-to-end to minimize the final denoising error.

During training, we take random 128× 128 crops from the im-
ages and reject less interesting patches following a similar scheme
as Bako et al. [BVM∗17]. We use a learning rate of 10−4 to train

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

X. Zhang et al. / Deep Compositional Denoising for High-quality Monte Carlo Rendering

Ours-C4 Input KPAL-C Ours-C4 Reference

SMAPE 0.02978 0.02577

Ours-C4 Input KPAL-C Ours-C4 Reference

SMAPE 0.01118 0.01070

SMAPE 0.01151 0.01042 SMAPE 0.01945 0.01835

Figure 5: The effect of learned decomposition for color-only denoising. Our method improves the reconstruction of details compared to the
baseline KPAL-C, e.g., in regions with changing surface normals, objects behind glass, motion blur, reflections, and fine texture. The exposure
of some crops is adjusted to better illustrate the results.

KPAL and our methods. For comparison with sample-based meth-
ods, we follow the training scheme used for S-LD [MH20] in order
to make a fair comparison.

To prevent the component masks from collapsing to unity (all
1) or blank (all 0), we add a regularization term to our training
loss at the beginning, which encourages a uniform decomposition
in early training steps to stabilize training. More details of the train-
ing schemes can be found in Supplemental Material.

6. Results

We extensively evaluate the denoising capability of our proposed
method in different scenarios. First, we evaluate our method when
decomposing the noisy input color and compare it to pixel-based
baselines. Next, we evaluate our method in combination with user-
defined decompositions. We then compare our method with re-
cent sample-based methods and show that for the purpose of high-
quality rendering, current sample-based methods are not suitable.
Finally, we examine the major design choices of our proposed
model in ablation studies.

We measure the denoising quality of different methods with
three error metrics: SMAPE, DSSIM (1−SSIM [WBSS04]), and

FLIP [ANAM∗20]. Among these three error metrics, SMAPE is
the loss function that we optimize for, DSSIM highlights the struc-
tural dissimilarity between the images, and FLIP approximates the
magnitude of perceived differences when flipping between two im-
ages.

For the majority of our comparisons, we choose to show the av-
erage relative error, which is computed by dividing the per-example
absolute error of each competing method by that of a common
baseline and averaging over the dataset. This avoids biasing the
average metrics towards outliers and low sample-count testing ex-
amples. We also show a win percentage (W%), which measures
how often a method ranks first among all competing methods. This
shows the consistency of improvements brought by a method across
large-scale datasets [XZW∗19].

6.1. Color Decomposition

To show the effect of our proposed denoiser with learned decom-
position, we compare our approach with KPAL baselines (see Sec-
tion 5.2.1 for model details).

Here we focus on comparing models that process noisy color im-
ages directly (i.e., no user-defined decompositions). Table 2 sum-
marizes the quantitative comparison between our method and the
KPAL baseline, showing the average relative metric values on test-
ing examples from our test sets. Our model can improve the denois-
ing quality consistently on both academic and production data.

Average relative error and Win percentage (W%)
Dataset K SMAPE W% DSSIM W% FLIP W%

MITSUBA 1 1.000 1.9 1.000 2.5 1.000 5.2
4 0.912 98.1 0.914 97.5 0.939 94.8

HYPERION 1 1.000 1.2 1.000 3.6 1.000 1.2
4 0.934 98.8 0.934 96.4 0.952 98.8

Table 2: Effect of decomposing noisy input color. Rows with K = 1
show results generated with KPAL-C and rows with K = 4 corre-
spond to results generated with Ours-C4.

Figure 5 shows the effect of our learned decomposition when
operating on color by comparing it to a baseline method without
decomposition. We observe overall quality improvements in de-
tail regions, including reflections and high-frequency patterns. Our
method also reconstructs motion blur effects with lower error than
the baseline.

Decomposition for pre-trained denoiser. Our model is trained
end-to-end, meaning that the decomposition and denoising mod-
ules are trained jointly, and they adapt to the behavior of each other.
To demonstrate that our decomposition module helps in creating
components that are easier to denoise, we train a model that uses

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

X. Zhang et al. / Deep Compositional Denoising for High-quality Monte Carlo Rendering

Ours-D4S4 Input KPAL-DS Ours-D4S4 Reference

SMAPE 0.02159 0.01941

SMAPE 0.01796 0.01738

(a) Diffuse-specular decomposition.

