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1. Network Architecture

Our network architecture follows the U-Net architecture, similar to
the updater CNN in [Delanoy et al. 2018]. The input consists of
a reconstructed 3D density d̂ and a 2D sketch s in a specific view-
point, while the output is the residual of the refined 3D density field.
Let conv2d, bn, lrelu, upsample denote 2D convolutions, 2D batch
normalization, leaky ReLU activation (with slope 0.2) and nearest
neighbor upsampling in each layer. Table 1 illustrates the details,
such as the number of channels or kernel size. The skip connec-
tions shown as ’+’ represent the concatenation of two outputs with
the same size. We use a linear activation in the last layer to predict
the residual density r̂, and the final output should be d̂ + r̂ clamped
between 0 and 1.

2. Training Data Generation

2.1. Data Set Generation in Houdini

We generate our data set with the PyroFX solver embedded in Hou-
dini. In particular, we use the Pyro Solver node with parameters
chosen randomly with a uniform distribution as depicted in Table 2
and the buoyancy direction (simulation/buoyancy_dir[x,y,z]) as a
random unit vector.

2.2. Training Data Snapshots

Figure 1 shows additional selected training samples from our data
set with different sourcing strategies. From left to right, the first
four columns show no source examples, while the other columns
depict with source scenes.

2.3. Sketch Variations

For the training, we augmented the sketches to increase the robust-
ness of the model to (smaller) sketch variations. Specifically, we
used the following sketch parameters, where N (x,σ) is the normal

distribution centered at x and with variance σ:

θbright = |N (0,42.33)| → [0,127]

θcontrast = |N (0,21.33)| → [0,64]

θcontour = 0.8−|N (0,0.1)|,→ [0.5,0.8]

θtoon = 0.8+N (0,0.03),→ [0.7,0.9]

θlightdir = 1+N (0,0.66),→ [−1,3]

θblur = |N (0,0.5)|,→ [0,1.5]

θslur = |N (0,0.02)|,→ [0,0.06],

On the right side, the range of each parameter is given by 3σ. We
augment different factors of sketch styles using Gaussian sampling.
Corresponding figures for different styles are shown in Figure 2.

3. Initial Volume Modeling

Figure 13 illustrates the steps of the initial volume modeling for
both front and side views of the smoke jet example. The image on
the right corresponds to the input to our updater CNN.

4. Extended Results

4.1. Results on Artist Sketches

Figure 6, Figure 7 and Figure 8 show sketch-to-density reconstruc-
tion results from sketches drawn by 3 different artists. We observe
that our approach is able to reconstruct density keyframes consis-
tent to what artists have drawn. Reliable and robust reconstruc-
tions are a pre-requisite for interactive prototyping and authoring
of smoke keyframes and animations.

4.2. Captured Smoke Data

We applied our method to the Scalarflow data set [Eckert et al.
2019] that contains reconstruction data of real-world captured
smoke. We show the Scalarflow density and its sketch, and the
reconstruction results (sketch and density) for scene ID 1 in Fig-
ure 9. The sketches have no notion of smoke thickness and there-
fore cannot distinguish between a wispy and a dense smoke vol-
ume with identical sketch shapes. The sketch loss therefore has a
tendency to favor reconstructions that are less wispy than the ones
of Scalarflow.
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Table 1: Details of the network architecture.

Layer Ops K S P Input Output Size

input - - - - density, sketches 129×129×129, 258×258
enc_1 conv2d+lrelu 4 2 1 sketch 64×129×129
enc_2 conv2d+bn+lrelu 4 2 1 enc_1+density 256×64×64
enc_3 conv2d+bn+lrelu 4 2 1 enc_2 256×32×32
enc_4 conv2d+bn+lrelu 4 2 1 enc_3 512×16×16
enc_5 conv2d+bn+lrelu 4 2 1 enc_4 512×8×8
enc_6 conv2d+bn+lrelu 4 2 1 enc_5 512×4×4
enc_7 conv2d+bn+lrelu 4 2 1 enc_6 512×2×2
enc_8 conv2d+lrelu 4 2 1 enc_7 512×1×1
dec_8 upsample+conv2d+bn+lrelu 3 1 1 enc_8 512×2×2
dec_7 upsample+conv2d+bn+lrelu 3 1 1 dec_8+enc_7 512×4×4
dec_6 upsample+conv2d+bn+lrelu 3 1 1 dec_7+enc_6 512×8×8
dec_5 upsample+conv2d+bn+lrelu 3 1 1 dec_6+enc_5 512×16×16
dec_4 upsample+conv2d+bn+lrelu 3 1 1 dec_5+enc_4 256×32×32
dec_3 upsample+conv2d+bn+lrelu 3 1 1 dec_4+enc_3 256×64×64
dec_2 upsample+conv2d+bn+lrelu 3 1 1 dec_3 256×128×128
dec_1 conv2d 2 1 1 dec_2 129×129×129

Figure 1: Example snapshots from our training data set without (left) and with (right) source, showing density (top) and corresponding
sketch computed with our sketcher (bottom).

