
Computers & Graphics (2022)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Neural Green’s Function for Laplacian Systems – Supplymental Materials

A R T I C L E I N F O

Article history:
Received March 18, 2022

Keywords: Machine Learning, Model-
ing and Simulation, Poisson Equation,
Green’s Function

A B S T R A C T

Solving linear system of equations stemming from Laplacian operators is at the heart of
a wide range of applications. Due to the sparsity of the linear systems, iterative solvers
such as Conjugate Gradient and Multigrid are usually employed when the solution has
a large number of degrees of freedom. These iterative solvers can be seen as sparse
approximations of the Green’s function for the Laplacian operator. In this paper we
propose a machine learning approach that regresses a Green’s function from boundary
conditions. This is enabled by a Green’s function that can be effectively represented in
a multi-scale fashion, drastically reducing the cost associated with a dense matrix rep-
resentation. Additionally, since the Green’s function is solely dependent on boundary
conditions, training the proposed neural network does not require sampling the right-
hand side of the linear system. We show results that our method outperforms state of
the art Conjugate Gradient and Multigrid methods.

© 2022 Elsevier B.V. All rights reserved.

1. Optimization Objective for Multi-level Green’s Function1

Representation2

1.1. Derivation for level ℓ3

We show that Ĝ∗ℓ = arg minG∗
ℓ

∥∥∥∥G∗ℓAℓ − (Aℓ − Uℓ
ℓ−1Dℓ−1

ℓ
Iℓ
)∥∥∥∥2

2
4

(Equation (15) in the main text) is a sufficient condition for5

Ĝℓ = arg minGℓ ∥GℓAℓ − Iℓ∥22 (Equation (14) in the main text)6

given the definition Gℓ = Uℓ
ℓ−1Gℓ−1Dℓ−1

ℓ
+G∗ℓ (Equation (13) in7

the main text)8

We write down the optimized Ĝℓ for both levels ℓ (finer) and

ℓ − 1 (coarser):

Ĝℓ−1Aℓ−1 − Iℓ−1 = Σℓ−1, (1)

ĜℓAℓ − Iℓ = Σℓ. (2)

Here Σℓ−1 ≃ 0 and Σℓ ≃ 0 are the residuals after the optimiza-9

tion of Gℓ−1 and Gℓ. Since we are only concerned with two10

levels, we use U = Uℓ
ℓ−1 and D = Dℓ−1

ℓ
to simplify the nota- 11

tions. 12

We now bring the definitions Aℓ−1 = Dℓ−1
L AUL

ℓ−1 = DAℓU,

Iℓ−1 = Dℓ−1
L IUL

ℓ−1 = DIℓU and Gℓ = UGℓ−1D +G∗ℓ into (1) and

(2), and get

Ĝℓ−1 (DAℓU) − DIℓU = Σℓ−1, (3)(
UĜℓ−1D + Ĝ∗ℓ

)
Aℓ − Iℓ = Σℓ. (4)

We further organize the above equations by removing all the

parentheses and get

Ĝℓ−1DAℓU − DIℓU = Σℓ−1, (5)

UĜℓ−1DAℓ + Ĝ∗ℓAℓ − Iℓ = Σℓ. (6)

Since the first term in both equations look alike, we can try to

eliminate them by combining the two equations. To do that, as

U , 0 we can left multiply Uℓ
ℓ−1 in (5) and right multiply Uℓ

ℓ−1

Preprint submitted to Computers & Graphics August 3, 2022

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag


2 Preprint Submitted for review /Computers & Graphics (2022)

in (6).