Ours-d4i4 Input KPAL-di Ours-d4i4 Reference

SMAPE 0.01015 0.00899

SMAPE 0.03262 0.02557

(b) Direct-indirect decomposition.

Figure 6: Combining learned decomposition with user-defined decomposition. Our method is also able to reconstruct finer details than the
baselines, when further decomposing noisy user-defined components. The exposure of some crops is adjusted to better illustrate the results.

a pre-trained KPAL-C model as its denoiser. That is, we are only
optimizing the decomposition module.

Average relative error
Method Denoising Module SMAPE DSSIM FLIP

KPAL-C Learned 1.000 1.000 1.000

Ours-C2 Pre-trained 0.984 0.982 0.982
Ours-C4 Pre-trained 0.957 0.970 0.956

Ours-C2 Learned 0.973 0.986 0.981
Ours-C4 Learned 0.912 0.914 0.939

Table 3: Training only a decomposition module to work with a fixed
pre-trained denoiser (KPAL-C) is beneficial.

As shown in Table 3, training only the decomposition module
with 2 or 4 components also leads to reduction in denoising error.
Additionally, in both cases, we observe that the validation loss de-
creases quickly and surpasses the pre-trained KPAL-C denoiser in
a short period of time. This suggests that our decomposition mod-
ule is able to learn components that are easier for the denoiser to
process, and that this partial training can be a fast way to improve
the denoising quality of a pre-trained model.

6.2. Combining with user-defined decompositions

In addition to decomposing and denoising noisy color, our method
can also be applied on components from user-defined decompo-
sitions such as diffuse–specular and direct–indirect. Here we also
show results on both academic and production datasets, which
demonstrate that our method can provide denoising quality that ex-
ceeds that of kernel-predicting and direct-predicting baselines that
use the same type of user-defined decompositions. Our method is
particularly beneficial in regions where the user-defined decompo-
sitions cannot effectively separate overlapping noisy signals with
different noise characteristics.

6.2.1. Kernel-predicting baselines

Average relative error and Win percentage (W%)
Method SMAPE W% DSSIM W% FLIP W%

KPAL-DS 1.000 3.7 1.000 7.9 1.000 14.9
Ours-D4S4 0.933 96.3 0.947 92.1 0.957 85.1

KPAL-di 1.000 3.7 1.000 10.1 1.000 14.2
Ours-d4i4 0.938 96.3 0.954 89.9 0.954 85.8

a MITSUBA dataset.

Average relative error and Win percentage (W%)
Method SMAPE W% DSSIM W% FLIP W%

KPAL-DS 1.000 0.0 1.000 1.2 1.000 0.0
Ours-D4S4 0.958 100.0 0.942 98.8 0.967 100.0

b HYPERION dataset.

Table 4: Our method can also be used in conjunction with user-
defined decompositions and achieve additional quality benefits.

In Table 4 we compare our methods against respective KPAL
baselines using the same user-defined decompositions and Figure 6
shows selected testing examples from our MITSUBA test set. Sim-
ilar to the color-only case, we observe consistent quantitative im-
provement over both academic and production datasets. However,
the overall improvement is smaller than for color-only denoising.
This is because user-defined decompositions already perform ben-
eficial decompositions of superimposed signals in some situations,
and the gains from further decomposing those components are not
as large as using our method to decompose the color directly. Thus,
the benefits of our method are most pronounced in regions where
the user-defined decomposition is less effective, e.g., shadows on
diffuse surfaces for diffuse–specular and reflections for direct–
indirect. This indicates that the benefits of our proposed method
can complement those of user-defined decompositions.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

X. Zhang et al. / Deep Compositional Denoising for High-quality Monte Carlo Rendering

Ours-D4S4 Input KPAL-DS Ours-D4S4 Reference

SMAPE 0.00898 0.00882

Ours-D4S4 Input KPAL-DS Ours-D4S4 Reference

SMAPE 0.01426 0.01372

SMAPE 0.01346 0.01262 SMAPE 0.01193 0.01131

Figure 7: Comparison with KPAL on HYPERION test set. Our method can improve the reconstruction quality of details. © 2021 Disney

Qualitative comparison on the production (HYPERION) dataset
are shown in Figure 7. Our method improves the reconstruction of
complex details and thin structures, including volumetric effects,
fine textures, hair, and reflections.

