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1. Additional implementation details

ID vectors Table 1 lists the face recognition methods used in this work. Note that we use two implementations for Arc-

Face [5] and FaceNet [28], one for training and the other one for evaluation in each case. The methods used for training were

chosen to match those used in Gaussian sampling [24] and StyleGAN search [35] respectively. The methods used for evalua-

tion were chosen to match the verification accuracy on real images as closely as possible to the values shown in Vec2Face [7]

to enable a fair comparison. For both evaluation methods, we extract the identity embeddings for each image as well as its

horizontally flipped version and then calculate the angular distance of the concatenated identity embeddings after subtracting

the mean embedding, similar to [27]. In order to avoid having the face detector stage of different face recognition vectors

influence the qualitative results, we manually confirmed that all shown test images were properly aligned.

Method Usage Alignment Implementation Checkpoint

AdaFace [15] Training 1 Provided MTCNN [37] Official GitHub repository “adaface ir50 ms1mv2.ckpt”

ArcFace [5, 2] Evaluation RetinaFace [4] from [3] Official GitHub repository “ms1mv3 arcface r100 fp16”

ArcFace [5, 24] Training 1 MTCNN [37] from [8] From Razzhigaev et al. [24] “torchtest.pt”

FaceNet [28, 27] Evaluation Provided MTCNN [37] From David Sandberg [27] “20180402-114759”

FaceNet [28, 8] Training Provided MTCNN [37] From Tim Esler [8] “20180402-114759”

FROM [23] Training 1 MTCNN [37] from [8] Official GitHub repository “model p5 w1 9938 9470 6503.pth.tar”

InsightFace [3] Training Provided RetinaFace [4] InsightFace repository [3] “buffalo l”

Table 1: Overview over the considered face recognition methods. 1 Only used in supplementary material.

Model We use the official U-net [25] implementation by Dhariwal and Nichol [6, 21] and their recommended hyperparam-

eters, whenever applicable, for the main 64 × 64 ID-conditioned face generation model and the 64 → 256 super-resolution

model as listed in Tab. 2. The U-net architecture is divided into several levels, with each level composed of ResNet [10]

blocks and down- or upsampling layers. The U-net also contains global attention layers at 32 × 32, 16 × 16, and 8 × 8

resolutions. The time step t is passed through a sinusoidal position embedding layer, known from transformers [34], and is

then added to the residual connection of the ResNet blocks. The most important additions to the baseline model are the iden-

tity conditioning module (identity cond) and introducing classifier-free guidance (classifier free) by setting the conditioning

vector to the 0-vector1 for 10% of the training samples to obtain an unconditional and conditional setting with just one trained

model.

*Corresponding author.
1For attribute conditioning, the −1-vector is used since the 0-vector is a valid attribute vector (e.g. age 0) and the −1-vector performed better empirically.



Training The training set is composed of images along with their corresponding (pre-computed) ID vectors. We train the

64 × 64 ID-conditioned face generation model for 100000 batches and the 64 × 64 unconditional upsampling model for

50000 batches, both with a batch size of 64, learning rate of 10−4, and from scratch. We use the weights with an exponential

moving average rate of 0.9999 because it generally leads to better results. Training takes around two days on one NVIDIA

RTX 3090 GPU.

Inference All models are trained with T = 1000 but respaced to 250 time steps during inference for computational reasons

with a negligible decrease in quality. We use a classifier-free guidance scale of 2 unless otherwise stated. Furthermore, we fix

the randomness seeds whenever comparing different methods to ensure a fair comparison. Inference (main model + super-

resolution to 256 × 256 resolution) takes around 15 seconds per image when using batches of 16 images on one NVIDIA

RTX 3090 GPU. The inference time can be drastically reduced by using fewer respacing steps at a slight decrease in quality,

as shown in Fig. 1. For example, when using 10 respacing steps, the inference time decreases to around 1 second per image

with a comparable identity fidelity and only slightly fewer details (especially in the background).

64× 64 main model 64× 64→ 256× 256 super-resolution model

Diffusion parameters

diffusion steps 1000 1000

noise schedule cosine linear

Model parameters

attention resolutions 32, 16, 8 32, 16, 8

classifier free True False

dropout 0.1 0

identity cond True False

learn sigma True True

num channels 192 192

num heads 3 4

num res blocks 3 2

resblock updown True True

use fp16 True True

use new attention order True False

use scale shift norm True True

Training parameters

batch size 64 64

ema rate 0.9999 0.9999

lr (learning rate) 10
−4

10
−4

total steps (batches) 100000 50000

Table 2: Hyperparameters of our diffusion models. We use one diffusion model to generate 64×64 resolution images and one

super-resolution diffusion model to increase the resolution to 256 × 256. All other parameters are named as in the baseline

implementation (where applicable).



