
ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2022
D. L. Michels and S. Pirk
(Guest Editors)

Volume 41 (2022), Number 8

Supplementary Material: Facial Animation with Disentangled
Identity and Motion using Transformers

Prashanth Chandran1,2 Gaspard Zoss2 Markus Gross 1,2 Paulo Gotardo2 Derek Bradley2

1ETH Zurich 2DisneyResearch|Studios

This supplemental document contains additional training details
for our method, additional architecture details, ablation studies, and
additional experiments.

1. Training Details

We train all the modules in our motion-model end-to-end, with a re-
construction loss on the generated performance. The reconstructed
3D shapes are compared to the ground truth performance with an
MSE objective. For most of the experiments in Section 4 of the
main paper, we trained our model on fixed-length sequences of 60
frames. In the next section we present an ablation on variable length
training. We train 3 different models, one for each of the 3 different
datasets that we describe in Section 4.1 of the main paper. Training
is performed on an Nvidia 3090 GPU with a batch size of 64, a
learning rate of 1e−4, and the Adam optimizer.

2. Additional Architecture Details

Figure 1 of the main text provides a network overview of our dis-
entangled motion model. The main components were described in
detail in the main text, however due to space limitations, we de-
scribe the smaller components here in the supplemental material.
Specifically, we now show details of the Blendweights Embedding
network and the Time Encoder network. For both networks, please
refer to Fig. 1. The Blendweights Embedding network processes
vectors of blend weights for different frames independently, and
the multiple outputs of this MLP are processed by the performance
encoder transformer. The Time Encoder takes time values as input
and creates learned position codes for each time instant.

2.1. Human body Experiments

For our experiments on the AMASS dataset [MGT∗19], we do
not regress vertex displacements as we do in the case of faces,
but instead regress to continuous 6D joint angle representations
[ZBL∗19] as done in v-poser [PCG∗19]. Since the SMPL model
is already a disentangled parameteric model of the human body, we
use a simplified form our architecture for training on the AMASS
dataset which is as shown in the figure Fig. 2. While our training

objectives are identical to Actor [PBV21], our modulated architec-
ture offers additional benefits as demonstrated in figure 4 of the
main paper.

3. Baseline Comparisons

In the absence of our learned motion manifold, a simple baseline
to generate facial animations is to perform a random walk in the
parametric space of a blendshape rig. Such a random walk of-
ten results in uncanny performances with noisy trajectories Fig. 3
(left), whereas our method results in smooth nonlinear trajectories
that better resemble those obtained from a captured performance.
Kindly refer to our supplementary video for an animation example.

In the case of inpainting keyframes, we extend Figure 9 of
the main paper with additional baselines of choosing the Nearest
Neighbor performance from the dataset that matches the keyframes
best in a least squares sense. However as seen in Fig. 3 (right), this
nearest performance clearly does not match many of the keyframes
well. Also in the context of keyframe interpolation, a random
walk in blendshape space can match the starting keyframe well
through initialization, but is not guaranteed to match the remaining
keyframes. Finally, we also compare the result of our keyframe in-
terpolation with an off-the-shelf tool for motion planning †, which
requires careful and cumbersome selection of parameters, and still
yields robotic performances similar to those from linear interpola-
tion. In contrast, our method does not suffer from these drawbacks
and generates realistic, nonlinear inpainting that perfectly satisfies
the user-defined keyframes.

4. Ablation studies

We now present additional ablation studies that motivate our de-
sign choices and measure the effect of alternative options on the
performance of our network.

4.1. Variable Sequence Length Training

As discussed in the main text, we model our performance encoder
as a transformer, which is an architecture that is naturally suited for

† https://github.com/meco-group/omg-tools

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



P. Chandran, G. Zoss, M. Gross, P. Gotardo, D. Bradley / Suppl: Facial Animation with Disentangled Identity and Motion using Transformers

Figure 1: Blendweights embedding architecture: On the left, we show a detailed look at our blendweights embedding MLP, which processes
blend weights of frames independently. The multiple outputs of this MLP are then processed by the performance encoder transformer. Time
encoder: On the right half, we see the architecture of our Time encoder MLP γ(.). Our time encoder is a simple 3 layer MLP with sinusoidal
activations, which takes time as input and outputs a learned position code for each time instant.

Figure 2: For training our style modulated performance decoder on human bodies, we resort to the parameteric representation of the SMPL
model [LMR∗15] and use it as fixed differentiable module at training time to penalize vertex positions similar to Petrovic et al.[PBV21].

handling input sequences of arbitrary length. Most of the results in
our work are created with models trained on fixed-length sequences
of 60 frames. In this ablation, we try to understand the effect of
varying sequence lengths at training time on the performance of the
model. We train two different models, one trained with fixed length
sequences of 60 frames and a batch size of 64. Then, we re-train the
same network with variable sequence lengths and a batch size of 1.
Specifically, the variable lengths correspond to the full sequence
lengths available at training time. In the SDFM dataset [CBGB20],
facial performances range from 110 to 617 frames in length. At
each training iteration, the full performance is decoded. The con-
vergence results of training both models is shown in Fig. 4. Training
is slower with varying frame lengths, but for the same number of
iterations the variable length model has seen effectively less sam-
ples because of the batch size being set to 1. Unlike the work of
Petrovich et al. [PBV21], our variable-length model does converge
without the need for pre-training with 60 frame-length sequences.