6.2.2. Direct-predicting baselines

Average relative error & Win percentage (W%)
Method SMAPE W% DSSIM W% FLIP W%

DnGAN 1.000 8.8 1.000 11.2 1.000 4.8
KPAL-DS 0.970 0.0 0.945 4.8 0.918 9.6
Ours-D4S4 0.881 91.2 0.828 84.0 0.866 85.6

Table 5: Comparing with the direct-predicting baseline (DnGAN).
All runs use diffuse–specular decomposition.

We conduct additional comparisons with a recent state-of-the-art
direct-predicting denoiser (DnGAN), which makes use of adversar-
ial training to synthesize better details [XZW∗19]. For this compar-
ison, our model and KPAL-DS are trained on the 32spp subset of
our MITSUBA training set because the GAN model is reported to
be trained on 32spp data. We use the testing dataset provided by the
authors, rendered with the Tungsten renderer. Quantitative results
are summarized in Table 5. It can be seen that our method is able
to outperform both baselines consistently. We refer the interested
reader to the Supplemental Material for qualitative comparisons.

6.3. Equal Quality Comparisons

In order to produce renderings at a targeted quality, it is often nec-
essary to render the noisy image with hundreds or thousands of
samples per pixel before denoising, which can often take hours in
production scenarios. Therefore, in this scenario, our improvements
translate to significant savings in sampling budget required to reach
the desired quality.

To examine the sampling budget saved by our methods, we ex-
panded the MITSUBA test sets by rendering at 4-256spp with a
step size of 4 spp. With this fine-grained test set, we evaluate the

0 50 100 150 200 250
Baseline Budget (spp)

0

10

20

30

40

50

60

B
ud

ge
tS

av
in

gs
(s

pp
)

Ours-C4 vs KPAL-C
Ours-D4S4 vs KPAL-DS
Ours-d4i4 vs KPAL-di

Figure 8: Sampling budget savings due to decomposition. We vi-
sualize the average reduction in sampling budget achieved by our
learned decompositions over KPAL baselines at different sampling
budgets on the MITSUBA test sets.

sampling budget our methods saved over KPAL baselines. Fig-
ure 8 shows the sampling budget savings provided by our method.
These savings are computed by comparing the sampling budget
required for our methods to achieve equal quality (with respect
to SMAPE) as the corresponding KPAL baseline. Our decompo-
sitions can provide sampling budget reductions of approximately
25% when compared to a corresponding baseline without any de-
composition (Ours-C4 vs. KPAL-C) and savings of approximately
18% when user-defined decompositions are utilized. On the HYPE-
RION dataset, testing data generation is much more costly, and this
experiment cannot be conducted as thoroughly. However, based on
available data, we still observe approximately 15% savings in the
sampling budget of Ours-C4 over KPAL-C.

6.4. Comparing with sample-based methods

Recently, deep sample-based denoising methods have been shown
to benefit preview-quality denoising [GLA∗19,MH20] by process-
ing each sample independently. The S-LD [MH20] method in par-
ticular proposes to learn a partitioning of samples into components,

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

X. Zhang et al. / Deep Compositional Denoising for High-quality Monte Carlo Rendering

which shares the learned decomposition concept with our work.
However, while their decomposition is based on per-sample infor-
mation, ours is based on statistics gathered at the pixel level. This
difference in the input structure results in fundamental differences
in the decomposition module architectures.

8 16 32 64 128
Sampling Budget (spp)

0.020

0.025

0.030

SM
A

PE

S-LD-C4
KPAL-C
Ours-C4

Figure 9: Generalization to high-sample-count scenarios. For this
comparison all methods were trained at 8 samples per pixel.
Sample-based decomposition (S-LD-C4) performs well at low sam-
ple counts (where it was trained) but does not generalize at high-
sample-count scenarios as well as pixel-based methods (KPAL-
C, Ours-C4).

Figure 9 summarizes the denoising quality of sample-based
and pixel-based methods on 8-128spp MITSUBA testing examples,
where all methods are trained on a 8spp training set. We see that S-
LD performs well on 8spp testing data, outperforming the KPAL-C
baseline, but our method is able to match its quality despite having
access only to per-pixel statistics. On the other hand, sample-based
decompositions do not generalize to high-spp scenarios as well as
pixel-based methods, falling behind KPAL-C at 64 and 128spp,
whereas our method is even better-performing in terms of gener-
alization compared to the KPAL baseline.