Time (s) 0.2 0.2 0.3 0.6 0.9 1.8 4.1 8.3 17.0

Steps 3 5 10 25 50 100 250 500 1000

(a) 64× 64 main model

Time (s) 0.6 0.6 0.9 1.8 3.3 6.3 15.1 30.1 60.4

Steps 3 5 10 25 50 100 250 500 1000

(b) 64× 64 main model + 64× 64→ 256× 256 super-resolution model

Figure 1: Qualitative evaluation of the effect of the number of respacing steps. For each ID vector extracted from the image

on the left, we generate images for four seeds with different number of respacing steps, with and without super-resolution.

We also report the inference time per image (when using batches of 16 images) in seconds on one NVIDIA RTX 3090 GPU.

Note that the time listed for the images with super-resolution also includes the time to generate the 64× 64 images.



2. Additional comparisons to state-of-the-art methods

2.1. Qualitative results

Figure 2 shows additional results of the qualitative comparison with the state-of-the-art black-box methods, whose code

is available, and demonstrates the superiority of our method both in terms of image quality and identity preservation.

Original

image
NbNet [19]

Gaussian

sampling [24]

StyleGAN

search [35]

ID3PM (Ours,

FaceNet [28, 8])

ID3PM (Ours,

InsightFace [3])

Figure 2: Qualitative evaluation with state-of-the-art methods (additional results). The generated images of our method look

realistic and resemble the identity of the original image more closely than any of the other methods.



In the main paper, we quantitatively compare the diversity of our method with that of StyleGAN search [35], which is the

only competing method that can produce realistic images at a high resolution. Figure 3 qualitatively confirms that our method

produces similarly diverse images but with better identity preservation. For fairness reasons, we use our model trained with

FaceNet [28, 8] ID vectors since StyleGAN search [35] uses the same FaceNet implementation [8]. For the first two identities,

the StyleGAN search [35] algorithm finds images that share facial features with the original face; however, the identity does

not resemble the original face very closely. For the third identity, the search strategy often fails completely by landing in

local minima.

Original image StyleGAN search [35] ID3PM (Ours, FaceNet [28, 8])

Figure 3: Qualitative evaluation with StyleGAN search [35]. The generated images of our method resemble the identity of

the original image closely and more consistently. Note that StyleGAN search [35] often fails completely for the third identity,

whereas our method trained with the same face recognition method (FaceNet [28, 8]) reproduces the identity well.



2.2. User study

To accompany the qualitative results and since we cannot show images from public data sets without the individuals’

written consents (as explained in the ethics section of the main paper), we performed a user study with two parts. For the

first part, we took the first 10 positive pairs with unique identities according to the LFW [12] protocol (same protocol as used

for the quantitative evaluation of the identity preservation in the main paper) to compare the following methods: NbNet [19],

Gaussian sampling [24], StyleGAN search [35], ours with FaceNet [28, 8], and ours with InsightFace [3].

Specifically, we instructed the users to:

• Rank the generated images from most similar to the person of the input image to least.

• Rank the generated images from most realistic to least.

The results in Table 3 (left) provide further evidence of our method outperforming competitor methods, with the exception

of StyleGAN search, which achieves better average realism at the expense of identity preservation. The user study also

supports our realism labels in the related work section of the main paper.

Method
LFW

ID ↓ Real ↓

NbNet [19] 3.52 4.06

Gaussian sampling [24] 4.83 4.90

StyleGAN search [35] 2.53 1.39

ID3PM (Ours, FaceNet [28, 8]) 1.90 2.05

ID3PM (Ours, InsightFace [3]) 2.22 2.61

Method
Vec2Face images

ID ↓ Real ↓

Vec2Face [7] 3.51 3.80

ID3PM (Ours, FaceNet [28, 8]) 2.665 1.52

ID3PM (Ours, InsightFace [3]) 3.50 3.23

ID3PM (Ours, FaceNet [28, 8], CASIA-WebFace [36]) 2.87 3.10

ID3PM (Ours, InsightFace [3], CASIA-WebFace [36]) 2.46 3.36

Table 3: User study. The listed scores are the mean ranks (1 - 5) for realism (Real) and identity preservation (ID) of the

different methods on LFW [12] images (left) and Vec2Face [7] images (right).

