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a b s t r a c t

Solving linear system of equations stemming from Laplacian operators is at the heart of a wide range
of applications. Due to the sparsity of the linear systems, iterative solvers such as Conjugate Gradient
and Multigrid are usually employed when the solution has a large number of degrees of freedom.
These iterative solvers can be seen as sparse approximations of the Green’s function for the Laplacian
operator. In this paper we propose a machine learning approach that regresses a Green’s function
from boundary conditions. This is enabled by a Green’s function that can be effectively represented
in a multi-scale fashion, drastically reducing the cost associated with a dense matrix representation.
Additionally, since the Green’s function is solely dependent on boundary conditions, training the
proposed neural network does not require sampling the right-hand side of the linear system. We
show results that our method outperforms state of the art Conjugate Gradient and Multigrid methods.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Efficiently solving linear systems originating from discrete
artial Differential Equations (PDEs) is central to many modern
pplications, ranging from modeling of natural phenomena to im-
ge processing. Since these equations model local relationships,
heir discretized counterparts are sparse and only few entries
re non-zero. Therefore, direct matrix inversion is not efficient
ince it yields a dense representation, and iterative solvers such
s Conjugate Gradient and Multigrid are preferred.
In this work, we propose a novel framework that compre-

ends iterative methods for solving linear systems of equations
temming from Poisson Equations. Our method is inspired by
he theory of Green’s functions: integral equations obtained from
he PDE and its corresponding boundary conditions. Once com-
uted, they can provide the solution to the PDE by a simple
onvolution. However, Green’s function methods are not adopted
n practical applications because analytic solutions exist only in
imple settings, and discretizing them is unpractical due to their
ide kernel support. Our first contribution, thus, is a novel multi-

evel discrete Green’s function formulation that is able to take
dvantage of a sparse and more efficient design. Our second
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contribution is to take advantage that Green’s functions only
depend on the boundaries of the domain, and train a neural net-
work model to regress Green’s functions from general boundary
settings. Lastly, due to the spectral properties of our multi-level
discrete Green’s function, our method can be applied as an iter-
ative solver on the error residual. These combined contributions
create a linear system solver with unprecedented error conver-
gence in 2-D, surpassing state of the art Conjugate Gradient and
Multigrid methods.

2. Related works

We revisit methods for solving linear system of equations aris-
ing from linear discrete PDEs in the following. Classical methods
are extensively studied by LeVeque [1], so our discussion will
focus on recent attempts involving learning-based methods and
approximating Green’s functions.

Learning Green’s functions. The work of Alkhalifah et al. [2] pro-
posed to represent Green’s function of wave equations through
fully-connected neural networks. The network takes spatial co-
ordinates and source locations as input and predicts the Green’s
function value for a given domain. The formulation is similar to
the Physics-Informed Neural Networks (PINN) [3], where each
specific PDE is represented by one fully connected network. Sim-
ilarly to our work, Ichimura et al. [4] developed a neural network
trained to fit local patches of the discretized Green’s function. The
training depends on the right-hand side and solution pair, thus
results in a very large dataset, containing around 16.2 million
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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amples. As the proposed Green’s function is still an approxi-
ation of the ground-truth, the authors adopted it as a pre-
onditioner for the linear system. On the contrary, we adopt the
pproximated Green’s function as a multi-level iterative solver.
Green’s functions were also explored in a multi-scale fashion

o solve specific electromagnetic potentials. In a series of papers,
i et al. [5–7] proposed neural networks as non-linear neural op-
rators to map coefficients of differential operators directly to so-
utions. However, the proposed neural operators always assume
ixed forcing terms in the PDE, and these methods do not deal
ith complex boundary conditions. The work of Feliu-Faba et al.
8] decomposes Green’s function of pseudo-differential operators
hrough a nonstandard wavelet transform, training neural net-
orks that jointly learn the mapping from Laplacian coefficients
nd wavelet parameters. This approach, however, does not take
omplex boundary conditions into consideration. Gin et al. [9]
esigns an autoencoder structure to map forcing terms from non-
inear PDEs into a linear space for solving PDEs through Green’s
unctions. Recent advances in learning Green’s functions also
nvolve applying them other domains such as solving Helmholtz
nd Sturm–Liouville problems [9], computing discrete Markov
hains [10], and quantum field theory [11].

ulti-resolution analysis and sparse approximate inverses. Our
ork is inspired by several recent contributions on multi-
esolution analysis and Sparse Approximate Inverses. Multireso-
ution matrix factorization (MMF) [12–14] extends classic multi-
esolution analysis [15] to matrix representations. Haar wavelets
which act as ideal low pass filters) are the natural basis when
onstructing hierarchical representations of the Laplacian op-
rator [12]. Similarly to our work, progressive mollification is
pplied to Kronecker deltas for multi-scale analysis with diffu-
ion wavelets [16]. Sparse Approximate Inverses (SPAI), on the
ther hand, are more general low rank matrix approximations
or the inverse of a discrete matrix. These can be employed as
reconditioners [17–20] and as Multigrid smoothers [21,22].

olving linear PDEs with convolutional neural networks. More re-
ent endeavors in the deep learning era leaned towards a direct
apping between image-represented boundary conditions of 2D
aplace equations and their solutions through convolutional neu-
al networks (CNN). Barati Farimani et al. [23] trained a U-Net
odel by combining L1 and adversarial losses, while Sharma
t al. [24] adopted a weakly-supervised residual loss. Other works
olved the Poisson equation for applied problems, including pres-
ure projection in fluid simulation [25,26], electric potentials [27]
nd particles simulation [28]. Differently from the previous work,
sieh et al. [29] proposed to use neural networks to modify
acobi-style iterative solvers. The neural network operates on
he error term at each iteration, and is designed to be linear
without bias and non-linear activation functions) to guarantee
onvergence to the correct fix point solution. After supervised
raining, the network can moderately improve the convergence
peed of a Jacobi and a Multigrid solver.