In Figure 10 we show qualitative comparisons between these
methods. We observe that at 8spp, sample-based decomposition
can produce results of competitive quality but at 128spp it cannot
match the quality of our method (Ours-C4), producing over-blurred
reconstruction results.

In addition to the worse generalization behavior of S-LD at
higher sample counts, we also observe that it is more prone to
overfitting and less stable than Ours-C4 at 8spp. Even though the
additional information stored in the per-sample data should theo-
retically improve the denoising quality of sample-based methods
compared to pixel-based ones, the concurrent work from Cho et
al. [CHY21] shows that the sparsity and high-dimensionality of
sample-based information pose major challenges. We believe that
this can explain why Ours-C4 can perform on par with the sample-
based method at 8spp (see Supplemental Material for additional
discussion and results).

6.5. Ablation studies

Our ablation studies focus on key design choices of the method,

including the number of components and the input feature predic-
tion.

Average relative error
#Components SMAPE DSSIM FLIP

1 (baseline) 1.000 1.000 1.000
2 0.973 0.986 0.981
3 0.923 0.927 0.948
4 0.910 0.909 0.939
6 0.902 0.903 0.935
8 0.892 0.885 0.925
16 0.892 0.878 0.925

Table 6: Diminishing return of additional quality benefits by using
more learned components.

Number of components. We evaluate our method with up to 16
learned components on the MITSUBA dataset. As shown in Table 6,
using more components typically leads to lower denoising error,
but the benefit diminishes as the number of components increases
beyond 4. In our experiments we observed that training with 8 or 16
components can be less stable than training with 2 or 4 components.
Taking both practicality and quality into consideration, we chose
the 4-component models as our approach in our comparisons.

Predicting Input Features. By allowing the decomposition mod-
ule to predict per-component feature maps in addition to masks,
our denoising module can potentially better adapt to the different
characteristics of each component. We experimentally verify this
benefit by disabling per-component feature map prediction, which
means the decomposition module only predicts component masks.
We use the same set of feature maps for denoising all components,
which are the output of the feature encoder at the beginning of the
pipeline.

Average relative error
Method Per-comp. feature maps SMAPE DSSIM FLIP

KPAL-C – 1.000 1.000 1.000

Ours-C4 – 0.962 0.985 0.972
Ours-C4 X 0.912 0.914 0.939

Table 7: Per-component feature prediction brings denoising qual-
ity benefits.

As shown in Table 7, the prediction of per-component feature
maps benefits the overall quality.

7. Discussion and future work

Computational efficiency. The computational cost of composi-
tional image denoising scales linearly with the number of compo-
nents. We measure an approximate runtime of 0.7s per 1280×720
image component on an RTX 2080Ti GPU for our method. Because
typical offline production scenes take multiple hours to render, such
timings are practically viable.

An interesting extension to our proposed method is adaptive de-
composition. That is, if the usefulness of decomposing an image

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

X. Zhang et al. / Deep Compositional Denoising for High-quality Monte Carlo Rendering

Ours-C4 Input (8spp) S-LD-C4 Ours-C4 Input (128spp) S-LD-C4 Ours-C4 Reference

SMAPE 0.03464 0.03486 SMAPE 0.02061 0.01726

SMAPE 0.03101 0.03147 SMAPE 0.01797 0.01593

Figure 10: Comparing our method with sample-based decomposition method [MH20]. Both methods were trained on our 8spp MITSUBA

training set. On each row, we show denoising results on 8spp (left) and 128spp (right) input of the same scene. Despite being able to achieve
relatively good quality at preview quality renderings, the sample-based method does not generalize as well to high-quality scenarios. Our
method achieves comparable results in low-spp testing cases and generalizes nicely to higher sample count.

can be cheaply estimated, we might split an image into many com-
ponents if this is useful, or denoise it directly if not. This would
improve the average runtime required to achieve a desired image
quality.

Repeatability. The repeatability of a method can be defined by the
variation between different sibling runs—identical models trained
with different randomness. Because we optimize our model end-
to-end, the decomposition module can reach different decomposi-
tion strategies across sibling runs. For example, our model with 4
learned components can create a strong separation of signals with
different frequency, or predict components that are farther from
each other with respect to chromaticity. While all sibling runs of
our method yield similar average improvements over the KPAL-C
baseline, the results on individual images can vary in quality from
run to run. One possible way to improve the similarity of compo-
nents across sibling runs is by posing more constraints on the com-
ponents. For example, one can penalize differences in chromaticity
to encourage frequency separation.