UĜℓ−1DAℓU − UDIℓU = UΣℓ−1, (7)

UĜℓ−1DAℓU + Ĝ∗ℓAℓU − IℓU = ΣℓU. (8)

Now we subtract (8) by (7), and get1 (
Ĝ∗ℓAℓ − Iℓ + UDIℓ

)
U = ΣℓU − UΣℓ−1 ≃ 0 (9)2

Since U , 0,
(
Ĝ∗ℓAℓ − Iℓ + UDIℓ

)
≃ 0 is a sufficient3

condition for (9) to hold. Note that from (1) and (2)4

to (9), sufficiency and necessity always holds, so Ĝ∗ℓ =5

arg minG∗
ℓ

∥∥∥∥G∗ℓAℓ − (Iℓ − Uℓ
ℓ−1Dℓ−1

ℓ
Iℓ
)∥∥∥∥2

2
is a sufficient condition6

for Ĝℓ = arg minGℓ ∥GℓAℓ − Iℓ∥22.7

1.2. An alternative two-level derivation8

We now consider the two level case (L = 2) for a simpler9

derivation. We want that the level ℓ = 2 approximates the ma-10

trix inverse as:11

Ĝ2A − I = 0 (10)12

with Ĝ2 depending on the coarser level ℓ = 1 as13

Ĝ2 = UĜ1D + Ĝ∗2 (11)14

To make this discretization level-independent, we enforce the15

coarser level ℓ = 1 to solve the downsampled version of Laplace16

system:17

Ĝ1 (DAU) = DU (12)18

By substituting (12) into (11), we get19 (
U
[
DU(DAU)−1

]
D + Ĝ∗2

)
A − I = 0 (13)20

This equation holds:21

Ĝ∗2A + UD − I = 0 (14)22

2. Further Implementation Details23

2.1. Multi-level Green’s function24

Each level ℓ of our multi-level Green’s function approxima-25

tion Ĝ∗ℓ is essentially a sparse matrix that can be efficiently im-26

plemented by any framework supporting sparse computations.27

To fully utilize the Pytorch framework for its automatic differ- 28

entiation as well as the parallel nature of convolutional opera- 29

tions, we implement Ĝ∗ℓ through spatially varying convolutions, 30

i.e. sliding window of compact kernels G∗ℓ(iℓ, jℓ) of size kℓ × kℓ 31

that vary at each position (iℓ, jℓ). When applied on the right- 32

hand side at level ℓ, the sliding window is multiplied with the 33

corresponding values in the right-hand side: 34

uiℓ , jℓ =
∑

i, j∈N(iℓ , jℓ)

[
G∗ℓ(iℓ, jℓ)