. Background

We briefly review the linear partial differential equations
PDE) and their Green’s function solutions in this section. The
ymbols used throughout the paper can be found in Table 1.

.1. Linear partial differential equations

Linear PDE solvers aim to find functions that satisfy a set of
inear differential equations. Consider F = {u : Ω ∈ Rk

→ R}
s a space of smooth scalar field functions in a domain of k
imensions, A : F → F a linear differential operator and u ∈ F
187
a candidate function that satisfies the equation Au(x) = f (x), for
f ∈ F . In this paper, we assume A = ∇2

=
∂2

∂x21
+· · ·+

∂2

∂x2n
, which

ields a Poisson equation of the form ∇2u(x) = f (x). Solving a
inear PDE involves finding a function u ∈ F that satisfies the
bove conditions.
The solution of a linear PDE depends on specified boundary

onditions (BC). Assuming ∂Ω as the boundary of the domain
ith an oriented normal vector n, homogeneous Dirichlet (u(x) =
, x ∈ ∂ΩD) and Neumann ( ∂u(x)

∂n = 0, x ∈ ∂ΩN ) are common
boundary conditions. These conditions can model obstacles and
domain boundaries. Thus, a Poisson equation with prescribed
boundary conditions is formulated as⎧⎨⎩
∇

2u(x) = f (x), x ∈ Ω,

u(x) = 0, x ∈ ∂ΩD,
∂u(x)
∂n = 0, x ∈ ∂ΩN .

(1)

3.2. Green’s function

A Green’s function G(x, x′) of the linear differential operator A
is defined as⎧⎪⎨⎪⎩
AG(x, x′) = δ(x− x′), x ∈ Ω,
∂G(x,x′)

∂x = 0, x ∈ ∂ΩN ,

G(x, x′) = 0, x ∈ ∂ΩD,

(2)

where δ is the Dirac delta function: δ(x) = 0 for x ̸= 0,
∞

−∞
δ(x)dx = 1; and x′ ∈ Ω is a fixed point. The Green’s

unction is useful to solve inhomogeneous linear PDEs, since
nce computed for a specific operator, the PDE Au(x) = f (x) is
mmediately solved by

(x) =
∫

Ω

G(x, x′) f (x′) dx′, (3)

or any arbitrary forcing function f (x).
Several analytical solutions of Green’s functions exist; for ex-

mple, the three dimensional Green’s function for the Laplace
quation with Dirichlet conditions at the infinity is given by

∞(x, x′) = −
1
4π
·

1
|x− x′|

. (4)

However, once more complex boundary conditions are intro-
duced, there are no known closed form Green’s function formu-
lation for the general case. The goal of this paper, thus, is to
efficiently approximate G(x, x′) given a certain boundary config-
uration. This will provide us a solution operator of any Poisson
equation without relying on the forcing function f (x).

3.3. The discretized setting

Since there are no trivial analytical solutions for linear PDEs
in the general case, its common to solve them numerically. To
do so, the first step is to discretize the operator A spatially.
Among grid-based methods, regular (Cartesian), curvilinear, or
unstructured discretizations are common [1], and each of which
can be potentially coupled with distinct approximation schemes
such as finite differences, finite volumes or finite elements. In
this paper we will focus on approximating Green’s functions for
regular grids in 2-D with embedded objects discretized by fully
filled cells [30], and no fractional boundary treatment. We notice,
however, that all the aforementioned discretizations will yield a
discrete linear matrix and the discussion presented here does not
limit itself to the particular choice of regular grids coupled with
finite differences.
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Table 1
Summary of symbols.
A,G Differential operator and its Green’s function
u(x), f (x) Solution and forcing function of the PDE
A,G Discretized Laplacian and its Green’s function
u, f Ground-truth solution and right-hand side vectors
û Approximated solution vector
r Residual vector r = f− Aû
∂ΩN , ∂ΩD Neumann and Dirichlet boundary
ℓ Level index for Multi-level Green’s Function
i, j Grid position index
Nℓ Number of nodes of the regular grid at level ℓ

mℓ, nℓ Sizes (x and y direction) of the regular grid at level ℓ

Uq
ℓ,D

q
ℓ Upsampling and Downsampling operators

G∗ℓ Residual Green’s function at level ℓ (Eq. (9))
Gℓ Green’s function at level ℓ (Eq. (13))
Iℓ Downsampled identity matrix at level ℓ

kℓ Size of Green’s Function Kernel at level ℓ

uℓ Intermediate solution vector at level ℓ

fℓ Downsampled right-hand side vector at level ℓ

φℓ SDF of solid obstacles at level ℓ

Mℓ, Θ MLP at level ℓ and its parameters

The 2-D Laplacian operator discretized with a second order
pproximation at regular grid node xi,j is given by

2u(xi,j) ≈
1
h2 (ui+1,j + ui,j+1 + ui−1,j + ui,j−1 − 4ui,j), (5)

here h is the grid spacing and ui+1,j,ui,j+1,ui−1,j,ui,j−1,ui,j are
iscrete grid values at different locations (inset). Notice that
his discretization of Laplacian operator is compact, since each
ode only interacts with its immediate neighbors. Extending this
elationship for all grid nodes yields the following linear system:

u = f. (6)

ere we use A to discretize the negative of Laplacian operator.
his system is sparse with 5 non-zero entries per row/column.
oundary conditions can change the stencil of the discrete Lapla-
ian kernel (Eq. (5)) and the structure of matrix A. Moreover, if
oundary conditions are compatible, the matrix A is symmetric
ositive definite.
It is straightforward to see that in the discrete case, the Green’s

unction is simply the inverse of the Laplacian matrix, since
iscretizing Eq. (2) yields