For the second part, we took screenshots of the 14 input and result images from Fig. 4 of the Vec2Face [7] paper to

compare our method to Vec2Face despite their code not being available. We then computed ID vectors for these faces and

generated one image per ID vector with each variation of our method with a fixed random seed and ran a similar user study

as above, again with 25 users. We also trained versions of our method on CASIA-WebFace [36]2 to have the same training

data as Vec2Face. The results in Table 3 show that all variations of our method beat Vec2Face despite the experimental setup

favoring Vec2Face (e.g. low-quality screenshots as input for our method and using Vec2Face authors’ chosen examples).

2.3. Fairness of comparisons

Our comparisons are fair or to the benefit of competing methods, and no retraining of competing methods was necessary.

Gaussian sampling [24] does not have a training data set. StyleGAN search [35] uses a StyleGAN2 [14] trained on all 70000

images3 of FFHQ [13], so it saw the 1k test images used in the main paper during training (unlike our method that was

trained only on the first 69000 images). NbNet [19] and Vec2Face [7] will likely not work well when trained only on FFHQ.

NbNet reports significantly worse results in their Tab. 4 and section 4.2.1 when not augmenting their data set (which is

already orders of magnitudes larger than FFHQ) with millions of images. Vec2Face uses CASIA-WebFace [36], which is

∼ 7 times bigger than FFHQ, and needs class information during training. One can thus consider Vec2Face as white-box

with a slightly worse face recognition model (trained with knowledge distillation). When training our method with CASIA-

WebFace instead of FFHQ, we obtain similar results and also match or outperform Vec2Face as seen in the above user study.

Also, for fairness, we used Vec2Face’s protocol for the quantitative comparison of the identity preservation. Lastly, note that

no images visualized in the paper were included in any method’s training data.

2Not upscaled from 64× 64 to 256× 256 for time reasons.
3See https://tinyurl.com/ffhq70k.



3. Controllability

To the best of our knowledge, our method is the first black-box face recognition model inversion method that offers

intuitive control over the generation process. The mechanisms described in the following section enable the generation of

data sets with control over variation and diversity of the identities as well as their attributes.

3.1. Guidance scale

As described in the main paper, the guidance scale of the classifier-free guidance controls the trade-off between the fidelity

in terms of identity preservation (higher guidance) and the diversity of the generated faces (lower guidance). Figure 4 shows

examples of the generated images for different guidance scales s ranging from 1.0 to 5.0. To improve the performance for

high guidance scales, we adopt dynamic thresholding from Imagen [26] with a threshold of 0.99.

s 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

(a) FaceNet [28, 8]

s 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

(b) InsightFace [3]

Figure 4: Qualitative evaluation of the effect of the guidance scale. For each ID vector extracted from the image on the left,

we generate images for four seeds at guidance scales s ranging from 1.0 to 5.0.



In the main paper, we evaluate the diversity in terms of the pairwise pose, expression, and LPIPS [38] feature distances

among generated images as well as their identity embedding distances. To further quantify the effect of the guidance, we

select the first 10000 images of the FFHQ data set [13], extract their ID vectors, and generate one image for each ID vector4.

These 10000 images are then compared to the corresponding 10000 original images in terms of their FID scores [11] as well

as precision and recall [17]. The results are shown in Tab. 4. The precision score assesses to which extent the generated

samples fall into the distribution of the the real images. Guidance scales in the range s = 1.5 to s = 2.0 raise the precision

score, implying a higher image quality of the generated images. Even larger guidance scales lead to lower precision scores,

which could be explained by the saturated colors observed in Fig. 4. The recall score measures how much of the original

distribution is covered by the generated samples and corresponds to the diversity. As the guidance scale increases, recall

decreases. Similarly, the FID score gets worse with higher guidance scales, demonstrating the decrease in diversity among

the generated images.