This is likely due to our style modulated transformer decoder. Also
of note, we observe that variable length training yields a model that
can extrapolate better to longer sequence lengths at test time.

4.2. Encoder-Decoder Architecture

As we discuss in Section 3.1.1 of the main paper, the architectural
choice of the shape encoder (and decoder) can be arbitrarily com-
plex. In our work, we use a simple MLP similar to [CBGB20].
However, recent progress in graph convolutional neural networks
has shown that exploiting the topology of a mesh during convolu-
tion can be beneficial. We wish to show that our disentangled mo-
tion model is not tied to any shape encoder/decoder framework, and
can benefit other models as well, like graph convolution networks.
Thus, we evaluate the effect of replacing the MLP in the encoder
and decoder with an equivalent encoder and decoder from Spiral
Net++ [GCBZ19]. Fig. 5 contains a detailed breakdown of both our

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.



P. Chandran, G. Zoss, M. Gross, P. Gotardo, D. Bradley / Suppl: Facial Animation with Disentangled Identity and Motion using Transformers

0 10

Ours

20 30 40 50 60

Random Linear Interpolation

Nearest Neighbour

Random

Motion Simulator

Motion Inpainting / InterpolationMotion Generation

Real

Ours

Lo
w

er
 L

ip
 T

ra
je

ct
or

y

Lo
w

er
 L

ip
 T

ra
je

ct
or

y

0 10 20 30 40 50 60

Figure 3: Left: Additional baseline experiments comparing the trajectories generated by our method vs. random walks in a blendshape space.
Right: For a keyframe interpolation setting, we provide additional visualizations of trajectories generated by picking the closest performance
from the training dataset, and one obtained through off-the-shelf motion simulation tools. Kindly refer to our supplemental video where our
method qualitatively provides the best result in comparison to such simple baselines.

Fixed (60 Frames)

Variable (Full Length Performances)

Iteration

L
o
s
s

0 20 40 60 80 100

Figure 4: We compare training our model on fixed length se-
quences of 60 frames with a varying sequence length. Even without
pre-training, our model shows reasonable convergence. Note that
at a given instance in time, the variable length model has effec-
tively seen 1/64th of the number of training samples as the other
Fixed model, due to different batch sizes.

encoder variants. The architecture of the decoder is essentially the
same but in the reverse direction. In Table 1, we show the valida-
tion error on the SDFM dataset [CBGB20]. Both encoder/decoder
frameworks naturally complement our disentangled motion model,
and we can see that having optimal shape encoder/decoders that
capture spatial correlations like Spiral Net++ performs better than
a simple MLP.

Table 1: Architecture of Shape Encoder - Decoder

Architecture Validation error (mm)
SDFM [CBGB20] 1.47
SpiralNet++ [GCBZ19] 1.33

4.3. Performance Code Size

Recall that our performance encoder (Section 3.1.2 of the main
text) reduces input performances to a 128-dimensional perfor-
mance code. To evaluate different sizes of the performance code,
we train our model to predict performance codes of size 128, 256,
512 dimensions, respectively. We perform this study on the SDFM
dataset and report numbers on our validation set (see Fig. 6). As we
can see from Table 2, code dimensions 128 and 256 are comparable
in performance. 512 starts to overfit on the training set and there-
fore generalizes poorly. On larger datasets, e.g. [MGT∗19], bigger
networks could perform better, in particular at higher-dimensional
performance codes. We leave such a further exploration to future
work.

Table 2: Size of the Performance Code

Dim Validation error (mm)
128 1.47
256 1.62
512 3.68

4.4. Transformer Capacity

Finally, we also perform an ablation on the number of layers and
attention heads used in our performance transformers Fig. 7. Em-
pirically we observed faster convergence when using shallow trans-
formers, while the number of self attention heads did not have a
major impact on performance. We used 4 transformer blocks with
8 heads in both our encoder and decoder.

5. Additional Experiments

Section 4.3 of the main paper illustrated several applications of our
method. We now highlight even further applications and experi-
ments that our model supports.

5.1. Retiming

Our method allows for retiming captured performances by simply
modifying the relative positions of key-frames that are input to our

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.