A = I, (7)

where G is the discretized Green function for the operator A.
Therefore, for an arbitrary discrete forcing term f, the solution of
the PDE is

u = Gf. (8)

4. Neural Green’s function for Laplacian systems

The most straightforward way to find a Green’s function so-

lution for a Poisson Equation is to invert its discrete matrix

188
Fig. 1. Left: a Green’s function for the one dimensional Laplacian operator. Right:
the power spectrum of the Fourier decomposition of the Green’s function.

representation G = A−1. However, this is computationally in-
efficient as G is dense. Even if the Green’s function for discrete
Laplacian is known a-priori, the cost for computing the solution
by dense matrix multiplication u = Gf is O(N2) given a regu-
ar grid with N nodes, which is sub-par when compared with
tate-of-the-art iterative solvers. This approach, therefore, is not
mployed in practice.
The dense Green’s function for the Laplacian operator, how-

ver, has a sparse counterpart in the frequency space: consider
ts one-dimensional representation plotted for Dirichlet boundary
onditions in Fig. 1. Despite being dense in the original space,
ts power spectrum shows that it is sparse on the frequency
pace. This property suggests that there is another representation,
esides the standard matrix format, in which the Green’s function
an be compactly discretized. Previous works on Sparse Approx-
mate Inverses (SPAI) employed Wavelets [20] to also make the
’s representation more efficient. We therefore propose a multi-
evel compact representation for the Green’s function in the next
ection.

.1. A multi-level Green’s function representation

Our multi-level Green’s approximation (MLGA) relies on lower
esolution grids that are progressively up-sampled until a target
esolution:

= UL
1G
∗

1D
1
L + UL

2G
∗

2D
2
L + . . . + UL

L−1G
∗

L−1D
L−1
L + G∗L

=

L−1∑
ℓ=1

UL
ℓG
∗

ℓD
ℓ
L + G∗L , (9)

where G∗1 and G∗L are matrices representing coarsest and finest
discretizations respectively; and Uq

ℓ (Dq
ℓ) is upsampling (down-

sampling) operator that maps a vector from discretization level
ℓ (of Nℓ nodes) to discretization level q. We implement the up-
sampling (downsampling) operators through composing a series
of ratio-2 operators; e.g., the upsampling operator UL

ℓ is composed
as

UL
ℓ = UL

L−1U
L−1
L−2 · · ·U

ℓ+1
ℓ =

L∏
q=ℓ

Uq+1
q . (10)

Similar to the Multigrid method [31], the ratio-2 upsampling and
downsampling operators are represented by 3 × 3 full-weighting
kernels. The downsample kernels are constructed by computing
the tensor product D = B⊗ B between one-dimensional stencils.
We choose B to be a linear stencil defined as

(Bu)i =
1
4
ui−1 +

1
2
ui +

1
4
ui+1. (11)

he upsample operator is chosen to be the scaled transpose of
he downsample operator U = 4DT [31]. Boundary conditions are
easily handled by manipulating the operand: a Dirichlet condi-
tion imposes that values on the boundaries are set to 0, while
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Fig. 2. Multi-level Green’s function (L = 2). Left: sparse matrix represented by multi-level Green’s function G∗1,G
∗

2 multiplied with vector f. Right: spatially varying
onvolutional kernel represented by G∗1,G

∗

2 convolved with f. Here ∗ represents the 2-D convolution operation. Both representations are equivalent to each other,
ith the same values shown in the same color.
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Neumann condition requires extrapolation of values to the
oundary in the direction of the derivative. When a boundary
ell has multiple Neumann conditions applied to it, the extrap-
lation simply averages contributions from different directions.
oreover, we notice that linear 3 × 3 downsampling kernels can

ntroduce aliasing; however this was not an observed problem in
ur experiments.

.2. Enforcing sparsity

Simply approximating the matrix inverse with the formulation
hown in Eq. (9) is not enough for an efficient representation.
herefore, similarly to SPAI approaches [14], our goal is to find
sparse approximation of the Green’s function Ĝ, which can be
xpressed through the following optimization:

ˆ = argmin
G
∥GA− I∥22 , (12)

here Ĝ is sparse. One of the contributions of this paper is
o show that the multi-level approximation can sparsely and
fficiently represent the Green’s Function by solving Eq. (12)
ndependently per level. To show that, we first define Gℓ as

ℓ =

ℓ−1∑
q=1

Uℓ
qG
∗

qD
q
ℓ + G∗ℓ = Uℓ

ℓ−1Gℓ−1Dℓ−1
ℓ + G∗ℓ . (13)

The equation above states that the approximation at the ℓth
evel is defined by the summing the previous upsampled level
ℓ−1 and a residual matrix G∗ℓ defined at ℓ.
Similarly to the Galerkin approximation, our derivation as-

umes that coarser levels should solve a Laplace system pro-
ressively downsampled from the finest level. Defining Aℓ =
ℓ
LAU

L
ℓ and using the Green’s definition of Eq. (13), the sparse

ptimization can be written as

ˆ
ℓ = argmin

Gℓ

∥GℓAℓ − Iℓ∥22 , (14)

here Iℓ = Dℓ
LIU

L
ℓ is the downsampled identity matrix.