Method ID vector Guidance scale s FID (↓) Precision (↑) Recall (↑)

ID3PM (Ours, FaceNet [28, 8])

1.0 8.014 0.768 0.498

1.5 9.141 0.782 0.490

2.0 10.434 0.783 0.476

2.5 11.659 0.775 0.452

3.0 12.806 0.771 0.441

ID3PM (Ours, InsightFace [3])

1.0 6.786 0.774 0.517

1.5 7.442 0.782 0.516

2.0 8.497 0.771 0.508

2.5 9.286 0.763 0.506

3.0 10.119 0.746 0.488

Table 4: Quantitative evaluation of the effect of the guidance scale on image quality and diversity. The best performing

setting for each ID vector is marked in bold.

Additionally, we perform the face verification experiment from the main paper on LFW [12], AgeDB-30 [20], and CFP-

FP [29] with guidance scales between 1.0 and 3.0 for our models trained using FaceNet [28, 8] and InsightFace [3] ID

vectors. As seen in Tab. 5, the face verification accuracy generally increases with higher guidance scales but saturates

eventually, confirming our qualitative findings that the guidance aids in the identity preservation.

Method
Guidance

scale s

LFW AgeDB-30 CFP-FP

ArcFace ↑ FaceNet ↑ ArcFace ↑ FaceNet ↑ ArcFace ↑ FaceNet ↑

Real images - 99.83% 99.65% 98.23% 91.33% 98.86% 96.43%

ID3PM (Ours, FaceNet [28, 8])

1.0 95.60% 98.62% 84.07% 86.20% 91.83% 94.30%

1.5 97.08% 99.00% 87.55% 87.90% 94.20% 95.04%

2.0 97.65% 98.98% 88.22% 88.00% 94.47% 95.23%

2.5 97.92% 98.92% 88.75% 88.47% 94.61% 95.19%

3.0 98.03% 99.07% 88.45% 88.47% 94.47% 95.03%

ID3PM (Ours, InsightFace [3])

1.0 98.38% 94.37% 91.88% 75.60% 93.50% 85.26%

1.5 98.95% 95.62% 93.88% 77.57% 95.59% 86.81%

2.0 99.20% 96.02% 94.53% 79.15% 96.13% 87.43%

2.5 98.97% 96.37% 94.88% 79.20% 96.03% 87.83%

3.0 99.15% 96.30% 94.78% 79.25% 96.16% 87.97%

Table 5: Quantitative evaluation similar to the main paper but with different values for the classifier-free guidance s for our

models trained using ID vectors from FaceNet [28, 8] and InsightFace [3]. The best performing setting for each ID vector is

marked in bold.

4Note that we use the generated images of size 64× 64 (rather than the upsampled images) for computational reasons.



3.2. Identity vector latent space

Our method is the first to our knowledge to enable smooth interpolations in the ID vector latent space. While we can

condition other methods on an interpolated or adapted ID vector as well, their results lack realism and/or do not transition

smoothly between images. This is demonstrated in the identity interpolations in Fig. 5. Note that spherical linear interpolation

was used for all methods, but linear interpolation leads to a similar performance. The other one-to-many approaches, Gaussian

sampling [24] and StyleGAN search [35], were extended such that the seed of all random number generators is set before

each image is generated to eliminate discontinuities due to the randomness of the generation process. Nevertheless, certain

identity-agnostic characteristics, such as the the expression, pose, and background for StyleGAN search [35], change from

one image to the next.

NbNet [19]

Gaussian

sampling [24]

StyleGAN

search [35]

ID3PM (Ours,

FaceNet [28, 8])

ID3PM (Ours,

InsightFace [3])

(a) Identity 1←→ Identity 2

NbNet [19]

Gaussian

sampling [24]

StyleGAN

search [35]

ID3PM (Ours,

FaceNet [28, 8])

ID3PM (Ours,

InsightFace [3])

(b) Identity 3←→ Identity 4

Figure 5: Identity interpolations for two pairs of identities using state-of-the-art methods. Our method is the only method

that provides realistic, smooth interpolations.



As described in the main paper, we can find custom directions in the ID vector latent space. This allows us to change

certain identity-specific features such as the age, glasses, beard, gender, and baldness during image generation by traversing

along a given direction as visualized in Fig. 6.

Older

Glasses

Beard

(a) Identity 1

Younger

Gender

Bald

(b) Identity 2

Figure 6: Controllable image generation through custom directions in the (InsightFace [3]) ID vector latent space.