Non-additive decompositions. Our approach can possibly be
combined with other types of decompositions, such as decompo-
sition by multiplication or division. For instance, the user-defined
albedo division [ZRJ∗15, BVM∗17, VRM∗18] decomposes the re-
flected radiance into the product of irradiance and the typically
higher-frequency textured reflectance. This decomposition typi-
cally leads to denoising quality improvements in image regions
with diffuse textured surfaces. However, we do not use it in this
work because we were able to identify examples where albedo divi-
sion degrades denoising quality. More specifically, albedo division
is only beneficial when the noisy diffuse and albedo buffers are
highly correlated. Otherwise, e.g., at blurred boundaries or when
the diffuse channel contains both transmission and reflection, de-
noising with albedo division leads to noticeable artifacts. Predict-
ing robust multiplicative decompositions might be an interesting
area for future work.

Training stability. During the early training iterations, we use a
regularizer that penalizes variance of the component masks (see
Section 5.3). Without such a regularizer, the decomposition mod-
ule sometimes degenerates to producing all-1 and all-0 masks early
during training. Similar issues arise in KPAL [VRM∗18], where
the softmax-transformed kernel values sporadically degenerate to
zeros and ones. This happens when large gradients in the beginning
of training push the decomposition mask weights into the flat tails
of the sigmoid, where the gradients go to zero, or push the kernel
weights of KPAL into the equivalent regions of the softmax func-
tion. While our solution of regularizing through a variance penalty
term addresses this problem, we see potential for more elegant so-
lutions.

Temporal information and robustness. In the temporal domain,
adjacent frames might contain information about how the signal
should be decomposed. For instance, when the camera moves in
a scene, the movement of glossy highlights relative to diffuse sur-
faces is different. While our proposed method focusses on single-
frame denoising, in theory, our learned decomposition can be ex-
tended to decompose frame sequences into components that are
beneficial for denoising. However, we leave the study of temporal
denoising with learned decomposition to future work.

We measure the stability of our single-frame reconstruction
method on sequences of 5 independently seeded frames of a static
scene. We compare between Ours-C4 and KPAL-C the per-pixel
variance of the reconstructed images across different frames. We
observe that Ours-C4 leads to lower cross-frame variance than
KPAL-C for the majority of testing examples. Compared to KPAL-
C, our method reduces the cross-frame variance by 5.5% and 6.7%
on average over the MITSUBA and HYPERION datasets, respec-
tively. This shows that our method is more robust against noise
than single-frame KPAL-C. Based on this experiment, we believe
that our approach can be extended to benefit from temporal infor-
mation. Additional results for the MITSUBA dataset can be found
in Supplemental Material.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

X. Zhang et al. / Deep Compositional Denoising for High-quality Monte Carlo Rendering

8. Conclusion

In this paper, we focus on improving the state-of-the-art for offline
denoising of single-frame high-quality content. We have demon-
strated that our neural decomposition module can learn to produce
beneficial decompositions for state-of-the-art kernel-predicting de-
noisers.

We showed our neural decomposition module’s flexibility as it
can be applied on the noisy color input directly or on top of user-
defined decompositions that proved effective in the past. Further, it
can be trained jointly with a denoising module to maximize denois-
ing performance, or it can be trained separately with a pre-trained
denoiser when retraining of the denoiser is not feasible. In all these
scenarios, we observed improvements in denoising quality over the
corresponding baseline methods that do not use a neural decompo-
sition.

The improvements from our decompositions come at the cost of
a linear increase in denoising time with the number of components,
but this cost is negligible compared to the render times saved by
our method for final-quality content.

We also validated our method against sample-based methods.
Even though our method is designed for high-quality setups and
does not have access to the per-sample information, it performs
roughly on par in terms of quality on low-sample-count renderings
and outperforms them on high-quality renderings.

Finally, we emphasize that our method appeals to high-quality
production rendering due to its low adoption cost. It uses the same
inputs as standard per-pixel denoising methods, can be trained on
the same data, and is robust enough to be used in various high-
quality rendering scenarios.

Acknowledgements

We thank David Adler, Mark Meyer, and the anonymous review-
ers for their constructive feedback. We also thank the follow-
ing Blendswap artists for creating scenes used in the MITSUBA

dataset: Mareck, Wig42, SlykDrako, Jay-Artist, NewSee2l035,
nacimus, aXel, thecali, piopis, cekuhnen, UP3D, MrChimp2313,
NovaZeeke, and Delatronic. Our method was trained and tested on
production imagery but the results were not part of the released
productions.