Directly optimizing Eq. (14) is memory inefficient, since the
pproximation in a level depends on the previous coarser one.
y reformulating Eq. (14), we can solve for the mismatch of
he downsampled identity between grid resolutions of adjacent
evels Iℓ − Uℓ

ℓ−1D
ℓ−1
ℓ Iℓ, and rewrite the optimization to be level-

ndependent as

ˆ ∗
ℓ = argmin

Ĝ∗
ℓ

Ĝ∗ℓAℓ −
(
Iℓ − Uℓ

ℓ−1D
ℓ−1
ℓ Iℓ

)2

2
. (15)

otice that this method only works because it is bound to a target
inest grid resolution; therefore, it cannot be reused for distinct
189
rids with varying number of nodes/levels. The full derivation
rom Eqs. (14) to (15) is presented in the supplemental material.

Lastly, the per-level Ĝ∗ℓ Green’s approximation is mostly sparse.
hat happens because each row (a 2-D kernel converted to an
rray) has a compact support due to the predominance of lower
requencies in Green’s function of elliptical operators. The kernel
ith compact support is centered around the point of evaluation
s illustrated in Fig. 2. This assumption requires that contributions
rom distant nodes are inherently modeled by interpolation of
reen’s Functions from coarser levels. Scenarios that violate this
ssumption will be discussed in Section 6.
We choose to represent residual Green’s function approxi-

ations Ĝ∗ℓ through spatially varying convolutions, i.e. sliding-
window of compact kernels G∗ℓ(iℓ, jℓ) that vary at each position.
Here 1 ≤ iℓ ≤ mℓ, 1 ≤ iℓ ≤ nℓ, with mℓ and nℓ being the
izes in x and y direction of the regular grid at level ℓ, and Nℓ =

ℓnℓ. We can conveniently write them as sparse matrix–vector
ultiplications: the values of G∗ℓ(iℓ, jℓ) represent the non-zero

values at row (iℓNℓ + jℓ) in the matrix G∗ℓ ∈ RNℓ×Nℓ . For coarser
levels we adopt kernels of sizes kℓ × kℓ to cover most of the
domain since they are still relatively cheap to compute. As the
discretization progresses to more refined levels, the kernel size
progressively decreases until it covers only a small neighborhood
(e.g., for all our examples the finest level has kernel size 5 × 5).

The number of operations needed to for sparse matrix–vector
ultiplication depends on the number of non-zero matrix en-

ries; the total number of non-zero elements in G∗ℓ is
∑L

ℓ=1 k
2
ℓNℓ.

he number operations needed for upsampling and downsam-
ling operators implemented by 3 × 3 kernels is

∑L−1
ℓ=1 3

2Nℓ.
herefore, the total number of operations for multiplying the
ulti-level Green’s function with a vector is k2LNL +
L−1
ℓ=1

(
k2ℓNℓ + 2 · 32Nℓ

)
. Thus, as long as k2l ≪ Nl in higher

esolution levels, evaluating Eq. (8) with the proposed multi-
evel Green’s approximation requires significantly less operations
hen compared with it the dense Green’s counterpart, which
equires (NL)2 operations.

.3. Solving the Poisson system iteratively

Once the optimization problem in Eq. (15) is solved, the fi-
al approximation of the Green’s function can be obtained by
ombining all Ĝ∗ℓ in Eq. (9). However, naively computing this
atrix–vector multiplication is memory inefficient, since there is
o need to upsample the per-level residual Green’s function Ĝ∗ℓ
o level L. Instead, Eq. (8) can be implemented through applying
ˆ ∗
ℓ on the right-hand side vector f in a level-by-level fashion.
tarting with level ℓ = 1, a first approximation of the solution
s obtained u0 = Ĝ∗1(D

1
L f). At the following levels ℓ, we apply

ˆ ∗ on the corresponding right-hand side vector to get a error
ℓ



J. Tang, V.C. Azevedo, G. Cordonnier et al. Computers & Graphics 107 (2022) 186–196

c
u
u
L

c
r
p
t
a

4

m
a
t
s
b
c
t
c

i
d
I
a
i
s
w
r
F
b
t
i
u

G

R
φ

orrection term eℓ
= Ĝ∗ℓ(D

ℓ
Lf). This correction is then added to the

psampled coarser level, which yields the current level’s solution
ℓ = Uℓ

ℓ−1uℓ−1 + eℓ. The process continues until the finest level
.
As the approximated Green’s function Ĝ is not exact due to

ut-offs introduced by compact kernels, directly applying it on the
ight-hand side vector usually does not provide a solution that is
recise enough. Thus, we devise an iterative fashion of applying
he Green’s function to refine the prediction. After getting a first
pproximation of the result as û = uL, a residual r = f − Aû

is computed. Then, the approximated Green is applied on this
residual and added back to û to obtain the next approximation:
û← û+ Ĝr. The process is repeated until a user-defined residual
tolerance or maximum number of iteration is reached. The pre-
sented method has similarities with a Multigrid solver, but the
relaxation step is substituted by using our approximated Green’s
kernels. The whole solving process is summarized in Algorithm 1.

Input: {Ĝ∗ℓ : ℓ = 1, 2, . . . , L}, right-hand side vector f,
system matrix A, maximum number of iteration
Nitr, residual tolerance ε.

Initialization: r← f; û← 0;
for I = 1 to Nitr do

u1 ← Ĝ∗1(D
1
Lr);

for ℓ = 2 to L do
eℓ ← Ĝ∗ℓ(D

ℓ
Lr);

uℓ ← Uℓ
ℓ−1uℓ−1 + eℓ;

end
û← û+ uℓ;
r← f− Aû;
if ||r||∞ < ε then

break;
end

end
Output: û
Algorithm 1: Using G∗ℓ to solve Poisson Equation.