3.3. Attribute conditioning

To help disentangle identity-specific from identity-agnostic features as well as to obtain additional intuitive control, we

propose attribute conditioning in the main paper. We consider three sets of attributes from the FFHQ metadata [1]5 as shown

in Tab. 6 by grouping them by how much they contribute to a person’s identity. For example, set 1 only contains attributes

that are identity-agnostic whereas set 3 also contains attributes that are strongly correlated with identity. In practice, we

recommend using set 1 (and thus use that in the main paper) but show sets 2 and 3 for completeness. Note that the attributes

from the FFHQ metadata [1] are in the form of JSON files. Since the neural networks used to extract the attributes are

not publicly available, only black-box approaches such as ours that do not require the neural networks’ gradients can be

used. The attribute conditioning is thus an example of how our proposed conditioning mechanism can be extended to include

information from non-differentiable sources.

Attribute Number of categories
Set

1 2 3

Age 1 ✗ ✗ ✓

Emotion 8 ✓ ✓ ✓

Facial hair 3 ✗ ✗ ✓

Hair 8 ✗ ✗ ✓

Head pose 3 ✓ ✓ ✓

Gender 1 1 ✗ ✗ ✓

Glasses 1 ✗ ✓ ✓

Makeup 2 ✗ ✓ ✓

Occlusions 3 ✗ ✓ ✓

Table 6: Different attribute sets. The number of (potentially identity-correlated) features increases from left to right. 1 While

gender arguably falls on a continuous, nonlinear spectrum, we treat it as a binary variable since only this information is

available in the data set.

By training our models with attribute conditioning, we can obtain images that recover more of the original data distribution

when we sample conditioned on the identity but using the unconditional setting for the attributes (i.e. −1-vector for the

attribute vector), as shown in the main paper. However, the attributes can overpower the identity information if the attribute

set contains attributes that are heavily correlated with the identity. This is visualized in Fig. 7 where we condition our model

trained with InsightFace [3] ID vectors on the same ID vector but different attribute vectors, specifically the ones of the first

10 images of the FFHQ test set ({69000, 69001, ..., 69009}). As we cannot show images from the FFHQ [13] data set as

mentioned in the ethics section of the main paper, we instead supply a table with their main attributes. For example, image

69000 is of a happy 27-year old woman with brown/black hair and makeup whose head is turned slightly to the left. For

attribute set 1, only the pose and emotion is copied. For attribute set 2, the makeup is also copied. For attribute 3, the gender

is also copied, thus leading to an image of a woman for identity 2. In general, as we add more attributes, the original identity

is changed increasingly more. Since attribute sets 2 and 3 can alter the identity significantly, we opt for attribute set 1 in most

cases.

Interestingly, even when conditioning on attribute set 1 (only pose and emotion), the average identity distance (seen in the

quantitative evaluation of the diversity and identity distances in the main paper) increases despite the visual results appearing

similar in terms of identity preservation. We hypothesize that this is because most face recognition vectors (inadvertently)

encode the pose and expression (see Sec. 5) and are less robust to extreme poses and expressions. Therefore, for the identity

distance, it is better to reconstruct a face with a similar pose and expression as the original image. Nevertheless, we argue for

the attribute conditioning (using attribute set 1) for most use cases because it leads to more diverse results and allows for an

intuitive control over attributes.

5We ignore the following attributes from the metadata: smile because it correlates with emotion; and blur, exposure, and noise because we are not

interested in them for the purposes of this experiment.



ID + Set 1

ID + Set 2

ID + Set 3

Attributes → 69000 69001 69002 69003 69004 69005 69006 69007 69008 69009

(a) Identity 1

ID + Set 1

ID + Set 2

ID + Set 3

Attributes → 69000 69001 69002 69003 69004 69005 69006 69007 69008 69009

(b) Identity 2

Image number Gender Age Hair Emotion Yaw angle Other

69000 Female 27 Brown/black Happy −21.9 Makeup

69001 Male 68 Gray Neutral −13.9 -

69002 Female 50 Not visible Happy 5.5 Headwear + glasses

69003 Female 20 Brown/blond Happy −0.4 -

69004 Male 36 Black Neutral 5.3 -

69005 Female 7 Blond Happy −2.6 -

69006 Female 18 Blond Neutral 9.0 -

69007 Female 21 Brown Happy −24.3 Makeup

69008 Female 28 Blond Happy 10.3 Makeup

69009 Female 43 Black/brown Happy −16.6 Makeup + glasses

(c) Attribute descriptions

Figure 7: Attribute conditioning for two identities using different attribute sets. Images in each group have the same (Insight-

Face [3]) ID vector, but the attributes are chosen from images {69000, 69001, ..., 69009} of the FFHQ data set.