P. Chandran, G. Zoss, M. Gross, P. Gotardo, D. Bradley / Suppl: Facial Animation with Disentangled Identity and Motion using Transformers

Figure 5: We breakdown two different architectural choices for our shape encoder. On the top, we see the simple 4 layer MLP that is similar
to the one used by Chandran et al.[CBGB20]. A flattened list of vertex displacements is processed by a MLP to eventually result in the identity
code zid . In the bottom half of the figure, we show an alternate breakdown of our encoder using dilated spiral convolutions [GCBZ19], where
each vertex spiral is processed independently by the model. On top of each linear layer, the number of features associated per vertex is
shown in green. Below each linear layer, the spiral length and the dilation used at that layer is displayed in blue. After 3 layers of spiral
convolutions, the per-vertex features are flattened to form a vector, which is subsequently passed through a final linear layer to obtain the
identity code zid .

performance enoder, and also by modifying the position encoding
of the shape/performance codes that are fed as input to the decoder.
This allows us to speed up, slow down and even reverse perfor-
mances in a straightforward manner. Please refer to our supplemen-
tary video for this result.

5.2. Style Mixing

Another application that is enabled by our method is style mix-
ing. Our style-based decoder allows for the mixing and matching
of styles at different layers of the decoder and can be readily used
to produce novel performances. In our supplementary video, we
show a style mixed performance which was obtained by mixing the
styles of two different captured performances at different stages of
the decoder.

5.3. Encoding Robustness

Finally, we perform an experiment to test the robustness of our per-
formance encoder with respect to the number of input frames re-
quired at inference time in order to obtain a valid performance code.

Since the encoder is a transformer, any number of input frames may
be provided. For this experiment, we trained the model on perfor-
mances of length 60 frames, and then we encoded a new perfor-
mance several times, divided into 10, 20, 30, and 60 frames, re-
spectively, yielding 4 different performance codes, which are then
passed through our decoder to reconstruct 4 sets of 60 frames.
We observe that the performance codes obtained from even par-
tial information are able to reasonably capture the essence of the
original performance. Interestingly, we observe that this effect also
depends on the facial performance itself. For example, for perfor-
mances where there is a lot of movement, the performance encoder
requires more input frames in order to capture all movements, while
for performances with less articulation even a few frames are suf-
ficient. For this result, please refer exclusively to the animations in
the supplementary video.

References
[CBGB20] CHANDRAN P., BRADLEY D., GROSS M., BEELER T.: Se-

mantic deep face models. In International Conference on 3D Vision
(2020), pp. 345–354. 2, 3, 4

[GCBZ19] GONG S., CHEN L., BRONSTEIN M., ZAFEIRIOU S.: Spi-

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.



P. Chandran, G. Zoss, M. Gross, P. Gotardo, D. Bradley / Suppl: Facial Animation with Disentangled Identity and Motion using Transformers

128-D

512-D

256-D

Iteration

L
o
s
s

0 20 40 60 80 100

Figure 6: We show the convergence of our model for performance
codes of 3 different sizes. We use a performance code of 128 dimen-
sions for our experiments. Without a large enough dataset, using a
high dimensional performance code results in poor validation per-
formance.

4 Layers, 8 Heads

4 Layers, 16 Heads

8 Layers, 8 Heads

8 Layers, 16 Heads

Iteration

L
o
s
s

0 20 40 60 80 100

Figure 7: Convergence of our performance transformers of differ-
ent capacities on a subset of the AMASS dataset [MGT∗19]. The
ra[id convergence of shallow transformers could be attributed to
the limited size of our training datasets.

ralnet++: A fast and highly efficient mesh convolution operator. In Int.
Conf. Comput. Vis. Workshops (2019). 2, 3, 4

[LMR∗15] LOPER M., MAHMOOD N., ROMERO J., PONS-MOLL G.,
BLACK M. J.: SMPL: A skinned multi-person linear model. ACM Trans.
Graphics (Proc. SIGGRAPH Asia) 34, 6 (2015), 248:1–248:16. 2

[MGT∗19] MAHMOOD N., GHORBANI N., TROJE N. F., PONS-MOLL
G., BLACK M. J.: AMASS: Archive of motion capture as surface
shapes. In Int. Conf. Comput. Vis. (Oct. 2019), pp. 5442–5451. 1, 3,
5

[PBV21] PETROVICH M., BLACK M. J., VAROL G.: Action-conditioned
3D human motion synthesis with transformer VAE. In Int. Conf. Comput.
Vis. (2021), pp. 10985–10995. 1, 2

[PCG∗19] PAVLAKOS G., CHOUTAS V., GHORBANI N., BOLKART T.,

OSMAN A. A. A., TZIONAS D., BLACK M. J.: Expressive body cap-
ture: 3d hands, face, and body from a single image. In Proceedings IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR) (2019). 1

[ZBL∗19] ZHOU Y., BARNES C., LU J., YANG J., LI H.: On the con-
tinuity of rotation representations in neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (June 2019). 1

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.


