
Eurographics Symposium on Rendering 2021
A. Bousseau and M. McGuire
(Guest Editors)

Volume 40 (2021), Number 4

Deep Compositional Denoising for High-quality
Monte Carlo Rendering (Supplemental)

Xianyao Zhang1,2, Marco Manzi2, Thijs Vogels3, Henrik Dahlberg4, Markus Gross1,2 and Marios Papas2

1ETH Zürich, Switzerland
2DisneyResearch|Studios, Switzerland

3EPFL, Switzerland
4Industrial Light & Magic, United Kingdom

In this supplemental document, we first provide more details
of our decomposition scheme, model implementation, and train-
ing hyperparameters for different methods. Then we show some
additional quantitative results related to the comparison with the
sample-based S-LD method. Finally, we provide results about the
robustness of pixel-based methods as mentioned in the discussion
of the main paper.

We refer the readers to the supplemental interactive image
viewer for additional qualitative results.

1. Decomposition Function Definition

In the most formal way, our decomposition scheme corresponds
to a complete full binary tree with K leaf nodes, where the nodes
correspond to decomposition modules and the leaves correspond to
kernel-predicting denoisers. The input of the root node is the input
color and the feature encoder’s output. The input to all other nodes
are one of the two the parents outputting component–feature pairs.
The depth D of this tree can be computed as D = dlog2 Ke+ 1. If
K is a power of 2, the resulting decomposition framework will be a
perfect binary tree with depth D.

Formally, our decomposition function is defined as follows. Let
c(d,l) denote the l-th noisy colors component at depth level d, and
similarly for f(d,l), with the network input as the root of the decom-
position tree, i.e., c(0,1) = c and f(0,1) = f.

For each depth level d = 1, . . . ,D− 1, there are Nd ≤ 2d nodes,
which we index with l = 1, . . . ,Nd from left to right. Note that Nd
is guaranteed to be an even number because of the complete full
binary tree. For the l-th node at depth d, its parent node can be
indexed with pl at depth d− 1, where pl = b l+1

2 c. Therefore, for
l = 1,2, . . . ,Nd −1, components l and l +1 will be predicted from
component pl at depth d−1:

{m(d,l), f(d,l), f(d,l+1)}= h(c(d−1,pl), f(d−1,pl)). (1)

and

c(d,l) = m(d,l)� c(d−1,pl)

c(d,l+1) = (1−m(d,l))� c(d−1,pl)

with c(d,l)+ c(d,l+1) = c(d−1,pl). The K leaf nodes of this decom-
position tree will be the components that will be denoised.

2. Implementation details

Here we provide some additional implementation details about our
network architecture, regularization loss and training scheme.

2.1. Network architecture (for comparing with pixel-based
methods)

Decomposition module. We implement the decomposition func-
tion using a U-Net with 3 scales. The input to the decomposition
module consists of 64-channel feature maps and an RGB color
image. For the first decomposition module operating on the full
color, the input feature vector is created by passing the input color
and auxiliary features to a feature encoder consisting of 2 residual
blocks [HZRS16] that outputs a 64-channel feature map (a residual
block has 2 convolution layers and a residual connection by addi-
tion). The U-Net has feature maps with 64, 128 and 256 channels
for the three scales, 2× 2 strided convolution for down-sampling
and nearest-neighbor interpolation for up-sampling of the feature
maps between scales, and skip connections between the encoder
and decoder on the same scale (implemented with concatenation).
We use ReLU as the activation function and convolution kernels
of size 3× 3 for all convolution layers except for downsampling
(2×2) and predicting masks and kernels (1×1).

The output of the decomposition module (component mask) is
predicted by a 1× 1 convolution layer from the 64-channel output
of the U-Net with a sigmoid activation function. This raw output is
then multiplied with the input image to obtain the first component
(the left child of this node). The second component mask will be
the complement of the first, making sure that the two components
sum up to the input color image. Alongside the components, the
decomposition module also predicts two sets of component-specific
feature maps, each of which is predicted by a single (component-
specific) residual block with 64 channels.

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

X. Zhang et al. / Deep Compositional Denoising for High-quality Monte Carlo Rendering (Supplemental)

Denoising module. In this work, we adopt the 1-frame variant of
KPAL [VRM∗18] as the component denoiser. According to the
suggestion in the KPAL work, we replace the ResNet with a U-
Net for improved efficiency, and we confirm that this yields better
performance at no loss in quality. We therefore use U-Nets for both
our method and our implementation of the KPAL baselines.