Through attribute conditioning, we can simply set the values of desired attributes, such as the emotion and head pose,

during inference time to control them, as seen in Fig. 8. Note that our method has no internal structure to enforce 3D

consistency. The attribute conditioning alone suffices in generating images that preserve the identity and 3D geometry

surprisingly well as we traverse the attribute latent space. This intuitive attribute control paves the way towards using our

method to create and augment data sets.

1

2

3

(a) Yaw angle

1

2

3

Anger Contempt Disgust Fear Happiness Neutral Sadness Surprise

(b) Eight emotions

1

2

3

(c) Sad←→ Happy

Figure 8: Controllable image generation through attribute conditioning. We smoothly change three different attributes of

three identities. All models were trained using InsightFace [3] ID vectors and attribute set 1.



4. Failure case

As described in the main paper, one limitation of our approach is that it inherits the biases of both the face recognition

model and the data set used to train the diffusion model. This causes our method to sometimes lose identity fidelity of

underrepresented groups in the data set, as seen in the example in Figure 9, where the method produces images quite different

from the original identity.

Original image ID3PM (Ours, FaceNet [28, 8])

Figure 9: Failure case. Some underrepresented groups in the data sets might have lower identity fidelity for some ID vectors

(here FaceNet [28, 8]).



5. Application: Analysis of face recognition methods

With the rise of deep learning and large data sets with millions of images, face recognition methods have reached or

even surpassed human-level performance [32, 31, 28, 22]. Nevertheless, face recognition systems have known issues in their

robustness to different degradations and attacks [9, 30] and their biases (e.g. in terms of ethnic origin) [16, 33, 18].

Due to its general nature with very low requirements for the data set and few assumptions compared to other methods, our

method is very well suited for analyzing and visualizing the latent spaces of different face recognition (FR) models. Since our

method does not require access to the internals of the pre-trained face recognition model (black-box setting), we can analyze

different face recognition methods by simply replacing the input ID vectors without worrying about different deep learning

frameworks and the memory burden of adding more models.

For the analysis in this section, we train multiple versions of the model with ID vectors extracted with the pre-trained

face recognition models listed in Tab. 1. Note that since we specifically want to analyze what identity-agnostic features

are contained in common face recognition models, we do not use attribute conditioning here since it would disentangle

identity-specific and identity-agnostic features.

5.1. Qualitative evaluation

Figure 10 shows uncurated samples of generated images of the considered ID vectors for several identities. While all

generated images appear of a similar quality in terms of realism, the identity preservation of different methods behaves

quite differently. The relative performance of different ID vectors changes depending on the identity, but the results for

FaceNet [28, 8] and InsightFace [3] seem most consistent on average 6. As the inversion networks are trained with the same

diffusion model architecture and the same data set, we hypothesize that these differences largely boil down to the biases of

the respective face recognition methods and the data sets used to train them.

5.2. Robustness

Our method can also be used to analyze and visualize the robustness of face recognition models in difficult scenarios

such as varying expressions, poses, lighting, occlusions, and noise as seen in Fig. 11. In line with our previous observations,

FaceNet [28, 8] and InsightFace [3] appear the most robust.

In this analysis, it is also relatively easy to tell which features are extracted by observing which features of a target identity’s

image are preserved. For example, ArcFace [5, 24] and FROM [23] seem to contain pose information as the generated images

in the fourth and fifth columns have similar poses as the target identities’ images for both identities. Similarly, AdaFace [15]

and ArcFace [5, 24] seem to copy the expression for the third column of the first identity. InsightFace [3] also seems to

contain expressions and pose for the second identity as seen in columns two to four. Another feature that is commonly copied

is whether a person is wearing a hat or not even though this should arguably not be considered part of a person’s identity.

Interestingly, FROM, a method specifically aimed to mask out corrupted features, does not appear more robust for the tested

occlusions (sunglasses, hat). Lastly, noise seems to affect most face recognition methods significantly.