]
i, j

fi, j, (15) 35

where N(iℓ, jℓ) denotes the neighourhood of (iℓ, jℓ). Note that 36

the above equation is similar to a normal 2-D convolution oper- 37

ation, except that the convolutional kernel varies at each posi- 38

tion. Upsampling and downsampling operators Uℓ
ℓ−1, Dℓ−1

ℓ
are 39

implemented in the same way through spatially-varying convo- 40

lutions. The only difference is that the kernel values for up- 41

sampling and downsampling operators are fully determined by 42

the linear stencil (Equation (11) in the main text) while ker- 43

nel values for Green’s functions are obtained through either op- 44

timization (Equation (15) in the main text) or neural network 45

feed-forward evaluation G∗ℓ(iℓ, jℓ) =MΘℓ (ϕℓ(iℓ, jℓ)). 46

2.2. Dataset generation 47

To generate the training dataset, we first randomly place 48

spheres and rectangles as described in in Section 5.3 in the main 49

text to generate the scene setting. As we only have primitive 50

shapes in the scene, the corresponding SDF is easily computed 51

at each discretization level (ϕ1, ..., ϕL). When two or more prim- 52

itive shapes overlap, we compute the union of the two or more 53

SDF through smooth blending [1] with α = 1. The discrete 54

Laplacian matrix of the scene A(= AL) is then computed based 55

on the voxelized obstacle represented boundary conditions at 56

level L, and stored in the dataset. To compute AL, we follow 57

Bridson [2] (Chapter 5) to adapt the Laplace stencil according 58

to the boundary conditions of the nearby cells. The Laplacian 59

matrices of other levels ℓ is downsampled from Aℓ = DℓLALUL
ℓ 60

on the fly during training. At each training iteration for level 61

ℓ, we load (ϕℓ,A) from the dataset, evaluate the MLP, compute 62

the loss in Equation (16) in the main text, and back-propagate 63

to update the weights Θ of the MLP. 64



Preprint Submitted for review /Computers & Graphics (2022) 3

Fig. 1. Solving Poisson Equation using multi-level Green’s function optimized on single scenes in resolution n = 257. Top 3 rows: The same Green’s
function is applied to three different right-hand side vectors. In all three cases, multi-level Green’s function outperforms other competing solvers in terms
of convergence of residual. Bottom 2 rows: the Green’s function is optimized for a sphere shaped scene (Row 4) and a more irregular shaped scene (Row
5). All boundary in both scenes are Dirichlet boundaries. The convergence of Green’s function is similar to or slightly worse than MGPCG, but better than
other competing solvers.



4 Preprint Submitted for review /Computers & Graphics (2022)

Fig. 2. Solving Poisson Equation using multi-level Green’s function from MLP output in resolution n = 129. Top 3 rows: the same Green’s function
is applied to three different right-hand side vectors. In all three cases, multi-level Green’s function outperforms other competing solvers in terms of
convergence of residual. Bottom 2 rows: the MLP is evaluated on L-shaped scenes. The scene has Dirichlet boundary on the left side, and Neumann
boundary on other sides. The interior boundary in Row 5 is also Neumann boundary. The convergence of Green’s function is slightly worse than MGPCG,
but better than other competing solvers.



Preprint Submitted for review /Computers & Graphics (2022) 5

To generate the test set, we use the same procedure as in the1

training dataset for generating (ϕ1, ..., ϕL,A). We additionally2

generate 5 right-hand side vectors for each scene through either3

Perlin noise [3] or Gaussian noise. To get the ground-truth so-4

lution vector, we use the Conjugate Gradient solver to solve for5

the Poisson equation of different right-hand side vectors sepa-6

rately with a tolerance of 10−12 in L∞ norm.7

3. Extended Results8

We show extended results of multi-level Green’s function for9

solving Poisson Equations.10

3.1. Applying the same Green’s function on different right-11

hand side vectors12

One of the major advantage of using Green’s function to13

solve linear PDE is that the Green’s function can be used for14

arbitrary forcing term. We show our multi-level Green’s func-15

tion representation has the same properties. Both Green’s func-16

tion optimized for a single scene (Figure 1, top 3 rows), and17

the output Green’s function kernels from MLP (Figure 2, top 318

rows) are agnostic to right-hand side vectors. Once optimized19

or trained, the Green’s function can be used for solving Poisson20

Equations with arbitrary right-hand side, without changing the21

convergence properties.22

3.2. Irregular exterior boundaries23

We further evaluate the multi-level Green’s function on more24

irregular domains. In Figure 1 (bottom 2 rows), Green’s func-25

tion is optimized for a sphere shaped scene and a more irregular26

shaped scene in Dirichlet boundary conditions. In both scenes,27

Green’s function solvers converge similarly or slightly worse28

than MGPCG, but perform better than other solves. In Figure 229

(bottom 2 rows), the same MLP is used to evaluate a L-shaped30

scene with mixed Dirichlet and Neumann boundary conditions,31

which never appeared in the training set. The Green’s function32

solver is slightly inferior to MGPCG in these cases at lower33

tolerance regions, but better than other solvers.34

References 35

[1] Pasko, AA, Savchenko, VV. Blending operations for the functionally 36

based constructive geometry 1994;. 37

[2] Bridson, R. Fluid simulation for computer graphics. CRC press; 2015. 38

[3] Perlin, K. Image Synthesizer. Computer Graphics (ACM) 39

1985;19(3):287–296. doi:10.1145/325165.325247. 40

http://dx.doi.org/10.1145/325165.325247

	Optimization Objective for Multi-level Green's Function Representation
	Derivation for level 
	An alternative two-level derivation

	Further Implementation Details
	Multi-level Green's function
	Dataset generation

	Extended Results
	Applying the same Green's function on different right-hand side vectors
	Irregular exterior boundaries