References
[ANAM∗20] ANDERSSON P., NILSSON J., AKENINE-MÖLLER T., OS-

KARSSON M., ÅSTRÖM K., FAIRCHILD M. D.: Flip: A difference eval-
uator for alternating images. Proc. ACM Comput. Graph. Interact. Tech.
3, 2 (Aug. 2020). URL: https://doi.org/10.1145/3406183,
doi:10.1145/3406183. 7

[BAC∗18] BURLEY B., ADLER D., CHIANG M. J.-Y., DRISKILL H.,
HABEL R., KELLY P., KUTZ P., LI Y. K., TEECE D.: The design and
evolution of disney’s hyperion renderer. ACM Trans. Graph. 37, 3 (July
2018). URL: https://doi.org/10.1145/3182159, doi:10.
1145/3182159. 6

[BCM05] BUADES A., COLL B., MOREL J.-M.: A review of image de-
noising algorithms, with a new one. Multiscale Modeling & Simulation
4, 2 (2005), 490–530. 2, 3

[Bit16] BITTERLI B.: Rendering resources, 2016. https://benedikt-
bitterli.me/resources/. 6

[BRM∗16] BITTERLI B., ROUSSELLE F., MOON B., IGLESIAS-
GUITIÁN J. A., ADLER D., MITCHELL K., JAROSZ W., NOVÁK J.:
Nonlinearly weighted first-order regression for denoising Monte Carlo
renderings. Computer Graphics Forum 35, 4 (2016), 107–117. 2, 3

[BVM∗17] BAKO S., VOGELS T., MCWILLIAMS B., MEYER M.,
NOVÁK J., HARVILL A., SEN P., DEROSE T., ROUSSELLE F.: Kernel-
predicting convolutional networks for denoising Monte Carlo renderings.
ACM Trans. Graphics (Proc. SIGGRAPH) 36, 4 (July 2017), 97:1–97:14.
2, 3, 6, 11

[CHY21] CHO I.-Y., HUO Y., YOON S.-E.: Weakly-supervised con-
trastive learning in path manifold for monte carlo image reconstruction.
ACM Transactions on Graphics (TOG) 40, 4 (2021), 38:1–38:14. URL:
https://doi.org/10.1145/3450626.3459876. 3, 10

[CKS∗17] CHAITANYA C. R. A., KAPLANYAN A. S., SCHIED C.,
SALVI M., LEFOHN A., NOWROUZEZAHRAI D., AILA T.: Interac-
tive reconstruction of Monte Carlo image sequences using a recurrent
denoising autoencoder. ACM Trans. Graphics (Proc. SIGGRAPH) 36, 4
(July 2017), 98:1–98:12. 3

[DFKE06] DABOV K., FOI A., KATKOVNIK V., EGIAZARIAN K.: Im-
age denoising with block-matching and 3D filtering. In Proc. SPIE
(2006), vol. 6064, pp. 606414–606414–12. 3

[FHF∗17] FASCIONE L., HANIKA J., FAJARDO M., CHRISTENSEN P.,
BURLEY B., GREEN B.: Path tracing in production-part 1: production
renderers. In ACM SIGGRAPH 2017 Courses. 2017, pp. 1–39. 2

[GLA∗19] GHARBI M., LI T.-M., AITTALA M., LEHTINEN J., DU-
RAND F.: Sample-based monte carlo denoising using a kernel-splatting
network. ACM Trans. Graph. 38, 4 (2019), 125:1–125:12. 3, 9

[GPAM∗14] GOODFELLOW I., POUGET-ABADIE J., MIRZA M., XU
B., WARDE-FARLEY D., OZAIR S., COURVILLE A., BENGIO Y.: Gen-
erative adversarial nets. In Advances in neural information processing
systems (2014), pp. 2672–2680. 3

[HZRS16] HE K., ZHANG X., REN S., SUN J.: Deep residual learning
for image recognition. In IEEE Conference on Computer Vision and
Pattern Recognition (2016), IEEE Computer Society, pp. 770–778. 6

[IFME21] IŞIK M., FISHER M., MULLIA K., EISENMANN J.: Inter-
active Monte Carlo Denoising using Affinity of Neural Features. ACM
Trans. Graph 40 (2021). doi:10.1145/3450626.3459793. 3