Figure 11 also lists the angular distances of the identities for each generated image to the target identity for the same

FR method. The distances for generated images that can be considered failure cases are in general higher than those of the

images that worked better. However, they are all still below the optimal threshold7 calculated for each FR method for real

images of the LFW [12] data set using the official protocol – meaning that all generated images are considered to be of the

same person. Therefore, we argue that the wrong ID reconstructions are mostly due to problems in the ID vectors rather than

the inversion of our model.

We further experiment with out-of-distribution samples such as drawings and digital renders as shown in Fig. 12. Inter-

estingly, despite the extremely difficult setup, some of the resulting images resemble the identity fairly well, especially for

FaceNet [28, 8], demonstrating that some face recognition models can extract reasonable identity-specific features even from

faces that are out of distribution. Furthermore, this experiment shows that our method can generate extreme features, such as

the large nose of the man in the fifth row with FaceNet [28, 8], that are likely not in the training data set.

6Note that more images than the representative ones shown here were considered to make this statement and other statements in this section.
7It is actually the mean threshold over the 10 different splits. Note that the standard deviation across the splits is smaller than 0.005.



Original

image

Ada-

Face [15]

Arc-

Face [5, 24]

Face-

Net [28, 8]
FROM [23]

Insight-

Face [3]

Figure 10: Qualitative evaluation of ID vectors from different state-of-the-art face recognition models. Note that the same

seed was used for all images to obtain the most fair results.



LFW

threshold

AdaFace [15]

0.29 0.24 0.27 0.24 0.27 0.24 0.27 0.35 0.31 0.26 0.35 - 0.43

ArcFace [5, 24]

0.28 0.25 0.25 0.27 0.30 0.26 0.23 0.26 0.28 0.25 0.28 - 0.45

FaceNet [28, 8]

0.15 0.19 0.16 0.16 0.14 0.12 0.14 0.17 0.14 0.14 0.19 - 0.37

FROM [23]

0.17 0.16 0.19 0.19 0.23 0.23 0.19 0.18 0.20 0.18 0.22 - 0.42

InsightFace [3]

0.23 0.24 0.21 0.23 0.24 0.22 0.21 0.25 0.23 0.25 0.24 - 0.42

(a) Identity 1

LFW

threshold

AdaFace [15]

0.28 0.29 0.29 0.28 0.27 0.28 0.28 0.26 0.25 0.40 0.32 - 0.43

ArcFace [5, 24]

0.23 0.25 0.22 0.30 0.24 0.22 0.24 0.23 0.27 0.24 0.23 - 0.45

FaceNet [28, 8]

0.18 0.17 0.19 0.16 0.15 0.17 0.17 0.17 0.18 0.13 0.21 - 0.37

FROM [23]

0.15 0.12 0.17 0.23 0.21 0.15 0.16 0.17 0.22 0.16 0.18 - 0.42

InsightFace [3]

0.21 0.22 0.21 0.21 0.22 0.23 0.22 0.23 0.23 0.23 0.24 - 0.42

(b) Identity 2

Figure 11: Robustness experiment. The first row shows images of a source identity in challenging scenarios whereas the

remaining rows show the results when using different ID vectors. The last image column shows images generated from the

mean ID vector of all of the source identity images (for which no source image exists). The numbers under each line are the

angular distances between the identity of the generated images and the target identity for the same face recognition method.

The numbers in the last column are the optimal thresholds for that method calculated using real images of the LFW [12] data

set and official protocol.
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image
AdaFace [15] ArcFace [5, 24] FaceNet [28, 8] FROM [23]

Insight-

Face [3]

Figure 12: Robustness of ID vectors from different state-of-the-art face recognition models for out-of-distribution samples.

Note that the same seed was used for all images to obtain the most fair results.



5.3. Identity interpolations

By interpolating between two ID vectors, our method can produce new, intermediate identities, as shown in the main

paper and in Fig. 13. This empirically demonstrates that the latent spaces of most face recognition methods are fairly well-

structured. Note that we use spherical linear interpolation because it produces slightly smoother results compared to linear

interpolation.

AdaFace [15]

ArcFace [5, 24]

FaceNet [28, 8]

FROM [23]

InsightFace [3]

(a) Identity 1←→ Identity 2

AdaFace [15]

ArcFace [5, 24]

FaceNet [28, 8]

FROM [23]

InsightFace [3]

(b) Identity 3←→ Identity 4

Figure 13: Identity interpolations for two pairs of identities using different ID vectors.