The denoising module operates on the component color image
c(k) and the component auxiliary features f(k). The final recon-
structed image d is then produced by summing the denoised out-
put d(k) of each component. The U-Net backbone is the same as
for the decomposition module, with different trainable parameters.
As for the kernel reconstruction module at the end of the architec-
ture, we adopt the multi-scale approach in KPAL [VRM∗18] with
3 scales and 5× 5 kernels instead of using one 21× 21 kernel per
pixel at the finest scale. The denoiser module is shared between all
components.

2.2. Regularization: variance penalty

The regularization term we use at the beginning of training is de-
fined as the per-pixel per-channel average of the variance of the
masks {m(k)}K

k=1 across different components:

R({m(k)}) = 1
|I|

1
C

1
K ∑

p∈I

3

∑
c=1

K

∑
k=1

(m(k)
p,c−mp,c)

2
, (2)

where C is the number of channels in the mask (C = 3 for RGB
masks), and m = 1

K ∑k m(k) is the average mask, which is equal
to 1

K 1 because all masks sum to 1. This regularization term forces
the masks to be uniform and can stabilize training in early steps.
We use a weight of 10 for this term at the first 16384 steps and
turn it off (i.e., set its weight to 0) afterwards. Note that, when the
number of components is not a power of 2 (e.g., 3 or 6), leaf nodes
are on two different depth levels of the tree. To enforce a balanced
decomposition there, we multiply the masks from the deepest leaf
nodes (i.e., the ones that have been decomposed the most) by 2
before applying the variance penalty, so that masks from the same
depth level are regularized to be the same.

2.3. Training scheme and hyper-parameters

The batch size is different for baselines and our decomposition
methods: 12 for KPAL, 6 for Ours-C2 and 3 for Ours-C4. This
makes the training time of different methods roughly the same at
the same number of steps, and also means that the decomposition
and denoising modules for different methods see roughly the same
number of image patches. On the MITSUBA dataset, models that
operate on noisy color directly (without user-defined decomposi-
tion) are trained for 1.8M steps, which takes approximately 5 days
on a single RTX 2080Ti GPU. For denoising user-defined compo-
nents (diffuse–specular or direct–indirect), the models are trained
until 3M steps to ensure convergence. On the HYPERION dataset,
all models are trained until 3M steps. We apply learning rate de-
cay twice at 80% and 90% of the training, each time dividing the
learning rate by 10. Unless otherwise mentioned, we evaluate the
pixel-based methods using the models after the last training step.

This is very close to the model with the best validation loss be-
cause of the learning rate decay, and because we do not observe
overfitting behavior when training on our full datasets.

For sample-based methods, we follow Munkberg and Hasselgren
[MH20] and train the models with batch size 4, initial learning rate
5×10−4, and we halve the learning rate every 180k iterations. We
also use the same learning rate decay scheme for the competing
pixel-based methods, but with a starting learning rate of 10−4 be-
cause we observe training difficulty for these models at the higher
learning rate. We also tried using 10−4 as the initial learning rate
for S-LD methods but found that this leads to worse results com-
pared to 5×10−4.

Also, similar to the original work [MH20], we train the methods
on the 8spp subset of our datasets. Because of the smaller train-
ing set size (which is similar to the dataset used by the original
work in terms of the number and variety of scenes), over-fitting can
be observed for both pixel-based and sample-based methods. We
therefore report the metrics on the testing set using models with the
best validation SMAPE loss.

3. Architecture improvement of the S-LD method

Figure 1: Quality benefit brought by our improved S-LD method
(Improved) compared to the original method [MH20]. We show
progression of SMAPE error with respect to sample count.

In Figure 1 we show the impact of our improved architecture of
the S-LD method (using a larger denoising module and less train-
able weights for sample partitioning). Our enhanced architecture is
able to improve significantly the denoising quality of the original
method. We also confirm that the 2- and 4- component variants of
S-LD perform similarly, as reported by the original work [MH20].

4. Overfitting behavior of S-LD-C4

In our experiments, we find that the sample-based method S-LD
[MH20] is more prone to overfitting than our method, which might
explain why S-LD-C4 is not able to clearly outperform Ours-C4.
We provide two pieces of evidence from our experiments.