.4. Learning Green’s functions

The optimization in Eq. (15) depends on the specific system
atrix A that it was solved for, which restricts its application to
Laplace operator under specific boundary conditions. Assuming
hat the Laplacian operator has homogeneous coefficients, we ob-
erve that the kernel weights of G∗ℓ(i, j) can be determined solely
y the boundary conditions in a given domain. Therefore, we
an obtain Green’s functions for more general configurations by
raining a Multilayer Perceptron (MLP) to directly map boundary
onditions into kernel weights.
Contrary to position-based features that were used in previous

mplicit approaches [32], we can adopt features that are based on
istances of an evaluation point relative to all domain boundaries.
ncluding all these distances (or, alternatively, the whole domain
s input) as features of the neural network, however, would result
n a large parametrization space that is challenging to generalize,
ince it would contain features that would only weakly correlate
ith the outputs of our Neural Green’s function. Instead, we
ely on a feature vector that takes patches of Signed Distance
unctions (SDFs) from the point of evaluation to the domain
oundaries. These functions are smooth, and once coupled with
heir derivatives – which are automatically encoded by the patch
nformation – they can represent non-local information of the
nderlying geometries embedded on the domain.
The neural network that maps the boundary conditions to

reen’s function kernels at level ℓ is defined as MΘ
: φ (i, j) ∈
ℓ ℓ
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kℓ×kℓ → G∗ℓ(i, j) ∈ Rkℓ×kℓ . This mapping takes a SDF patch
ℓ centered at (i, j) and maps it to a Green’s kernel G∗ℓ(i, j) of

the same size. Since the mapping is defined continuously by
the signed distance functions, the mapping function MΘ

ℓ is well
represented by a MLP. The MLP flattens the input SDF patch into a
vector and outputs a vector of the same shape. The output vector
is then reshaped into a kℓ × kℓ patch and used as G∗ℓ(i, j).

We define separate MLPs for each level. The training of each
level is also performed independently according to the objective
defined in Eq. (15). The only difference lies in the parameters to
be optimized:

Θ̂ = argmin
Θ

∑
r

∑
i,jMΘ

ℓ

(
φr

ℓ(i, j)
)
Aℓ −

(
Iℓ − Uℓ

ℓ−1D
ℓ−1
ℓ Iℓ

)2
2 , (16)

where r denotes the training example index. The multiplication
of MΘ

ℓ (φℓ(i, j)) and matrix A is a sparse vector–matrix multipli-
cation. In practice, we do not sequentially take all patches from
a boundary setting to form a batch during training, but rather
randomly pick (i, j) from different boundary settings.

At test time, we extract all sliding local patches from φℓ to
form a batch {φℓ(i, j) : ∀1 ≤ i ≤ mℓ,∀1 ≤ j ≤ nℓ}. The
whole batch is used as input to the current level’s MLP to get
predictions of the corresponding residual Green’s function kernels
{G∗ℓ(i, j) : ∀1 ≤ i ≤ mℓ,∀1 ≤ j ≤ nℓ}. This process is performed
for all levels ℓ = 1, . . . , L to obtain the full multi-level Green’s
function representation. Given G∗ℓ(i, j) for all levels, we can use
the procedure defined in Algorithm 1 to solve for arbitrary right-
hand side. An overall illustration of the training and test pipeline
can be seen in Fig. 3.

5. Experiments and results

We evaluate the ability of our approximated Green’s function
to solve the Poisson equations (Algorithm 1) by comparing its
performance with classical linear solvers. Random right-hand
side vectors f are generated with either Gaussian noise (Fig. 5,
top row) or Perlin noise [33] (Fig. 5, bottom row). Classical
linear solvers evaluated include Jacobi, Conjugate Gradient (CG),
Multigrid (MG), and Multigrid Preconditioned Conjugate Gradient
(MGPCG) . The residual L1-norm of different solvers is plotted
against the number of multiply-add operations, as a compari-
son based on the number of iterations would be biased by the
computational cost required at each iteration step.

5.1. Implementation details

We implement all our models, as well as classical (Conjugate
Gradient (CG), Jacobi, Multigrid, and Multigrid Preconditioned
Conjugate Gradient) solvers in PyTorch [34]. All experiments are
run on a NVIDIA GeForce RTX 2080Ti GPU with 11 GB of dedicated
memory.

Multi-level representation. Grids at all levels are discretized with
a resolution of Nl = (2ℓ+1

+ 1) × (2ℓ+1
+ 1) nodes, where

ℓ = 1, . . . , L is the index of the level. This means that we always
fix the coarsest level ℓ = 1 to have 5 × 5 nodes. The kernel sizes
of each level kℓ are determined heuristically. For example, setups
with the resolution of N = 1292 employ different kernels sizes
for each level as k1 = 9, k2 = 11, k3 = 9, k4 = 7, k5 = 5, k6 =
5. The total number of multiply-add operations in this setting
when applying the multi-level Green’s function to the right-hand
side is ∼7.1 × 105, while the operations needed for applying
the dense Green’s function is ∼2.8 × 108. Eq. (15) is solved as
an unconstrained optimization problem with a Quasi-Newton (L-
BFGS) optimizer. We choose a history size of 10 to approximate
the Hessian, and the Armijo criteria is used for the line search
algorithm, which is limited to 10 steps. For all tests the same
hyper-parameters are used for the L-BFGS algorithm.