5.4. Principal component analysis

To analyze the most prominent axes within the latent space, we perform principal component analysis (PCA) on the ID

vectors of all 70000 images of the FFHQ data set for all considered face recognition models. As seen in Fig. 14, the first

principal component appears to mainly encode a person’s age while the subsequent components are more entangled and thus

less interpretable. Note that we normalize the size of the steps along the PCA directions by the L2 norm of the ID vectors to

ensure a similar relative step size for the different ID vectors. Further note that large steps along any direction can cause the

resulting latent vector to leave the distribution of plausible ID vectors and can cause artifacts, which is expected.
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(a) Identity 1
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1
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(b) Identity 2

Figure 14: Visualization of the first three principal component analysis axes for two identities using different ID vectors.



Rather than traversing along PCA directions, Fig. 15 shows how the images change when projecting the ID vectors onto

the first {1, 2, 4, 8, 16, 32, 64, 128, 256, 512} PCA axes. The main insight from this experiment is that the ID vectors from

some face recognition models, such as FaceNet [28, 8], can be compressed to as few as 64 dimensions without changing the

perceived identity while others, such as AdaFace [15], require all 512 dimensions.

AdaFace [15]

ArcFace [5, 24]

FaceNet [28, 8]

FROM [23]

InsightFace [3]

Number of axes→ 1 2 4 8 16 32 64 128 256 512

(a) Identity 1

AdaFace [15]

ArcFace [5, 24]

FaceNet [28, 8]

FROM [23]

InsightFace [3]

Number of axes→ 1 2 4 8 16 32 64 128 256 512

(b) Identity 2

Figure 15: Visualization of the projections onto the first {1, 2, 4, 8, 16, 32, 64, 128, 256, 512} principal component analysis

(PCA) axes for two identities using different ID vectors.



5.5. Custom directions

Since the PCA axes are difficult to interpret, we calculate custom directions for each face recognition model as described

in the main paper. As the biases of the FFHQ data set used to train our inversion models are the same for all ID vectors (e.g.

glasses appearing when increasing the age direction), the presence or absence of certain directions in the latent space along

which a given feature can be changed give insights about what information is extracted by a given face recognition model.

As seen in the main paper and Fig. 16, directions that are expected to be contained in the ID vector, such as the age and the

gender, can be traversed smoothly. Furthermore, directions that may or may not be considered as part of the identity, such as

the current look of a person (e.g. glasses, hair style, facial hair style), are also commonly contained as seen in the examples

with the blond hair color in Fig. 16.

AdaFace [15]

ArcFace [5, 24]

FaceNet [28, 8]

FROM [23]

InsightFace [3]

(a) Identity 1 | Age (b) Identity 1 | Blond hair color

AdaFace [15]

ArcFace [5, 24]

FaceNet [28, 8]

FROM [23]

InsightFace [3]

(c) Identity 2 | Age (d) Identity 2 | Blond hair color

Figure 16: Visualization of custom direction modifications for two identities using different ID vectors for two directions that

can be considered to belong to a person’s identity.



Most interestingly, our method reveals that some directions, such as the pose and emotion of a person, that arguably do

not belong to a person’s identity can be found for some face recognition models as seen in Fig. 17. For example, ArcFace [5,

24], FROM [23], and InsightFace [3] seem to (inadvertently) extract pose information as the yaw angle can be controlled

somewhat by moving along the corresponding direction in the ID vector latent space. Similarly, the smile appears to be

controllable in some small region for all considered ID vectors. Note that the goal of looking at these identity-agnostic

directions in the ID vector latent space is not necessarily to control this specific dimension cleanly (this can be achieved with

attribute conditioning), but rather to analyze what information is extracted by a given FR method. Thus, our method can be

used as a tool to reveal and visualize problems of FR methods that we might not even have been aware of and thus suggest

hypotheses for further quantitative experiments.

AdaFace [15]

ArcFace [5, 24]

FaceNet [28, 8]

FROM [23]

InsightFace [3]

(a) Identity 1 | Yaw angle (b) Identity 1 | Smile

AdaFace [15]

ArcFace [5, 24]

FaceNet [28, 8]

FROM [23]

InsightFace [3]

(c) Identity 2 | Yaw angle (d) Identity 2 | Smile

Figure 17: Visualization of custom direction modifications for two identities using different ID vectors for two directions that

arguably do not belong to a person’s identity. Our method reveals that many face recognition methods inadvertently extract

identity-agnostic information such as the pose and emotion.
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