[Jak10] JAKOB W.: Mitsuba renderer, 2010. 6

[JWB∗19] JAKOB W., WEIDLICH A., BEDDINI A., PIEKÉ R., TANG
H., FASCIONE L., HANIKA J.: Path tracing in production: part 2: mak-
ing movies. In ACM SIGGRAPH 2019 Courses. 2019, pp. 1–41. 2

[Kaj86] KAJIYA J. T.: The rendering equation. SIGGRAPH Computer
Graphics 20, 4 (Aug. 1986), 143–150. 2

[KB14] KINGMA D. P., BA J.: Adam: A method for stochastic optimiza-
tion. CoRR abs/1412.6980 (2014). arXiv:1412.6980. 6

[KBS15] KALANTARI N. K., BAKO S., SEN P.: A machine learning
approach for filtering Monte Carlo noise. ACM Trans. Graphics (Proc.
SIGGRAPH) 34, 4 (July 2015), 122:1–122:12. 2

[KHL19] KETTUNEN M., HÄRKÖNEN E., LEHTINEN J.: Deep convolu-
tional reconstruction for gradient-domain rendering. ACM Trans. Graph.
38, 4 (July 2019). URL: https://doi.org/10.1145/3306346.
3323038, doi:10.1145/3306346.3323038. 6

[KMA∗15] KETTUNEN M., MANZI M., AITTALA M., LEHTINEN J.,
DURAND F., ZWICKER M.: Gradient-domain path tracing. ACM Trans.
Graph. 34, 4 (2015). 6

[LWY∗21] LIN W., WANG B., YANG J., WANG L., YAN L.-Q.: Path-
based monte carlo denoising using a three-scale neural network. In Com-
puter Graphics Forum (2021), Wiley Online Library. 3

[LZZ∗18] LIU P., ZHANG H., ZHANG K., LIN L., ZUO W.: Multi-level
wavelet-cnn for image restoration. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition Workshops (2018),
pp. 773–782. 2

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1145/3406183
https://doi.org/10.1145/3406183
https://doi.org/10.1145/3182159
https://doi.org/10.1145/3182159
https://doi.org/10.1145/3182159
https://doi.org/10.1145/3450626.3459876
https://doi.org/10.1145/3450626.3459793
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3306346.3323038
https://doi.org/10.1145/3306346.3323038
https://doi.org/10.1145/3306346.3323038

X. Zhang et al. / Deep Compositional Denoising for High-quality Monte Carlo Rendering

Renderer Type Scenes Ref. spp Resolution Input spp Examples Samples? Used in

Mitsuba (academic) Training 575 8192 1280×720 2-256 4600 No Sections 6.1, 6.2, 6.5
8 575 Yes Section 6.4

Validation 55 8192 1280×720 2-256 440 No Sections 6.1, 6.2, 6.5
8 55 Yes Section 6.4

Hyperion (production) Training 382 Various 1920×804 16-3496 2962 No Section 6.2.1

(a) Training and validation datasets.

Name / Renderer Source Scenes Ref. spp Resolution Input spp Examples Samples? Used in

Mitsuba 1 (academic) Public scenes 47 65536 1280×720 2-256 376 No Sections 6.1, 6.2.1, 6.5
2-256 3055 No Section 6.3 (spp saving)
2-128 329 Yes Section 6.4

Mitsuba 2 (academic) Similar to [MH20] 27 65536 512×512 2-256 216 No Sections 6.1, 6.2.1, 6.5
2-256 1755 No Section 6.3 (spp saving)
2-128 189 Yes Section 6.4

Tungsten (academic) [XZW∗19] 25 32768 Various 4-128 125 No Section 6.2.2

Hyperion (production) – 35 Various 1920×804 8-128 84 No Section 6.2.1

(b) Testing (evaluation) datasets.

Table 8: Dataset overview. Here we list the datasets used in our experiments, including training, validation and testing datasets, and point
to the sections where the discussion is based on the results from the corresponding datasets. Notably, we have mainly pixel-based datasets
which can scale to higher sample count, but we also create sample-based data for the comparison with sample-based methods. In the table,
“Various” means the related value varies between examples.