J. Tang, V.C. Azevedo, G. Cordonnier et al. Computers & Graphics 107 (2022) 186–196

p
G
s

t
φ

N
e
6
l
R
l
i
t
b
t
f

M
[
u
a
c
2
s
f

5

o
f
t
o
t
t
t
b

Fig. 3. Pipeline illustration for training and test time. During training (a), given the SDF φℓ of objects representing the interior boundary setting at level ℓ, several
atches are randomly selected to form an input mini-batch. The MLP at this level processes the input SDF batch and outputs a batch of corresponding residual
reen’s function kernels. These kernels are then used to incur the loss defined in Eq. (16). Dashed lines represent the back-propagation process. At test time (b),
liding local patches are extracted from the SDF φℓ . These patches represent the input MLP; the MLP’s output corresponds to the residual Green’s function kernels
. The kernels are used to perform a spatially-varying convolution on the right-hand-side to get the error correction term eℓ . The error correction term is added to
he up-sampled coarser solution from level ℓ−1 to get the current level’s solution uℓ . The Unfold operation extracts all local patches centered at (i, j) of size kℓ× kℓ:
ℓ → {φℓ(i, j)}

(mℓ,nℓ)
(i,j)=(0,0) . The Fold operation is the inverse of Unfold, and it combines all local patches back into a complete field.
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eural networks. The model in Section 4.4 uses distinct MLPs for
ach level. The MLPs of the coarser levels (up to ℓ = 3) have
fully-connected layers, while rest of the other levels have 12

ayers. Each hidden layer in the MLP has 256 channels, and uses
eLU activations. The input layer is skip connected to the 4th
ayer. Dropout is applied in all layers during training. Each MLP
s trained with an Adam Optimizer, with initial learning rate set
o 10−4. The learning rate progressively decays every 300 epochs
y a ratio of 0.5 until convergence. MLPs of different levels are
rained independently in parallel. The training takes around 24 h
or each level.

ultigrid settings. We implement a geometric Multigrid solver
31] with weighted Jacobi (ω = 2

3 ) as the smoothing operator. We
se 8 pre-smoothing steps, 16 post-smoothing steps for all levels,
nd 20 smoothing steps for the coarsest level. When used as pre-
onditioner for Conjugate Gradient, we change the parameters to
pre-smoothing steps, 2 post-smoothing steps and 4 smoothing
teps for the coarsest level. The same set of parameters is used
or all experiments.

.2. Representing Green’s function for a single scene

We evaluate our method in two parts: first, we validate that
ur multi-level representation can adequately represent a Green’s
unction for a fixed boundary configuration. Next, we measure
he capacity of the MLPs to predict Green’s functions for arbitrary
bstacles. The purpose of our first experiment is to validate that
he choice of our structure of multi-level convolution is sufficient
o accurately and sparsely approximate the discrete Green’s func-
ion (the dense inverse of the A matrix). To this end, we fix the
oundary conditions and directly optimize for the values of Ĝ∗ℓ

for all ℓ (Eq. (15)). We note that the discretization of the Green’s
function can be exactly represented with our multi-layer model
if we allow the radius of the convolution to span the size of
the whole domain. Although this would be unpractical for large
domains, this allows us to compute a set of ground truth kernels
G∗ℓ at low resolution (33× 33).

Fig. 4 shows the comparisons of ground-truth Ĝ∗ℓ(i, j) (b) and
approximated G∗(i, j) (c) kernels at different locations for level
ℓ

191
Table 2
Runtime comparison of our method with CG and MGPCG solvers for different
grid resolutions. All methods are set to stop at a residual of 5 × 10−4 in L1
norm. We run all experiments on a NVIDIA GeForce RTX 2080Ti GPU.
Solver 33 × 33 65 × 65 129 × 129 257 × 257

CG [ms] 90 189 390 708
MGPCG [ms] 128 197 299 425
Ours [ms] 13 16 26 33

ℓ = 3, with the difference between them shown on the right-
ost column. This difference does not exceed 3% of the magni-

ude for the ground-truth kernel, which indicates that the most
ominant values are well represented by the compact kernels
ˆ ∗
ℓ(i, j). In Fig. 4(e), we show that applying our kernel itera-
ively on the residual (Section 4.3) results in an algorithm that
utperforms state-of-the-art solvers.
Additional examples for a grid resolution of 257 × 257 nodes

re shown in Fig. 5. The MGPCG solver (top row) outperforms our
odel for the simplest case of boundary conditions (Dirichlet ex-

erior boundaries, no interior boundaries). However, when more
omplex boundaries are present (bottom row, mixed Dirichlet
nd Neumann exterior and interior boundaries), our model starts
o outperform all classical solvers. We chose two different types
f randomly generated right-hand side vectors on the top and
ottom rows to showcase that, once optimized, our Green’s func-
ion representation is oblivious to the right-hand side function.
istinct functions do not influence the convergence curves shown
n the right, and additional examples are demonstrated in the
upplemental material. We also compare the wall-clock time
cross resolutions for different solvers in Table 2. Although our
ethod saves only about 2× the number of multiply-add opera-

ions compared to MGPCG, its intrinsic parallel nature enables it
o reach a speedup of up to 12× at all resolutions.

.3. Predicting Green’s function for various boundary geometries

We further evaluate the performance of MLPs to predict
reen’s function kernels based on general boundary conditions
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Fig. 4. We compare our truncated Green’s function kernels (b) with the ground-truth (c). Both approaches are shown in the colored-line squares, the values outside
them are zero paddings. A 33 × 33 regular grid is used (obstacles shown in (a)), and two kernels are extracted at the third level ℓ = 3 (out of 4), at positions
i, j) = (8, 8) (top), and (11, 3) (bottom). In particular, our (5 × 5) convolution kernel (b) is compared to the (33 × 33) ground truth kernel (c) and the difference
s shown in (d). Note that the error is only about 1− 3%, showing that most of the dominant values in the dense G∗ℓ can be captured by the compact kernels. (e)
hows our approximated residual Green’s function can be used iteratively to solve the Poisson equation and outperforms classical solvers in terms of multiply-add
perations.
Fig. 5. Solving the Poisson Equation using multi-level Green’s function optimized on single scenes in a resolution of 257 × 257. The scene in the top row has
Dirichlet exterior boundaries and no interior boundaries. The scene in the bottom row has Dirichlet exterior boundary on the left side of the scene and Neumann
exterior boundary on the other sides. The interior objects shown in white all have Neumann boundaries. Our method is inferior to MGPCG for the simplest case