Table 2: Simulation parameters used in Houdini.

Tab Parameter Min value Max value

Simulation temp_diffusion (D) 0 .5
cooling_rate .5−1.5 D .8

viscosity 0 .1
lift 0 5

Shape sharpenrate 0 1
turbulence_scale 0 .1

Shape/Turb. turb_swirl_size .25 1
turb_turb 2 5

4.3. Ablation Study: Loss Functions

We evaluated the impact of the different loss functions and illus-
trate the results in Figure 3. Using only the density loss (Equation
1) like in previous work [Delanoy et al. 2018] we observe large
discrepancies between the input sketch and the sketch of the re-
constructed density. When using only the sketch loss (Equation 2)

results are very detailed but at the cost of depth ambiguity. If both
density and sketch losses are used, the sketch correspondence as
well as the depth reconstruction are improved, but noise is well.

4.4. Ablation Study: Multi-pass/view Refinement Results

We evaluate our network with various numbers of passes at training
and test time. We show the results on front view only in Figure 10,
where each line corresponds to 1, 2, 3 and 4 passes during training,
respectively, and each column to successive refinements at test time
that we denote by ‘f’ to ‘ffffff’.

Our model is also able to refine density from multiple view-
points. Figure 11 shows 6-view refinements (’fltdrb’) on the smoke
jet example of 3 models trained with 1,2, and 3 passes, respectively.
Results are more robust for models trained with more passes dur-
ing multi-view refinement. We observe that the difference between
3 and 4 passes is marginal, which is consistent to the ’ffffff’ results
shown in the paper and in Figure 10.
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Figure 2: Sketch augmentations are used for training to increase robustness. From left to right: brightness, contrast, contour width, toon
shading color, blur in x, slur in x, slur in y, light direction in x, light direction in y.

Figure 3: Evaluation of loss functions. From left to right: density loss, sketch loss, density+sketch losses, density+sketch+depth variation
losses (ours) and input sketch.

4.5. Post-processing Network

We use a post-processing network to synthesize small-scale details
from the sketches. In Figure 12 we show comparisons between re-
sults with and without post-processing steps.

4.6. Optimization-based Refinement

In the initial experiments we also experimented with optimizing a
density field from input sketches using the method of [Okabe et al.
2015]. However, Figure 4 shows that in the generated results only
sketches are matched, while the density converged to a non-optimal
solution.

4.7. Convergence

Figure 5 shows the convergence of density and sketch losses during
training.
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Figure 4: Optimization-based sketch-to-density reconstruction results in non-optimal densities, where only the input sketches match. From
left to right: front-view reconstructed density, sketch output and side-view reconstructed density and its sketch.

Figure 5: Convergence plot of density (top) and sketch (bottom) losses during training for f (blue) and fl (orange). It shows that our model
converges after 100k training iterations (i.e., 10 epochs).

Figure 6: Keyframe sequence (front and left views) of the dissolve scene drawn by an artist and corresponding 3D reconstructions.

Figure 7: Keyframe sequence (front and left views) of the lion to rhino morphing scene drawn by an artist and corresponding 3D reconstruc-
tions.
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Figure 8: Keyframe sequence (front view) of the bird example sketched by an artist and corresponding 3D density reconstructions.
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Figure 9: Front (top) and left (bottom) views of a selected example
from the Scalarflow data set. From left to right: Scalarflow density,
input sketch, reconstructed sketch and output density.
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Figure 10: Evaluation of recursive passes and inference sequence. Top and bottom rows show 1 and 4 passes, respectively. From left to right:
f, ff, fff, ffff, fffff, ffffff

Figure 11: Evaluation of multi-view refinements. Top to bottom rows show 6-view refinements on models trained with 1,2,3,4 passes and
input sketches. From left to right: 6 views (front, left, top, bottom, right, back).
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Output Post-processed Output Post-processed Output Post-processed Output Post-processed
Figure 12: Comparisons between results without and with post-processing. The top and bottom rows of each example show the front and
side view, respectively.

Figure 13: Steps of the initial volume modeling shown for the front (top) and left (bottom) views. From left to right: input sketch, contour
extraction, volume estimate, blended and smoothed volume (input to the updater network).
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