First, Figure 2 shows the progression of the training and valida-
tion losses of our method and S-LD. We observe that the training
loss of the sample-based method continues to decrease after the val-
idation loss flattens, whereas the training loss of our method does

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

X. Zhang et al. / Deep Compositional Denoising for High-quality Monte Carlo Rendering (Supplemental)

Figure 2: The training and validation loss progression of Ours-C4
and S-LD-C4. The training loss curves are smoothed to better re-
flect its trend.

not decrease much after validation loss stops decreasing. Eventu-
ally, the training loss of S-LD-C4 becomes lower than that of Ours-
C4, but the validation loss remains worse than our method. This
indicates that the S-LD method is more prone to overfitting.

Second, S-LD sometimes produces degenerate reconstructions
for some testing examples that are too different from the training
set, which is not a problem for the compared pixel-based methods.
One example is the “Motion Blur Ball 2” scene in the supplemen-
tal viewer, where the method fails to reconstruct the background
texture with regular grid, which is not present in the training set.
This artifact is present for both the original and improved architec-
ture (though for partially different sets of testing examples), and it
can also be found in the supplemental material from the concurrent
work by Işik et al. [IFME21] (see Image Viewer (16spp), examples
008 and 013). We identify and exclude these degenerate examples
from the average loss computation, for the comparisons in the main
document and also results in Figure 1.

In our experiments, this behavior of S-LD happens after 200k
steps of training, and it happens only for some of the sibling runs.
Also, it is worth noting that these degenerate results do not hap-
pen on the validation set, which includes scenes that are generated
from the same generator used for the training set. Therefore, it is
likely that this is a result of overfitting, where the model adapts to
the training examples too much and reaches regions in the parame-
ter space where it is unable to produce stable results for the testing
examples. Moreover, this stability issue also reflects the difficul-
ties in handling noisy sample-based data, which can lead to high-
magnitude gradients. From the analysis of the intermediate output
from the model, we find that the feature maps produced by the U-
Net in the partitioning module contain very large absolute values in
degenerate regions.

In summary, the overfitting and instability of S-LD potentially
reflects the difficulties of handling sample-based data, due to the
noise, sparsity and high dimensionality [CHY21].

5. Evaluation of robustness against random noise

We evaluate the robustness of our (single-frame) approach and

Figure 3: Multi-seed variance on MITSUBA test set. The denoised
images of Ours-C4 from noisy input images with different random
seeds are more stable than those of KPAL-C.

KPAL baseline against random noise by using these single-frame
methods to process noisy images with different random seeds (on
the same static scenes). The results on the MITSUBA test set are
summarized in Figure 3, which show that our method produces
less variation between denoised images with multiple seeds, and
that this behavior is consistent across different spp levels. This ex-
periment indicates that the additional decomposition step of our
method should not increase temporal instability (which primarily
results from different random noise between neighboring frames),
when extended to multi-frame denoising.

References
[CHY21] CHO I.-Y., HUO Y., YOON S.-E.: Weakly-supervised con-

trastive learning in path manifold for monte carlo image reconstruction.
ACM Transactions on Graphics (TOG) 40, 4 (2021), 38:1–38:14. URL:
https://doi.org/10.1145/3450626.3459876. 3

[HZRS16] HE K., ZHANG X., REN S., SUN J.: Deep residual learning
for image recognition. In IEEE Conference on Computer Vision and
Pattern Recognition (2016), IEEE Computer Society, pp. 770–778. 1

[IFME21] IŞIK M., FISHER M., MULLIA K., EISENMANN J.: Inter-
active Monte Carlo Denoising using Affinity of Neural Features. ACM
Trans. Graph 40 (2021). doi:10.1145/3450626.3459793. 3

[MH20] MUNKBERG J., HASSELGREN J.: Neural denoising with layer
embeddings. In Computer Graphics Forum (2020), vol. 39, Wiley Online
Library, pp. 1–12. 2

[VRM∗18] VOGELS T., ROUSSELLE F., MCWILLIAMS B., RÖTHLIN
G., HARVILL A., ADLER D., MEYER M., NOVÁK J.: Denoising with
kernel prediction and asymmetric loss functions. ACM Transactions
on Graphics (Proceedings of SIGGRAPH 2018) 37, 4 (2018), 124:1–
124:15. doi:10.1145/3197517.3201388. 2

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://www.mustafaisik.net/anf/viewer/16spp.html
https://doi.org/10.1145/3450626.3459876
https://doi.org/10.1145/3450626.3459793
https://doi.org/10.1145/3197517.3201388