(top row), but outperforms all competing solvers when more complex boundary conditions exist (bottom row).
Fig. 6. Boundary condition samples from the training dataset. The top row
shows the SDF (plotted in BrBG colormap: brown color for negative values,
white color for zero and aqua for positive values) of the objects representing
interior boundaries. The bottom row shows the corresponding binary map of
the solution region (black) and out-of-boundary region (white). The left exterior
boundary of the scene is assumed to be Dirichlet boundary, while the right, top
and bottom exterior boundary are assumed to be Neumann.
192
of arbitrary scenes. Note that the training does not rely on either
the solution or the right-hand-side vectors. It only requires SDF
values for all levels and the corresponding discrete Laplacian
operator (φ1, . . . , φL,A).

Dataset generation. We randomly place spheres and rectangles
of random sizes into the scene to represent interior Neumann
boundaries. Spheres and rectangles keep canonical orientations
for simplicity, but are allowed to overlap in order to create more
complex shapes. SDF values are computed at different discretiza-
tion levels from the parameters of the spheres and rectangles
to obtain φ1, . . . , φL. The voxelized obstacle setting and its cor-
responding discrete Laplacian A are computed at the finest dis-
cretization level The discrete Laplacian is not stored for coarser
levels, instead, they are downsampled relative to the finest res-
olution on the fly during training. We generate 1000 scenes for
the dataset (see examples in Fig. 6), but the number of training
samples is larger as we randomly select local patches. Moreover,
10 scenes are generated in a similar fashion (randomly placing
spheres and rectangles) for creating the testing dataset. This

means that none of the test samples is seen during training. The
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Fig. 7. Solving a Poisson Equation using the multi-level Green’s function obtained by inferring the MLP. All scenes have Dirichlet exterior boundary on the left side
of the scene and Neumann exterior boundary on the other sides. The interior objects (in white) are modeled by Neumann conditions. Rows (a) and (b): Multi-level
Green’s function outperforms other competing solvers in terms of residual convergence. Row (c) shows a divergent result due an inaccurate kernel prediction for a
position that is simultaneously close to two objects (inset image). After post-processing problematic kernels through optimization (Row (d)), our method outperforms
other solvers.
Fig. 8. Ablation study for evaluating initialization seeds and SDF gradients as local features. The MLP is trained with different random initialization seeds (b, d).
o evaluate alternative local features, the spatial gradients of SDF values are used as extra input channels (c). All three variations show similar/inferior results and
onvergence (e) to our original model (a).
eft side of the exterior boundary of all scenes is assumed to be
irichlet while the other sides are assumed to be Neumann.

redicting on new boundary settings. We train MLPs for grids with
29 × 129 nodes and show test results evaluated by solving

Poisson equations in Fig. 7(a,b). Similar to the optimization results
in Fig. 5, the Green’s kernel produced by the MLPs can outperform
classical solvers in terms of residual convergence.
193
Fine tuning model output. Most of the test examples perform
similarly well as in Fig. 7(a,b). For some examples with more
complex interior boundary geometry though, inaccurate kernel
predictions can result in slow convergence or even divergence of
the residual, as is shown in Row (c) of Fig. 7. The predicted kernels
are suitable approximations in most of the regions, except the few
grid points next to the interior Neumann boundaries. To fix this
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Fig. 9. Using the multi-level Green’s function (a) and a MGPCG solver (b) to solve the projection step of a fluid solver with a grid resolution 257 × 257. The
eumann interior boundary settings and the SDF of the interior objects are shown as inset images in (a) and (b) respectively. The left exterior boundary is set to
e Dirichlet while the other sides are set to be Neumann. The residual tolerance is set to be 10−4 in L∞ norm for both solvers. The simulation takes 104 [ms] per
rame using multi-level Green’s function, and takes 576 [ms] per frame using MGPCG solver. Both wall clock time count exclude initialization and optimization time.
Fig. 10. We compare our truncated Green’s function kernels (b) with the ground truth (c). We use a 33 × 33 scene with 4 levels (obstacles shown in (a)), and
xtract two kernels, at positions (i, j) = (10, 9) (level ℓ = 3, top), and (4, 23) (level ℓ = 4, bottom). In particular, our (5 × 5) convolution kernel (b) is compared to

the (33 × 33) ground truth kernel (c) and the difference is shown in (d). (e) shows our approximated residual Green’s function can be used iteratively to solve the
Poisson equation and outperforms classical solvers in terms of multiply-add operations.
issue, we run a post-processing step on the failure cases. We solve
the optimization in Eq. (15) with the predicted Green’s function
kernels from MLPs as a starting value. The results of the fixed
kernels are shown in Row (d) of Fig. 7. The initialization reduces
the number of iteration needed for the optimizations from 20 to
10, and reduces the runtime of optimization from ∼35 s to ∼13
s.

Ablation tests. To evaluate the results variation over multiple
training runs, we train the model with different random seeds
for initialization (Fig. 8(b, d)). Both seeds used for initialization
show similar results in terms of both accuracy and convergence
(Fig. 8(e)). We also tried using spatial gradients of the SDF patch
as extra input channels (Fig. 8(c)). The plot (e) shows that in-
corporating the spatial gradient results in a slightly inferior con-
vergence rate. As the spatial gradient is inherently contained in
the input SDF patch, we argue that using it as extra channels is
redundant.