[MBC∗18] MILDENHALL B., BARRON J. T., CHEN J., SHARLET D.,
NG R., CARROLL R.: Burst denoising with kernel prediction networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2018), pp. 2502–2510. 2

[MCY14] MOON B., CARR N., YOON S.-E.: Adaptive rendering based
on weighted local regression. ACM Trans. Graphics 33, 5 (Sept. 2014),
170:1–170:14. 2

[MH20] MUNKBERG J., HASSELGREN J.: Neural denoising with layer
embeddings. In Computer Graphics Forum (2020), vol. 39, Wiley Online
Library, pp. 1–12. 2, 3, 6, 7, 9, 11, 13

[MJL∗13] MOON B., JUN J. Y., LEE J., KIM K., HACHISUKA T.,
YOON S.-E.: Robust image denoising using a virtual flash image for
Monte Carlo ray tracing. Computer Graphics Forum 32, 1 (2013), 139–
151. 2

[MKD∗16] MANZI M., KETTUNEN M., DURAND F., ZWICKER M.,
LEHTINEN J.: Temporal gradient-domain path tracing. ACM Trans-
actions on Graphics (TOG) 35, 6 (2016), 1–9. 6

[MSY16] MAO X., SHEN C., YANG Y.-B.: Image restoration using very
deep convolutional encoder-decoder networks with symmetric skip con-
nections. In Advances in neural information processing systems (2016),
pp. 2802–2810. 2

[PJH16] PHARR M., JAKOB W., HUMPHREYS G.: Physically based ren-
dering: From theory to implementation. Morgan Kaufmann, 2016. 2

[RKZ12] ROUSSELLE F., KNAUS C., ZWICKER M.: Adaptive rendering
with non-local means filtering. ACM Trans. Graphics (Proc. SIGGRAPH
Asia) 31, 6 (Nov. 2012), 195:1–195:11. 2

[RMZ13] ROUSSELLE F., MANZI M., ZWICKER M.: Robust denoising
using feature and color information. Computer Graphics Forum 32, 7
(2013), 121–130. 2, 3

[TM98] TOMASI C., MANDUCHI R.: Bilateral filtering for gray and
color images. In Sixth international conference on computer vision
(IEEE Cat. No. 98CH36271) (1998), IEEE, pp. 839–846. 2

[VRM∗18] VOGELS T., ROUSSELLE F., MCWILLIAMS B., RÖTHLIN

G., HARVILL A., ADLER D., MEYER M., NOVÁK J.: Denoising with
kernel prediction and asymmetric loss functions. ACM Transactions
on Graphics (Proceedings of SIGGRAPH 2018) 37, 4 (2018), 124:1–
124:15. doi:10.1145/3197517.3201388. 1, 2, 3, 4, 6, 11

[WBSS04] WANG Z., BOVIK A., SHEIKH H., SIMONCELLI E.: Image
quality assessment: From error visibility to structural similarity. IEEE
Transactions on Image Processing 13, 4 (April 2004), 600–612. 7

[XPG∗19] XIA Z., PERAZZI F., GHARBI M., SUNKAVALLI K.,
CHAKRABARTI A.: Basis prediction networks for effective burst de-
noising with large kernels. arXiv preprint arXiv:1912.04421 (2019). 2

[XZW∗19] XU B., ZHANG J., WANG R., XU K., YANG Y.-L., LI C.,
TANG R.: Adversarial monte carlo denoising with conditioned auxil-
iary feature. ACM Transactions on Graphics (Proceedings of ACM SIG-
GRAPH Asia 2019) 38, 6 (2019), 224:1–224:12. 2, 3, 6, 7, 9, 13

[ZJL∗15] ZWICKER M., JAROSZ W., LEHTINEN J., MOON B., RA-
MAMOORTHI R., ROUSSELLE F., SEN P., SOLER C., YOON S.-E.: Re-
cent advances in adaptive sampling and reconstruction for Monte Carlo
rendering. Computer Graphics Forum (Proc. Eurographics) 34, 2 (May
2015), 667–681. 2

[ZRJ∗15] ZIMMER H., ROUSSELLE F., JAKOB W., WANG O., ADLER
D., JAROSZ W., SORKINE-HORNUNG O., SORKINE-HORNUNG A.:
Path-space motion estimation and decomposition for robust animation
filtering. Computer Graphics Forum 34, 4 (2015), 131–142. 2, 3, 11

[ZZC∗17] ZHANG K., ZUO W., CHEN Y., MENG D., ZHANG L.: Be-
yond a Gaussian denoiser: Residual learning of deep CNN for image
denoising. IEEE Trans. Image Processing 26, 7 (2017), 3142–3155. 2

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1145/3197517.3201388