5.4. An example application

Our multi-level Green’s function can be used to replace clas-
sical solvers for Poisson Equations. We showcase an application
to a fluid (smoke) simulation in Fig. 9, where a Poisson solver is
necessary at the pressure projection step [30]. In particular, the
194
pressure projection equation is⎧⎨⎩
∇

2p(x) = ρ

∆t∇ · u(x), x ∈ Ω,
∂p(x)
∂n = 0, x ∈ ∂ΩN ,

p(x) = 0, x ∈ ∂ΩD,

(17)

where ∂ΩN and ∂ΩD are fluid–solid and fluid–air interfaces,
respectively. This step is the computational bottleneck in fluid
solvers; therefore, it is crucial that its solution is computed ef-
ficiently. We restrict our study to a 2-D, 257 × 257 scene, with
solid obstacles as shown in the top-left inset images in the Figure.
The multi-level Green’s function approximations are obtained by
optimizing kernels for this single scene. We compare our results
for several frames (top), to a MGPCG solver (bottom). Both solvers
are set to stop at residual tolerance of 10−4 in L∞ norm. The
resulting density field of the smoke are similar between the two
solvers. The simulation takes 104 ms per frame when using our
Multi-level Green’s function, and takes 576 ms per frame when
using MGPCG solver.

6. Conclusions and discussions

A multi-level Green’s functions for 2-D Poisson Equations was
presented as an alternative representation to standard SPAIs. Our
novel optimization scheme is level-independent, which makes its
evaluation efficient and memory-bound. Moreover, we show that
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Fig. 11. Solving Poisson Equations using multi-level Green’s function from the MLP output. The MLP is tested on an unseen triangular shape from training. The
model performance is inferior to those in Fig. 7.
our representation can be used to solve the discrete linear system
by iteratively applying it on the residual of the error.

The local property of the Laplace operator – its evaluation only
epends on the neighborhood of the evaluated position – is the
ey for our method’s efficiency. The Green’s function, on the other
and, exhibits a sparsity pattern in the frequency domain: the low-
requency global information is crucial to reconstruct the solution
f the current position, while magnitudes of high-frequencies are
ften small (Fig. 1). Our designed multi-level Green’s function
pproximation takes advantage of this property by representing
ow-frequency information through coarser grids, while high-
requency information is localized in finer grids. Therefore, our
ethod can potentially be applied to other types of elliptical PDE
s the differential operators are typically local.
By taking advantage that Green’s function of the Poisson Equa-

ions only depends on the boundary conditions, we show that
eural networks can be trained to Green’s functions for general
oundary settings. Once trained or optimized, our model can
urpass state-of-the-art linear system solvers for certain settings
n terms of convergence rate and runtime. Lastly, tested our
reen’s function representation to replace pressure solvers in
luid simulation, and achieve a speedup of ∼5x compared to state
f the art classical solvers.
The up-front cost to get our approximated multi-level Green’s

unction can pay off when the system is solved for multiple dif-
erent right-hand sides (single scene optimization). Examples of
uch applications include Poisson matting [35], in which a Poisson
quation of different right-hand side is solved in each itera-
ion; Poisson image editing [36], where the boundary condition
hanges when a different region of blending is selected; grid-
ased fluid simulations [30], as the right-hand side computed
rom the advected velocity change at each time step.

.1. Limitations

naccurate MLP kernel predictions. As shown in Fig. 7(c), our
rained model underperforms on some individual patches around
olid obstacles. This small potion of inaccurate kernels can result
n slow convergence or even divergence if the SPD property
s locally violated. We suspect that this behavior might come
rom SDF patches that are not well represented on the original
ataset and the limited capability of the simple MLPs archi-
ectures employed. Therefore an improved network design and
etter sampling of the input examples during training may relieve
his issue. Furthermore, when testing our model on scenes with
nseen shapes (e.g., triangles) representing interior Neumann
oundaries, our model also demonstrates inferior performance
Fig. 11). We notice, however, that our method can be fur-
her fine-tuned for these scenarios by performing additional

ptimization iterations through Eq. (15) (Fig. 7(d)).

195
Kernels without compact support. We found in experiments that
ground-truth residual Green’s kernels G∗ℓ(i, j) can have a non-
compact support in some cases, as shown in Fig. 10 . The Figure
shows the comparison of the approximated residual Green’s ker-
nel Ĝ∗ℓ(i, j) (b) and G∗ℓ(i, j) (c), computed similarly as in Fig. 4, at
different spatial locations ((10, 9), top) and ((4, 23), bottom) for
levels ℓ = 3 and ℓ = 4 respectively. The absolute difference
between G∗ℓ(i, j) and Ĝ∗ℓ(i, j) is shown on the right. Compared to
the kernels in Fig. 4, ground-truth kernels in this example have
more values outside the compact range defined. However, our
approximated kernels can still perform well when evaluating its
convergence of solving Poisson Equations (Fig. 10 (e)). We suspect
the non-compact kernels may have a larger effect on the conver-
gence rate in higher resolutions, and additional experiments for
fine-tuning and ablation are needed.

6.2. Future work

We plan to extend our work to support higher resolutions
and 3-D settings. Moreover, our method could be applied to han-
dle Poisson equations on arbitrary meshes, which would require
more sophisticated numerical methods and efficient implemen-
tation of the downsampling and upsampling operators. Lastly,
our method could offer significant speed-ups when dealing with
varying boundaries (moving solids or liquids simulations). These
scenarios were not explored in this paper; however, we believe
that the method can be extended to handle such cases, as long
as the training dataset represents moving boundaries accurately.
These extensions would greatly increase the application of the
proposed approach, since solving the Poisson equation is a widely
pervasive problem.
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